
THE EXTENDED SOCKETS INTERFACE FOR ACCESSING RDMA
HARDWARE

Robert Russell
University of New Hampshire InterOperability Laboratory

121 Technology Drive, Suite 2
Durham, NH 03824-4716

rdr@iol.unh.edu

ABSTRACT
The Extended Sockets API (ES-API) is a specification pub-
lished by the OpenGroup that defines extensions to the
traditional socket API which include two major new fea-
tures: asynchronous I/O, and memory registration. These
features enable programmers to take advantage of today’s
multi-core processors and Remote Direct Memory Access
(RDMA) network hardware, such as iWARP and Infini-
Band interfaces, in a convenient yet efficient manner.

This paper describes the UNH EXS interface, an im-
plementation of the ES-API that provides additional API
facilities which enable a programmer to utilize RDMA net-
work hardware while selectively choosing those features of
this interface that are most germane to the particular appli-
cation. In addition, the UNH EXS interface is implemented
entirely in user space on the Linux operating system. This
provides easy porting, modification and adoption of UNH-
EXS, since it requires no changes to existing Linux kernels.
Preliminary results demonstrate that applications based on
EXS can achieve high bandwidth utilization and low CPU
overhead.

KEY WORDS
Remote Direct Memory Access (RDMA), Extended Sock-
ets (EXS), iWARP, 10GigEthernet.

1 Introduction

1.1 The ES-API

The Extended Sockets API (ES-API) [1] is a specification
published by the OpenGroup [2] that defines extensions to
the traditional socket API in order to provide improved ef-
ficiency in network programming. It contains two major
new features: asynchronous I/O, and memory registration.
These extensions can be a useful method for efficient, high-
level access to Remote Direct Memory Access (RDMA)
over IP [3]. The UNH EXS interface is an implementation
of the ES-API that also provides some additional API facil-
ities. In addition, the UNH EXS interface is implemented
entirely in user space on the Linux operating system. This
provides easy porting, modification and adoption of UNH-
EXS, since it requires no changes to existing Linux kernels.
The current implementation of the EXS interface runs on

top of free software provided by the OpenFabrics Alliance
(OFA) [4], called the OpenFabrics Enterprise Distribution
(OFED) [5] (the OFED stack for short). This software
runs in both user and kernel space, and provides efficient,
asynchronous access to various types of RDMA network-
ing hardware from different vendors. See Figure 1.

1.2 Remote Direct Memory Access

There are two major types of Remote Direct Memory Ac-
cess (RDMA) interfaces on the market today: InfiniBand
and iWarp. The OFED stack is designed to run on both of
them. The UNH-EXS was initially implemented and tested
only on iWarp. In principal, however, UNH-EXS should
run on both interfaces, although that remains to be tried.

The new 10 Gigabit/second Ethernet (10GigEthernet)
standard allows IP networks to reach competitive speeds,
but without offloading onto specialized Network Interface
Cards (NICs) standard, TCP/IP is not sufficient to make
use of the entire 10GigEthernet bandwidth. This is due to
data copying, packet processing and interrupt handling on
the CPUs at each end of a TCP/IP connection. In a tra-
ditional TCP/IP network stack, an interrupt occurs for ev-
ery packet sent and received, data is copied at least once
in each host computer’s memory (from user space into the
kernel’s TCP/IP buffers), and the CPU is responsible for
processing multiple nested packet headers for all proto-
col levels in all incoming and outgoing packets. To elim-
inate these inefficiencies, specialized Remote Direct Mem-
ory Access (RDMA) hardware can be used. One type of
RDMA hardware uses the Internet Wide Area Remote Pro-
tocol (iWARP) protocol suite [6, 7, 8] to move data di-
rectly from the memory of one computer to the memory
of a remote computer without extra copying or CPU in-
tervention at either end. The entire iWARP protocol suite
is offloaded from the CPU onto the RDMA Network In-
terface Card (RNIC). The RNIC reduces the number of
data copies that are required by the TCP/IP network to one
per host (between main memory and the Ethernet wire),
and offloads the bulk of the network processing from the
CPU. This means applications utilizing RNICs have lower
CPU usage than those utilizing standard NICs, and can
achieve throughput close to the full capacity of 10GigEth-
ernet links.

