
Overview of UNH EXS 1.4.1 for Programmers

Robert Russell <rdr@iol.unh.edu>
Patrick MacArthur <pmacarth@iol.unh.edu>

University of New Hampshire InterOperability Laboratory
Durham, New Hampshire 03824

2016-12-20

Contents
1 Introduction 2

2 Overview of the EXS style of programming 3
2.1 Asynchronous I/O . 3

2.1.1 Creating an event queue . 4
2.1.2 Deleting an event queue . 6
2.1.3 Using an event queue . 6

2.2 Memory registration . 7

3 Establishing the EXS environment 7

4 Managing an EXS connection 8
4.1 Creating an EXS socket . 8
4.2 Establishing an EXS client connection . 9
4.3 Establishing a server EXS connection . 9

4.3.1 Establishing a server listening post 9
4.3.2 Accepting connections on the server 10

4.4 Closing an EXS connection . 13
4.5 Half-closing an EXS connection . 14

5 Basic data transfer over an EXS connection 15
5.1 Sending data asynchronously . 15
5.2 Receiving data asynchronously . 16
5.3 Waiting for asynchronous I/O completion events 16
5.4 Matching sends with receives . 17

5.4.1 Receiver’s buffer is greater than or equal to amount of data in sender’s
packet . 17

5.4.2 Receiver’s buffer is less than amount of data in sender’s packet 18

1

mailto:rdr@iol.unh.edu
mailto:pmacarth@iol.unh.edu

6 Basic flow control within the EXS interface 18
6.1 Send and Receive Credits . 18
6.2 Negotiations at connection establishment . 19
6.3 Matching advertisements and receives . 19
6.4 Number of internal buffers allocated . 20

7 Tuning the UNH EXS interface 21
7.1 Credit negotiation . 21
7.2 Small unregistered packets . 22
7.3 Using the hardware inline feature on exs_send() 22
7.4 Pinning the EXS completion thread to a CPU 23
7.5 Busy polling for completions . 24
7.6 Stream receive buffer . 25

8 Registered and unregistered memory 25
8.1 Explicit memory registration and deregistration 26
8.2 Implicit memory registration and deregistration 26
8.3 Memory alignment . 27

9 Synchronous I/O 27
9.1 Sending data synchronously . 27
9.2 Receiving data synchronously . 28
9.3 Establishing an EXS client connection synchronously 28
9.4 Accepting connections on the server synchronously 29
9.5 Closing EXS connections synchronously . 29

10 Converting programs from using normal sockets to using EXS sockets 30
10.1 Client using normal sockets . 30
10.2 Client using EXS sockets in synchronous mode with implicit memory registration 30
10.3 Client using EXS sockets in synchronous mode with explicit memory registration 31
10.4 Client using EXS sockets in asynchronous mode with implicit memory regis-

tration . 31
10.5 Client using EXS sockets in asynchronous mode with explicit memory regis-

tration . 32

11 Status of UNH EXS 1.4.1 33
11.1 Comparison with the Extended Sockets API (ES-API) Issue 1.0 Specification 33
11.2 Modifications to the ES-API standard in the UNH EXS implementation . . . 33

11.2.1 exs.h header file . 33
11.2.2 exs_accept() . 34
11.2.3 exs_close() . 34
11.2.4 exs_connect() . 34
11.2.5 exs_mregister() . 34
11.2.6 exs_qcreate() . 34
11.2.7 exs_qmodify() . 35

2

11.2.8 exs_qstatus() . 35
11.2.9 exs_recv() . 35
11.2.10 exs_send() . 36
11.2.11 exs_sendfile() . 36

11.3 Known deficiencies . 36
11.3.1 thread cancellation . 36
11.3.2 fork() . 37

3

1 Introduction
The Extended Sockets API (ES-API) is a specification published by the OpenGroup
that defines extensions to the traditional socket API in order to provide asynchronous I/O
and also memory registration for Remote Direct Memory Access (RDMA). These two major
new features enable programmers to take advantage of today’s multi-core processors and
RDMA network hardware, such as InfiniBand, iWARP and RoCE interfaces, in a convenient
yet efficient manner.

This document describes version 1.4.1 of the UNH EXS interface, an extended imple-
mentation of the ES-API. Section 11 outlines the differences between version 1.4.1 and the
ES-API standard.