631-085 279

debbie
New Stamp

1.3 OFED Stack

The OpenFabrics Alliance (OFA) [4] provides a free soft-
ware stack that provides a socket-like abstraction layer
called the Communication Manager Abstraction (CMA),
along with a verbs layer that is used to perform data
transfers over RDMA hardware (together these pieces
are referred to as the OpenFabrics Enterprise Distribution
(OFED) stack). The OFED stack has been growing in pop-
ularity due to its active development community and in-
clusion in the Linux kernel. In addition, the OFED stack
also provides a user-space library that allows user-space ap-
plications to use its API to interface directly with RDMA
hardware. We therefore decided to implement UNH-EXS
entirely in user-space on top of the OFED user-space API,
as shown in Figure 1. The major reasons for this were
the ease of implementing and debugging software in user-
space as compared to kernel-space, the portability of the
resulting code, the ready availability and applicability of
the OFED user stack, and the near impossibility of getting
changes added to the Linux kernel that would be necessary
to implement EXS in the kernel.

2 UNH-EXS

The principal difference between the UNH EXS interface
and the OpenGroup ES-API [1] is that the UNH EXS inter-
face runs entirely in user space, whereas the ES-API was
intended to be integrated into the operating system kernel.
Thus the ES-API depends on internal modifications to the
existing standard I/O interface to UNIX in order to reuse
a large number of existing OS functions for RDMA ac-
cess. The ES-API does this whenever the number and types
of parameters to a socket function are unchanged for use
by RDMA. Examples are many of the conventional socket
functions – socket, bind, listen, close, getsockname, and
getpeername.

Of course, the ES-API also supplies many new func-
tions to be used in place of or in addition to existing socket
functions. This is necessary when the number or types
of parameters of existing functions have to be changed to
accommodate the expanded requirements of asynchronous
operation and registered memory in RDMA. Some exam-
ples are exs connect, exs accept, exs send, and exs recv.

Most ES-API functions new and old are based on the
use of UNIX file descriptors or fds to identify network con-
nections. These fds are used in UNIX as an index into
a process-specific table in the kernel that points to all the
control information about the file. User-level code has only
limited access to this information, and cannot add the types
of new information necessary to implement the EXS func-
tionality. The ES-API expects this to be dealt with by modi-
fications to the operating system kernel. But because UNH-
EXS is implemented entirely in user space, with no changes
to the Linux kernel, it must provide, in addition to all new
EXS-API functions, its own equivalent type of file descrip-
tor and its own versions of all standard functions that can be

applied to RDMA sockets: exs socket, exs bind, exs listen,
exs close, exs getsockname, and exs getpeername.

In addition, UNH-EXS added some new functions to
provide additional capabilities, as discussed in section 5.

user space user application program
UNH EXS library
OFED user library

kernel space OFED kernel modules
iWARP driver

hardware iWARP RNIC
10Gig Ethernet

Figure 1. Layering of EXS, OFED, and iWARP

3 Programming in EXS

There are two major differences between a program that
uses normal sockets and a program that fully uses the fea-
tures provided by EXS:

• The need to create and use event queues to control
asynchronous operation;

• The need to register and unregister memory used in
exs send and exs receive operations.

3.1 Asynchronous Operation

The general paradigm for programming in EXS is to use
threads and events. All I/O operations are partitioned into
two distinct phases: the ”start” phase, and the ” comple-
tion” phase. Between these phases the I/O operation pro-
ceeds in parallel with thread operation. A start phase begins
with one of the new EXS functions, such as exs connect,
exs accept, exs send, and exs recv. One of the parame-
ters to these functions is an event queue which must be
created prior to the call by the new exs qcreate function.
When a parallel I/O operation completes, the EXS inter-
face ”posts” an event on the queue given as a parameter in
the start phase. A user thread waits on the event queue to
receive this event, which will contain the status of the I/O
operation.

3.2 Memory Registration

In order to utilize the direct memory-to-memory transfer
feature of the RDMA interface hardware, the memory on
both ends of a transfer must be ”registered”. This accom-
plishes several necessary functions:

• It establishes the location and size of a memory area
that can be utilized in RDMA transfers;

• It establishes the access permissions allowed to each
side in the transfers;

280

• It ”pins” the virtual memory into real memory so that
the RDMA hardware can access the memory without
involving the CPU’s paging hardware.

An EXS user can choose to either explicitly or implic-
itly register the memory utilized in an exs send or exs recv.

Explicit registration is accomplished by the use of the
exs mregister function, which returns a ”handle” for the
registered area of memory. This handle is then used as a
parameter in the exs send and exs recv functions. Implicit
registration is accomplished by simply passing a special
EXS MHANDLE UNREGISTERED value as the param-
eter to exs send and exs recv functions. The EXS interface
handles implicit registration by dynamically registering the
memory at the start of an operation, and unregistering it
when the operation completes.

4 Mapping EXS functions onto RDMA oper-
ations

All socket communication requires a sender and a re-
ceiver, and EXS provides the two corresponding functions
exs send and exs recv. The underlying RDMA transfer op-
erations are not so simple, due to the requirements of mem-
ory registration on both ends of the connection and the
memory information needed by RDMA reads and writes.
Therefore, one side of the connection has to ”advertise” to
the other side the memory it wishes to use in the transfer
before the actual transfer can occur, and the EXS interface
must match up advertisements from the remote side with
requests on the local side before it can initiate an actual
RDMA transfer.

The UNH EXS implementation chose to always have
the recipient of a data transfer control the RDMA trans-
fer, a decision that was based on our prior experience with
iSCSI [9][10][11] and with the use of iSER [12] in conjunc-
tion with iSCSI over RDMA [13]. This means that when
an application calls the exs send function, the EXS imple-
mentation translates that into an RDMA ”send” operation
that sends just a short ”unsolicited” advertisement contain-
ing three pieces of descriptive information: the size of the
data block to be sent, the starting address of the data block
to be sent, and a memory registration handle that gives the
receiving side permission to read the block of data directly
from the sender’s memory.

When an application calls the exs recv function, the
EXS implementation tries to match it with an already re-
ceived advertisement from the sending side, and waits
(asynchronously) if no such advertisement has yet been
received. When an match is found, the receiving side’s
EXS implementation issues (asynchronously) an RDMA
”read request” operation that includes all the information
from the advertisement plus the corresponding information
from the exs recv. This allows the RDMA NICs on both
sides to cooperate in transferring the data from the mem-
ory of the sending machine directly into the memory of the
receiving machine without any CPU intervention.

Alternative designs, in which, for example, the sender
always controlled the data transfer, were rejected be-
cause the chosen scheme maps better onto the asymmetric
RDMA instructions provided by iWARP RDMA hardware.

4.1 Flow Control

The advertisements sent by exs send and the matching
done by exs recv are not seen by the user of EXS, and
neither is the internal EXS ”flow control” mechanism de-
scribed next.

Data transferred from user memory specified by
an exs send directly into user memory specified by an
exs recv clearly does not require any additional buffer
memory to be provided by the EXS implementation, the
OFED stack or the operating system on either end.

However, an advertisement constitutes additional
”metadata” about a subsequent data transfer, and as such
must be stored in small buffers within the sending side EXS
implementation, and received into small buffers within the
receiving side EXS. Furthermore, advertisements can be
sent at any time without prior warning – they are ”unso-
licited” – and the receiver must have previously provided
buffers to receive these unsolicited messages or the RDMA
hardware will cause a fatal error. Therefore the EXS imple-
mentation must implement some form of flow control to at
least ensure that a sender does not try to send an advertise-
ment unless it knows in advance that a receiver has a buffer
ready to accept it.

A credit mechanism is used by the UNH EXS imple-
mentation to accomplish this. Each interface maintains two
internal credit values: ”send credits” is the number of ad-
vertisements it is allowed to send to the other side, and
”recv credits” is the number of advertisements is is pre-
pared to receive from the other side. Clearly one side’s
send credits should equal the other side’s recv credits, and
when an EXS connection is first established, the EXS in-
terfaces on both sides negotiate these numbers so they are
initialized correctly. Prior to connection establishment, the
user application can use the exs fcntl function to set the
values it wishes to use in a negotiation. If not explicitly set
by a user, the EXS interface defines some default values to
use in the negotiation.