The UNH EXS interface provides most of the features specified in the ES-API, and
provides a few additional features that give the programmer more flexibility. For example, the
programmer can choose to program with synchronous rather than asynchronous I/O, and/or
to program with or without memory registration. The programmer can also conveniently
“tune” certain aspects of the EXS interface to take advantage of application requirements in
order to provide better performance.

In addition, the UNH EXS interface is designed to be implemented entirely in user space
on the Linux operating system. This latter feature provides easy porting, modification and
adoption of EXS, since it requires no changes to existing Linux kernels. The current im-
plementation of the EXS interface is based on OpenFabrics Software (OFS), a set of
free software packages provided by the OpenFabrics Alliance (OFA). OFS is incorporated
into many Linux distributions and is also released as the OpenFabrics Enterprise Dis-
tribution (OFED), which includes the entire set of user space OFS along with backports
of the kernel space OFS to several enterprise Linux distributions. OFS runs in both user
and kernel space, and provides efficient, asynchronous access to various types of RDMA
networking hardware, currently InfiniBand, iWARP and RoCE. The layering structure of
this system is shown below. The term RNIC stands for “RDMA Network Interface Card”,
which is the term used by iWARP for the hardware interface card that enables a computer
to use zero-copy transfers over Ethernet fibers and cables. HCA stands for “Host Channel
Adapter”, which is the term used by InfiniBand for the hardware interface card that enables
a computer to use zero-copy transfers over InfiniBand fabric. RoCE does not seem to have a
special name for it’s interface card. We will use the term Channel Adapter (CA) to refer
generically to any of the 3 hardware interface cards.

user space user program
EXS interface

OFED user stack
kernel space OFED kernel stack

InfiniBand, iWARP or RoCE driver
hardware InfiniBand HCA iWARP RNIC RoCE NIC

InfiniBand network Ethernet network Ethernet network

The principal difference between the UNH EXS interface and the OpenGroup’s ES-API is

4

that the UNH EXS interface runs entirely in user space. Therefore, it is not integrated with
“normal” kernel sockets. This means EXS functions cannot be used with “normal” sockets,
and EXS sockets cannot be used with “normal” socket functions. This, in turn, means the
UNH EXS interface had to add numerous functions, such as exs_socket(), exs_bind(), etc.,
that the ES-API does not define because the ES-API expects to be implemented in the kernel
and integrated with “normal” sockets. The ES-API is intended to be an extension to existing
“normal” sockets and therefore does not need to redefine “normal” functions.

Another difference is that the UNH EXS interface is designed as a “thin”, efficient layer
between the user and the Channel Adapter via the OFED stack. It therefore retains much of
the packet orientation of the underlying protocols for both SOCK_STREAM and SOCK_SEQPACKET

sockets.
This document gives an overview of the general concepts of EXS, and how the UNH

EXS interface can generally be used by a programmer. It is not a reference manual. Section
2 starts by giving an overview of the style of programming for which the features offered
by EXS are most suitable. Subsequent topics include EXS asynchronous I/O, dealing with
event queues using the exs_qcreate(), exs_qdelete() and exs_qdequeue() functions, and
the need for memory registration when using RDMA. Section 3 describes how a user program
initializes the EXS environment with the exs_init() function. Section 4 describes how users
create and manage EXS client and server connections by using the exs_socket(), exs_bind(),
exs_connect(), exs_listen(), exs_accept(), and exs_close() functions. Section 5 describes
how users transfer data over EXS connections by using the exs_send() and exs_recv()
functions. Section 6 describes the internal flow control mechanisms utilized by the UNH EXS
interface and their effects on performance. Section 7 describes some ways EXS performance
can be tuned through the use of the exs_fcntl() function. Section 8 describes ways to utilize
registered and unregistered memory by using the exs_mregister() and exs_mderegister()
functions, and the EXS_MHANDLE_UNREGISTERED value. Section 9 describes ways to utilize
synchronous and asynchronous I/O and the various flags that control this. Section 10 gives
a series of sample client programs showing how to convert from a client using normal sockets
(with no access to RDMA hardware) to a client using EXS sockets (with full access to RDMA
hardware) in asynchronous mode and explicit memory registration. Section 11 describes the
current status of UNH EXS 1.4.1 and the differences between it and the ES-API standard.

2 Overview of the EXS style of programming
The general paradigm for programming with EXS is “threads” and “events” programming.
Although it is not necessary to use threads in order to use EXS, it is the simplest way
to utilize the parallelism provided by multi-core processors and to take advantage of the
asynchronous I/O facilities in EXS. Threads are also utilized internally by the UNH EXS
interface.

2.1 Asynchronous I/O

EXS accomplishes asynchronous I/O by partitioning the user’s interaction with I/O via
the EXS interface into two distinct phases: the “start” phase, and the “completion” phase.

5

Step User thread EXS interface
1 call asynchronous function
2 check parameters
3 return error
4 deal with error

Table 1: Start phase results in an error, I/O not started.

Each asynchronous operation starts with a start phase. If that phase fails, then there is
no subsequent completion phase—instead, the user must deal with the error. But if the
start phase succeeds, the asynchronous EXS operation proceeds in parallel with independent
processing by the user thread that started it. The completion phase begins when the user
calls a separate function that waits for the asynchronous operation to finish. This function
returns detailed results about the asynchronous operation that can indicate either success
or failure of the operation.

In EXS, the start phase of an asynchronous operation is accomplished by new EXS
functions with names similar to the standard socket and UNIX I/O function calls. These
include: exs_accept(), exs_close(), exs_connect(), exs_recv(), and exs_send(). These
functions first verify that their user-supplied parameter values make such an operation pos-
sible. They then cause the EXS interface to “start” an operation but do not wait for the
operation to actually take place. Instead they immediately return to the user after giving
the OFED stack all the information necessary to proceed with the operation in parallel with
(i.e., asynchronously to) the user’s threads.

As a parameter to these new asynchronous EXS functions the user must specify a pointer
to a “queue” object previously created by the user (as discussed next in this section). When
the asynchronous operation completes, either successfully or not, the EXS interface will
“post” a completion event to that queue. This “event” is a structure which contains detailed
information about the success or failure of the operation. The user obtains this information
by “dequeuing” the event structure from the queue. If the EXS interface posts the event
before the user tries to dequeue it, the queue object stores the information until the user
performs the dequeue operation. If the user tries to dequeue an event before the asynchronous
operation is finished, the dequeue operation will block until either the EXS interface posts the
event or an amount of time specified by the user as a parameter to the dequeue operation
elapses. This can be an indefinite amount of time. There are 3 possible scenarios, as
illustrated in the following diagrams.

2.1.1 Creating an event queue

A user creates an event queue by using:
qhandle = exs_qcreate(depth);

where depth specifies the guaranteed minimum number of events that the user wants to be
able to store in this queue. This function dynamically allocates memory to hold at least that
number of event structures. A user can create numerous different event queues, but these
are valid only in the context of the calling process (and its threads)—these event queues are

6

Step User thread EXS interface
1 call asynchronous function
2 check parameters
3 start I/O operation
4 return ok
5 proceed with other work proceed with I/O operation
6 proceed with other work post I/O completion event
7 proceed with other work
8 dequeue I/O completion event
9 process I/O completion event

Table 2: Start phase ok, user thread calls exs_qdequeue after I/O is complete.

Step User thread EXS interface
1 call asynchronous function
2 check parameters
3 start I/O operation
4 return ok
5 proceed with other work proceed with I/O operation
6 dequeue I/O completion event proceed with I/O operation
7 wait for I/O completion event proceed with I/O operation
8 wait for I/O completion event post I/O completion event
9 process I/O completion event

Table 3: Start phase ok, user thread calls exs_qdequeue before I/O is complete.

7

not valid in any child processes forked by this parent. The value returned in qhandle will
be NULL if there was an error of some sort, in which case the error code is stored in the
global errno. Otherwise, the value returned in qhandle is a “handle” (i.e., a pointer) of type
exs_qhandle_t, which must be passed as a parameter in subsequent EXS function calls that
start asynchronous operations. This handle identifies the queue to which an asynchronous
operation will post its completion event.

2.1.2 Deleting an event queue

A user deletes an event queue by using:
result = exs_qdelete(qhandle);

where qhandle identifies a previously created event queue. The value returned in result
will be 0 if the call to exs_qdelete() was successful, or -1 if there was an error of some sort,
in which case the error code is stored in the global errno.

Note that any completion events posted to, but not yet dequeued from, this queue will
be lost when this function is called. Also note that any outstanding asynchronous operations
that reference this queue and that have been started but not yet completed will cause the
call to exs_qdelete() to fail.