Sending an advertisement requires that the sender
have an unused send credit – if not, it must wait until
one becomes available before the actual send can occur.
Receiving an advertisement reduces the receiver’s unused
recv credits (as well as its available buffers). Both numbers
need to be increased once the actual data transfer finishes,
and this is indicated to the receiver’s EXS interface by the
OFED stack when the RDMA read request operation com-
pletes. However, the only notification given by either the
RDMA hardware or the OFED stack on the sending side
is one indicating that the RDMA send for the advertise-
ment was completed. There is no notification on the sender
side when the actual RDMA data transfer starts nor when
it completes. Therefore, the receiver’s EXS interface must

281

also send a short unsolicited ”acknowledgment’ message
back to the sender at the completion of a data transfer. This
acknowledgment conveys to the sending EXS interface the
completion status of the transfer, allowing it to increment
its send credits for this connection and to post the comple-
tion event to the sending application.

5 Additional Features of UNH EXS

A number of additional functions have been added to the
UNH implementation of EXS to give the user greater con-
trol over network communications. These functions also
allow us to experiment with parameters of the interface to
tune it for various application scenarios.

5.1 Small Packets

As described in section 4 above, data transfers in EXS
actually require several RDMA operations: one to send
an unsolicited advertisement, one to start an RDMA read,
and one to send an unsolicited acknowledgment. (There
is also a fourth, hidden RDMA ”read response” operation
performed entirely by the RNIC on the sending side in re-
sponse to the RDMA ”read request” operation performed
by the receiver’s RNIC.)

When the amount of data in a transfer is small, the
total transfer time will be dominated by the overhead time
needed to execute all these operations and to transfer the
extra metadata. Therefore, the UNH EXS interface al-
lows users to utilize the exs fcntl function to set a new
”small packet max size” parameter on a socket prior to es-
tablishing a connection on that socket. Then when the user
sends data on that socket using exs send, the UNH EXS
interface will actually send the user’s data as an ”immedi-
ate” part of the unsolicited advertisement itself. Since this
data is registered on the user side, the RDMA hardware
will still copy it directly from the sending user’s memory
without any additional copying or buffering.

When the receiving side EXS matches this advertise-
ment with a local exs recv, it just copies this immediate
data into the memory area provided by the user in the
exs recv, avoiding the RDMA read request and the hidden
RDMA read response operations, but introducing a previ-
ously unneeded data copy operation on the receiving side
(only). Part of the tuning that can be done by a user is
to determine where the small packet max size break-even
point is for his or her application and environment. Note
that once the small packet max size parameter is set, the
user does not have to make any changes to the exs send
or exs recv calls – the EXS interface deals with sending
the immediate data and copying it on the receive side (as
would be done for all data when using normal sockets). We
stress that this is an optional feature controlled by the user,
and demonstrate its effect in section 6.

5.2 In-place Receiving

To avoid even the copy of immediate data just discussed for
small packets, the UNH EXS interface provides a new flag
value that a user can pass as a parameter to the exs recv
to indicate that the user is prepared to receive small packet
data ”in-place” rather than in the buffer supplied by that
user in the exs recv call. If this particular exs recv matches
an advertisement that does not contain any immediate data,
this new flag value is ignored and the exs recv and its
completion perform as already described. However, if the
matched advertisement contains immediate data, then the
completion event for this exs recv will return a pointer to
the buffer within the EXS interface that contains the imme-
diate data rather that a pointer to the buffer supplied by the
user in the exs recv because the data is not copied at all by
the EXS receiver.

Again use of this optional feature is entirely con-
trolled by the user. It is most appropriate when the user
application has set a small packet max size and when his
or her application is written to use the data pointer returned
in the completion event to access the received data.

Although in-place receiving avoids copying small
packet data, it introduces another complexity into a user’s
program. Because a user is given access to an internal
EXS buffer, the EXS interface itself can no longer use
that buffer, and can no longer send an acknowledgment
to the remote side allowing that buffer to be reused, un-
til the user tells the EXS interface that it is ok to do so.
This is done when the user calls the new EXS function
exs recycle recv buffer. It is clearly incumbent upon a user
to call this function as soon as he or she has finished access-
ing the data contained in the in-place buffer.