2.1.3 Using an event queue

Following a successful call to one or more EXS asynchronous functions, the user must use:
nevents = exs_qdequeue(qhandle, event_vector, count, timeout);

to wait for those EXS asynchronous functions to complete. In the call to exs_qdequeue(),
qhandle must be the same value used previously in the EXS asynchronous function call
that started an operation, event_vector must be a user-provided array big enough to hold
count events of type exs_event_t, and timeout is a pointer to a structure of type struct
timeval containing the maximum amount of time the user wants to wait for an event to
happen. The timeout parameter can be NULL if the user wants to wait indefinitely. This
call to exs_qdequeue() will block until either the timeout elapses or at least one event is
posted to the queue and is copied into event_vector. The value returned in nevents will
be 0 if a timeout occurred, a positive value if nevents events were removed from the queue
and copied into event_vector, or -1 if there was an error of some sort, in which case the
error code is stored in the global errno.

If the nevents value returned by exs_qdequeue() is positive, then each of the first
nevents structures of the event_vector array will have been filled in by the EXS interface
with information to identify the operation that posted the event and to convey back to the
user the final results of that operation. For each of these structures in the event_vector
array, the following fields will be filled in as follows:

• exs_evt_errno is 0 if the asynchronous I/O operation completed successfully, otherwise
it contains an error code (i.e., a Linux errno value) to indicate why it failed.

• exs_evt_socket is a copy of the fd parameter value used in the EXS asynchronous
function to identify the connection.

8

• exs_evt_ahandle is a copy of the ahandle parameter value used in the EXS asyn-
chronous function. This value is chosen by the user for identification purposes only,
and is opaque to (i.e., not used by) the EXS interface.

• exs_evt_type is a constant value indicating which type of EXS asynchronous func-
tion caused the event. These values will be discussed below with the individual
EXS asynchronous functions. Examples include EXS_EVT_ACCEPT, EXS_EVT_CLOSE,
EXS_EVT_CONNECT, EXS_EVT_RECV and EXS_EVT_SEND.

• exs_evt_union contains a structure whose type depends on the exs_evt_type value.

The fields in these structures will be discussed below with the individual EXS asynchronous
functions.

2.2 Memory registration

In order to utilize the direct memory-to-memory transfer feature of the RDMA interface
hardware, the CA requires that the virtual memory involved on both ends of a transfer be
“registered”. This registration accomplishes several necessary functions:

1. It establishes the location and size of a memory area to be utilized in RDMA transfers;

2. It establishes the read/write/execute permissions granted to both the local and remote
CAs for accessing that memory area;

3. It “pins” the user’s virtual memory area into real (i.e., physical) memory so that a CA
can access the memory without going through the CPU’s paging hardware.

Note that any type of virtual memory can be registered—stack memory, heap memory,
global memory, etc. Common usage will most likely be to register dynamically allocated
memory, but since this is not necessary, EXS does NOT allocate the memory it is registering.

The mechanism by which a user explicitly registers and deregisters memory is described in
section 8 below. That section also describes a means by which the user can request dynamic
registration and deregistration of memory as part of an individual EXS function call. A word
of warning, however: dynamic registration and deregistration is an expensive procedure, and
should be used only as a temporary “bridge” when converting an existing application from
“normal” sockets to EXS. The benefits of EXS require explicit memory registration by the
user program.

3 Establishing the EXS environment
Unlike with normal sockets, a program that wants to utilize EXS must explicitly initialize
the EXS environment by using:
result = exs_init(version);

9

where version is the version of the EXS interface the user wishes to use. The initial (and
currently only) version is given in the constant EXS_VERSION1, which is defined in the file
exs.h which, in turn, must be included by all programs wishing to utilize EXS. The current
version of the library is given by the global constant EXS_VERSION, and can be referenced by
the application but should not be used as the argument to exs_init() since this defeats the
ABI compatibility checking within exs_init(). The result value is 0 if the exs_init() was
successful, or -1 if there was an error of some sort, in which case the error code is stored in
the global errno.

This function will initialize the EXS interface for the calling process. It must be performed
exactly once before any other EXS function is called, and is usually placed near the beginning
of program execution.

4 Managing an EXS connection
As with classic sockets, there are three different types of connections a user can create:

1. a client connection

2. a server listening post

3. a server agent connection

4.1 Creating an EXS socket

In order to establish either a client connection or a server listening post, the user must first
set up the local endpoint for the connection by using:
fd = exs_socket(domain, socket_type, protocol);

where the value of domain must be one of PF_INET or PF_INET6 (or equivalently, AF_INET
and AF_INET6), the value of socket_type must be either SOCK_STREAM or SOCK_SEQPACKET,
and protocol should be 0 (some other values are accepted for compatibility reasons). This
is a synchronous operation, so there is no event associated with its completion. The value
returned in fd will be -1 if there was an error of some sort, in which case the error code is
stored in the global errno; otherwise, the value returned in fd is a non-negative integer file
descriptor which must be used to identify this connection in all subsequent calls to EXS
functions.

As of version 1.3.0, a large intermediate receive buffer will be allocated for sockets of type
SOCK_STREAM unless this feature is turned off via the interfaces described in section
7. The size of this buffer defaults to 3 Gigabytes, and may also be modified via the interfaces
described in section 7.

Which EXS functions to call after a successful return from exs_socket() depends on
whether the user wants to establish a client connection or a server listening post.

10

4.2 Establishing an EXS client connection

The client end of a connection is the simplest to establish, although this operation will not
succeed unless the remote server’s listening post has been previously established (discussed
in section 4.3.1). Creation of a client connection is started by:
result = exs_connect(fd, server_address, server_addrlen, connect_flags,

timeout, qhandle, ahandle);

This function is normally the next EXS function called by a client after a successful call
to exs_socket(), and fd identifies the endpoint established by the exs_socket(). The
server_address argument is a pointer to a structure of type struct sockaddr into which
the user has stored the IPv4/IPv6 address and port number of the server’s listening post.
server_addrlen is the size in bytes of the structure pointed to by server_address. The
value of the connect_flags parameter is usually 0, but see below for the other possibilities.
timeout is a structure of type struct timeval which specifies the maximum amount of time
the client thread is willing to wait for the exs_connect() to complete successfully. If the
timeout pointer is NULL, exs_connect() will wait indefinitely. qhandle identifies an event
queue that will be used to wait for the completion of this exs_connect(), and ahandle is an
arbitrary pointer value chosen by the user which will be returned in the exs_evt_ahandle

field of the event notification (discussed previously in section 2.1.3).
The value returned in result will be 0 if the exs_connect() was successfully started, or

-1 if there was an error of some sort, in which case the error code is stored in the global
errno and no asynchronous activity is started.

If the exs_connect() started successfully, it will operate asynchronously with the user
thread that started it. During this time the user should not call any additional EXS functions
for this connection, because the internal state of the connection will be undefined until the
exs_connect() has completed and the EXS interface has posted to the user’s qhandle an
event whose exs_evt_type field contains the value EXS_EVT_CONNECT. Once this event has
been received, the user is able to use the connection to transmit data to and from the remote
server.

The only connect_flags value currently defined for exs_connect() is EXS_BLOCK. When
this flag value is present, the value of the qhandle and ahandle parameters are ignored by
the EXS interface, and can be NULL. The EXS_BLOCK flag value should be supplied when
the user wants the exs_connect() to operate synchronously rather than asynchronously.

4.3 Establishing a server EXS connection

Establishing a server is a bit more complex than establishing a client. As with regular sockets
it involves two distinct sequences.

4.3.1 Establishing a server listening post

A listening post is the socket endpoint set up by a server in order to allow clients to be
able to contact the server. To enable such contact, a listening post must be bound to an
IPv4/IPv6 address and port number pair that is known to clients. This IPv4/IPv6 address

11

and port number pair is analogous to a “1-800” number set up by a business—it must be
known to customers who will use it to contact the business by telephone.

The first step in establishing a listening post is to create the socket endpoint using the
exs_socket() function, as already discussed in section 4.1. The next step is to bind that
socket endpoint to the IPv4/IPv6 address and port number pair which will be utilized by
clients in the exs_connect() function, as just discussed in section 4.2. This binding is done
by using:
result = exs_bind(fd, server_address, server_addrlen);

The fd parameter identifies the endpoint established by a previously successful call to
exs_socket(). server_address is a pointer to a structure of type struct sockaddr into
which the user has stored the IPv4/IPv6 address and port number to be assigned by the EXS
interface to the server, and server_addrlen is the size in bytes of the structure pointed
to by server_address. This is a synchronous operation, so there is no event associated
with its completion. The value returned in result will be 0 if the call to exs_bind() was
successful, or -1 if there was an error of some sort, in which case the error code is stored in
the global errno.