5.3 Utilization Choices in UNH-EXS

In order take full advantage of the features offered by asyn-
chronous operation and RDMA hardware, programs need
to be written to utilize cooperating asynchronous threads
and memory registration. This necessitates a somewhat dif-
ferent style of programming that that used with ”normal”
sockets programming. However, to ease the transition, the
UNH EXS implementation provides a number of functions
that ”hide” some of the new details with a corresponding
loss of some performance. These functions look very much
like the ”normal” socket functions, and the idea is to pro-
vide a path by which a programmer can modify an existing
program written in terms of normal socket functions, get it
running over RDAM hardware with very little change, and
then slowly modify parts of it to introduce more and more
of the EXS features with a corresponding gain in perfor-
mance. Once a programmer has done this with one pro-
gram, he or she should henceforth be able to write code
directly to utilize the advanced EXS features.

• The first step is to modify a program that uses nor-
mal socket functions by simply changing the func-

282

tion names. The change involves adding the string
”exs synch ” in front of every normal socket func-
tion name, so that, for example, ”connect” becomes
exs sync connect”. The goal is to allow a direct trans-
lation of existing socket-based programs into UNH-
EXS, thereby providing a convenient transition path
for existing sockets-based software to start utilizing
RDMA hardware. With these functions, the user’s
program sees all I/O as synchronous and all user mem-
ory as unregistered, even though RDMA hardware
will be used.

• The next step is to modify that first program by adding
explicit memory registration. The goal is to gain the
performance advantages of using registered memory
in RDMA operations, but without the need to engage
in asynchronous (i.e., threads) programming. The user
will need to utilize the EXS memory registration func-
tions, and a different set of EXS socket functions with
extra parameters to handle the registered memory. All
I/O will still be seen as synchronous from the user’s
program, but the RDMA hardware will transfer the
user’s data directly from one memory to the other
without the need for dynamic registration and unreg-
istration.

• The next step is to modify the second program by
adding threads programming. The goal is to gain
the performance advantages of both registered mem-
ory and asynchronous operation. At this point the
programmer is utilizing the full functionality defined
in the Open Group’s ES-API, and sees I/O as syn-
chronous and user memory as registered.

• The next step, which is optional, is to tune the third
version of the program by employing small packets
and in-place asynchronous access. The goal is to gain
a small amount of additional performance by avoid-
ing the extra overhead when transferring small pack-
ets and the in-memory copy that accompanies receipt
of these transfers.

6 Results

Preliminary results show that programs written in EXS are
capable of utilizing a very high proportion of the band-
width available in a 10GigEthernet link. The graph in Fig-
ure 2 shows the results of ”blasting” data from a user on
one workstation to another user on another workstation.
Each workstation contains four 64-bit Intel 2.66 GHz pro-
cessors with 4 Gbytes of memory and a NetEffect 10 Gi-
gabit/second RNIC. They are connected back-to-back with
10GigEthernet copper cables. User-level throughput in
Megabits per second is on the y-axis. The x-axis is the pay-
load size in bytes sent by the application on one machine
using one exs send and received by the application on the
other machine using one exs recv. Both axes are plotted us-
ing a logarithmic scale. The upper line in the graph shows

the throughput when small packet ”immediate” data is in
use, the bottom line when it is not. This shows that packets
containing upto around 100,000 bytes produce slightly bet-
ter throughput when sent as ”small” packets. Note that the
maximum user-level throughput actually achieved is 9.329
Gbps for very large packets. This was achieved using 1500
byte Ethernet frames that allow for a maximum theoretical
user payload of 9.363 Gbps once the required headers and
CRCs are accounted for.

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

E
X

S
 th

ro
ug

hp
ut

 in
 M

eg
ab

its
/s

ec
on

d

User-level EXS payload in bytes

with SP, max 9304 Mbps
no SP, max 9329 Mbps

Figure 2. EXS throughput in Mbps

The graph in Figure 3 shows the percentage of CPU
time used by the two runs just shown in Figure 2. The
differences in CPU utilization are startling. When us-
ing the hardware RDMA read request operation to transfer
user-level data, the percent CPU utilization never exceeds
30%. Furthermore, when the size of a transfer reaches
100,000 bytes, the CPU utilization drops to 10%, and af-
ter 1,000,000 bytes it is close to 0%. But when the user-
level data for a small packet is transferred as part of the ad-
vertisement, the percent CPU utilization never drops below
40%, and after the transfer size reaches 1,000,000 bytes, it
rapidly shoots up to 90% or more.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