After a successful call to exs_bind(), the next step in establishing a listening post is to
identify the socket to the EXS interface as a listening post and to establish a backlog for
it. This backlog is analogous to establishing the maximum number of calls which can be
kept waiting on a 1-800 line, and is accomplished using:
result = exs_listen(fd, backlog);

fd has the same value as that used in the previous call to exs_bind(), and backlog is the
maximum number of client connections that can be “kept” on hold until a server connection
dedicated to a new client can be set up (i.e., until a customer can be switched to a free agent
in the 1-800 call center). This is a synchronous operation, so there is no event associated with
its completion. The value returned in result will be 0 if the exs_listen() was successful,
or -1 if there was an error of some sort, in which case the error code is stored in the global
errno.

At this point the server process is ready to somehow convey the IPv4/IPv6 address
(or DNS name) and port number of its listening post to potential client processes all over
the world. Well established servers, such as the World Wide WHTTP service, have been
assigned “Well Known Ports” by IANA (the Internet Assigned Numbers Authority) (e.g.,
port 80 has been assigned to the HTTP service), so this knowledge is available to every
browser in the world, and programmers only have to know the IPv4/IPv6 address (or DNS
name) of their destination in order to connect their client process to an HTTP server. Most
programmers do not have the luxury of working with Well Known Ports. Therefore, the
means by which the server’s IPv4/IPv6 address and port number are made known to clients
is outside the scope of EXS.

4.3.2 Accepting connections on the server

Once a server has established a listening post, it needs to set up to accept connections from
clients. This is analogous to hiring agents to answer the phones in the 1-800 call center.
When a business answers a call to the 1-800 number, the call is switched to a separate line

12

into a call center where a single agent deals exclusively with that individual customer—
the 1-800 number remains ready to accept new calls and to switch them to other agents.
Similarly, when the listening post accepts a connection from a client, it creates a new socket
that will deal exclusively with that client—the listening post itself remains ready to accept
new connections, but never actually transfers any data with any clients. The listening post
is set up to do this using:
result = exs_accept(fd, address_vector, count, accept_flags, qhandle);

The fd parameter is the same as the one used in a previously successful call to exs_listen(),
address_vector is a pointer to an array of structures of type exs_acceptaddr, and count is
the number of elements in that array. The value of the accept_flags parameter will usually
be 0; other flag values currently defined for exs_accept() are discussed below. qhandle
identifies an event queue on which a user can wait for the completion of this exs_accept().

The value returned in result will be 0 if the exs_accept() was successfully started, or -1
if there was an error of some sort, in which case the error code is stored in the global errno
and no asynchronous activity is started.

The array of structures pointed to by address_vector must have been allocated by the
user before calling exs_accept(). Continuing the 1-800 analogy, there will be one element in
this array for each agent available in the call center. Each element of the array contains the
following three fields, which must be initialized by the user prior to calling exs_accept() as
follows:

exs_addr is a pointer to a structure of type struct sockaddr into which the IPv4/IPv6
address and port number of a new remote client will be stored by the EXS interface
(this is how the agent is able to identify the customer who is calling). If the user
does not wish to get this information, this pointer can be NULL or the value of the
exs_addrlen parameter can be 0.

exs_addrlen is the number of bytes allocated by the user to the structure pointed to by
exs_addr. If that pointer is NULL, or if the user does not wish to get the remote
client’s IPv4/IPV6 address in the exs_addr parameter, the value of exs_addrlen can
be 0.

exs_ahandle is an arbitrary pointer value chosen by the user for identification purposes only,
and is never looked at by the EXS interface. It will be returned in the exs_evt_ahandle
field of the event notification (as previously discussed in section 2.1.3).

Following the call to exs_accept(), the user must use:
nevents = exs_qdequeue(qhandle, event_vector, count, timeout);

to wait for clients to perform exs_connect() operations to this server’s listening post. The
exs_qdequeue() function has already been explained in section 2.1.3. To repeat from that
section, qhandlemust point to the same event queue as that used in the call to exs_accept(),
event_vector must be a user provided array big enough to hold count events of type
exs_event_t, and timeout is a pointer to a structure of type struct timeval containing
the maximum amount of time the user wants to wait for an event to happen. The timeout
parameter can be NULL if the user wants to wait indefinitely.