P
er

ce
nt

 C
P

U
 u

til
iz

at
io

n

User-level EXS payload in bytes

with SP
no SP

Figure 3. Percentage CPU Utilization

Thus the slight gain in bandwidth utilization for short
packets shown in Figure 2 is more than compensated for

283

by the large cost in terms of extra CPU utilization needed
by short packets shown in Figure 3. With EXS, the user
chooses which performance he or she prefers by setting the
small packet maximum size parameter.

7 Conclusion and Future Work

Due to its similarity with the conventional sockets API, we
believe the EXS interface is ideally suited for convenient,
high-level access to the benefits of RDMA network hard-
ware. Furthermore, preliminary results shown in this paper
demonstrate that application programs using the UNH EXS
interface can attain the high bandwidth utilization and low
CPU overhead promised by RDMA network hardware.

However, we are just starting to get measurements for
application programs of different types run under varying
conditions. We are also just starting to tune these applica-
tions and to compare the different performance given when
different EXS features, such as small packets, are used.
Much work needs to be done to gather these measurements,
study their implications, and use their results to tune the ap-
plications to obtain better performance.

In addition, the OFED stack has been undergoing
some recent changes that have yet to be incorporated into
our code. For example, one recent change is designed to
improve the latency of dynamic memory registration.

Finally there are performance measurements and tun-
ing that need to be done to compare the UNH EXS soft-
ware running over RNICs from different vendors with both
1500-byte and 9000-byte (jumbo) Ethernet frames. We also
need to try running this software over InfiniBand, and com-
paring the results with iWARP.

References

[1] The Interconnect Software Consortium in association
with The Open Group. Extended Sockets API (ES-
API) Issue 1.0, January 2005.

[2] The Open Group. http://www.opengroup.org.

[3] A. Romanow, J. Mogul, T. Talpey, and S. Bailey. Re-
mote Direct Memory Access (RDMA) over IP Prob-
lem Statement. RFC 4297 (Informational), December
2005.

[4] Open Fabrics Alliance. http://www.openfabrics.org.

[5] OpenFabrics Enterprise Distribution.
www.mellanox.com/pdf/products/software/OFED PB
1. pdf, 2008.

[6] P. Culley, U. Elzur, R. Recio, S. Bailey, and J. Carrier.
Marker PDU Aligned Framing for TCP Specification.
RFC 5044 (Standards Track), October 2007.

[7] H. Shah, J. Pinkerton, R. Recio, and P. Culley. Direct
Data Placement over Reliable Transports. RFC 5041
(Standards Track), October 2007.

[8] R. Recio, B. Metzler, P. Culley, J. Hilland, and
D. Garcia. A Remote Direct Memory Access Protocol
Specification. RFC 5040 (Standards Track), October
2007.

[9] R. Russell. iSCSI: Past, Present, Future. In Proceed-
ings of the 2nd JST CREST Workshop on Advanced
Storage Systems, pages 121–148, December 2005.

[10] Y. Shastry, S. Klotz, and R. Russell. Evaluating the
Effect of iSCSI Protocol Parameters on Performance.
In Proceedings of the IASTED International Confer-
ence on Parallel and Distributed Computing and Net-
works (PDCN 2005), pages 159–166, February 2005.

[11] A. Chadda, A. Palekar, R. Russell, and N. Ganapathy.
Design, Implementation, and Performance Analysis
of the iSCSI Protocol for SCSI over TCP/IP. In In-
ternetworking 2003 International Conference, pages
22–24, June 2003.

[12] M. Ko, M. Chadalapaka, J. Hufferd, U. Elzur,
H. Shah, and P. Thaler. Internet Small Computer
System Interface (iSCSI) Extensions for Remote Di-
rect Memory Access (RDMA). RFC 5046 (Standards
Track), October 2007.

[13] E. Burns and R. Russell. Implementation and Eval-
uation of iSCSI over RDMA. In Proceedings of the
5th International Workshop on Storage Network Ar-
chitecture and Parallel I/O (SNAPI’08), September
2008.

284