13

If the nevents value returned by exs_qdequeue() is positive, then each of the first
nevents structures of the event_vector array were filled in by the EXS interface with
information to identify each operation that posted an event to this event queue and to con-
vey the final results of each operation back to the user. For an event associated with an
exs_accept(), the following fields of the exs_event_t structure will be filled in (as generically
described in section 2.1.3):

exs_evt_errno is 0 if the exs_accept() operation completed successfully, otherwise it con-
tains an error code (i.e., a Linux errno value) to indicate why it failed.

exs_evt_socket is a copy of the listening post’s fd value that was used as a parameter in
the call to exs_accept(),

exs_evt_ahandle is a copy of the ahandle value stored by the user in the exs_ahandle

field of an element in the array pointed to by the address_vector parameter to the
exs_accept(). This value is chosen by the user for identification purposes only, and
is not used by the EXS interface.

exs_evt_type is EXS_EVT_ACCEPT.

exs_evt_union contains a structure of type exs_evt_accept that has been filled in by the
EXS interface with values in the following fields:

exs_evt_new_socket is the file descriptor identifying the new connection to the client—
this value should be used by the server from this point on to transmit data
to/from that client. This is analogous in the 1-800 call center to the line to an
exclusive agent to which the customer is switched. However, the analogy is not
perfect because the call center line must already exist (as extension 123, for exam-
ple), whereas this file descriptor represents a new socket created internally by the
exs_accept() function. It is as if the exs_accept() internally calls exs_socket()
for each new client, and the socket created by this internal call to exs_socket()
has a file descriptor that is different from any existing file descriptors. Note that
this scheme is not new to EXS—the accept() function for normal sockets works
in exactly the same manner.

exs_evt_addr is a copy of the exs_addr pointer from an element in the array pointed to
by the address_vector parameter to the exs_accept(). The structure pointed
to by the exs_evt_addr field is of type struct sockaddr, and will now contain
the IPv4/IPv6 address and port number of the remote client at the other end of
the new connection.

exs_evt_addrlen contains the number of bytes used to store the client’s IPv4/IPv6
address and port number in the structure pointed to by exs_evt_addr.

Once a new connection to a client has been indicated by a successful completion event, it
is common for a server process to spawn a new “agent” thread to deal exclusively with that
client. This is analogous to switching a customer’s call to an agent in the 1-800 call center.
The file descriptor from the exs_evt_new_socket field in the exs_evt_accept structure

14

should be used by this agent thread in all the exs_send() and exs_recv() functions for
transactions with that client. When the agent thread’s dealings with this client are finished,
that thread should call exs_close() with this fd and then terminate. Just the agent thread
needs to terminate, not the server listening post thread. Here the 1-800 analogy breaks
down, because human agents will just hang up with one customer and wait for a call from
another customer. With EXS, as with normal sockets, there is no way to reuse a socket—a
new one must be created by exs_accept() as each new client connects.

The only accept_flags value currently defined for exs_accept() is EXS_BLOCK. When
this flag value is present, the value of the count parameter MUST be exactly 1, since the
fd for only 1 remote connection can be returned by 1 call. The value of the qhandle
parameter is ignored by the EXS interface, and can be NULL. The EXS_BLOCK flag value
should be supplied when the user wants the exs_accept() to operate synchronously rather
than asynchronously. A synchronous exs_accept() blocks until a remote client connects,
at which time the result returned by exs_accept() will be the fd for the new connection
to the remote client. Note that in this case no exs_event_t structure is generated for the
user, so the other fields in that structure are not available to the user. This means that
the exs_ahandle field in the first (and only) address_vector is also ignored by the EXS
interface, and can be NULL.

4.4 Closing an EXS connection

When the user has finished using a connection of any of the three types discussed above, the
user calls the following function:
result = exs_close(fd, close_flags, qhandle, ahandle);

where fd identifies the connection to be closed, flags contains flags that modify the normal
behavior of this call, qhandle identifies an event queue that will be used to wait for the
completion of this call to exs_close(), and ahandle is an arbitrary pointer value chosen
by the user which will be returned in the exs_evt_ahandle field of the event notification
(discussed previously in section 2.1.3).

The value returned in result will be 0 if exs_close() was successfully started, or -1 if
there was an error of some sort, in which case the error code is stored in the global errno
and no asynchronous activity is started.

If the exs_close() started successfully, it will operate asynchronously to the user thread
that called it. During this time the user must not call any additional EXS functions us-
ing this fd to identify the connection, because the fd will become invalid and the internal
state of the connection will become undefined once exs_close() is called (the fd is inval-
idated synchronously, even if the subsequent cleanup happens asynchronously). When the
exs_close() completes, the EXS interface will post to the user’s qhandle an event whose
exs_evt_type field contains the value EXS_EVT_CLOSE. The exs_evt_errno, exs_evt_socket,
and exs_evt_ahandle fields of the event will be filled in as previously described in section
2.1.3. No additional information is stored in the exs_evt_union field for events of this type.

It is highly recommended that, prior to exiting a program or thread, a user always call
exs_close() for each connection controlled by that program or thread. The main reason
for this is that EXS is inherently asynchronous, so many EXS functions called by a user

15

simply start an asynchronous operation—the real work takes place asynchronously to the
thread that called the EXS function. Therefore, when writing code, a user might not be
aware of all that is being accomplished asynchronously, so that what looks to be finished to
a user might not be finished in the EXS interface. Calling the exs_close() function ensures
that this asynchronous activity is finished, whereas exiting the program or thread would not
ensure this, and thus all data might not be transmitted. Calling exs_close() also helps to
cleanly shutdown the other end of the connection. Finally, calling exs_close() allows the
fd associated with the connection to be reused.

The exs_close() operation supports two flags. When the EXS_BLOCK flag value is present,
the value of the qhandle and ahandle parameters are ignored by the EXS interface, and can
be NULL. The EXS_BLOCK flag value should be supplied when the user wants the exs_close()
to operate synchronously rather than asynchronously. When the EXS_DONTLINGER flag value
is present, the exs_close() function will immediately terminate the connection instead of first
waiting for pending sends to terminate. This will also cause any outstanding and future send
and receive operations at the remote endpoint to immediately fail, setting exs_evt_errno

or errno (as appropriate) to ECONNRESET.

4.5 Half-closing an EXS connection

In some situations, it is useful to shut down only half of a connection. In particular, for some
request/response protocols, the client may send a single request and not need to send any
further messages. In this case, shutting the connection down only for writing will indicate
EOF to the receiver but still allow the receiver to send its response on the socket.

When the user wishes to half-close a connection, the user calls the following function:
result = exs_shutdown(fd, how, shutdown_flags, qhandle, ahandle);

where fd identifies the connection to be closed, how identifies in which direction to shut
down communication, shutdown_flags contains flags that modify the normal behavior of
this call, qhandle identifies an event queue that will be used to wait for the completion
of this call to exs_shutdown(), and ahandle is an arbitrary pointer value chosen by the
user which will be returned in the exs_evt_ahandle field of the event notification (discussed
previously in section 2.1.3).

The value returned in result will be 0 if exs_shutdown() was successfully started, or
-1 if there was an error of some sort, in which case the error code is stored in the global
errno and no asynchronous activity is started. When the exs_shutdown() completes, the
EXS interface will post to the user’s qhandle an event whose exs_evt_type field contains
the value EXS_EVT_SHUTDOWN. The exs_evt_errno, exs_evt_socket, and exs_evt_ahandle

fields of the event will be filled in as previously described in section 2.1.3. No additional
information is currently stored in the exs_evt_union field for events of this type.

The valid values for how are: SHUT_WR, which shuts down the connection for sending
(writing) only; SHUT_RD, which shuts down the connection for receiving (reading) only;
and SHUT_RDWR, which shuts down the connection in both directions.

The exs_shutdown() function will fail (setting errno to EBUSY) if an exs_shutdown()
operation is outstanding in the same direction (locally or remotely); this is to avoid posting
an event too early or needing complex internal logic to ensure that we post the correct

16

number of completion events in order. If an exs_shutdown() operation in a given direction
has already completed, future exs_shutdown() operations in that direction are treated as a
no-op and will immediately generate an asynchronous event on the supplied event queue.

Unlike exs_close(), exs_shutdown() does not invalidate the fd of the connection, even
if the call results in communication being shut down in both directions. This is because
it is generally expected that communication will continue in the opposite direction of the
direction that communication is being shut down. This capability can also be exploited to
ensure that there is no activity on a socket prior to invalidating its fd by shutting down
communication in both directions, which may be useful for a program which opens many
sockets and tracks them in some data structure. However, the user is still responsible for
eventually calling exs_close() (discussed in section 4.4) on the socket to invalidate its fd
(freeing it for reuse) and completely releasing the resources used by the connection.

The only shutdown_flags value currently defined for exs_shutdown() is EXS_BLOCK.
When this flag value is present, the value of the qhandle and ahandle parameters are
ignored by the EXS interface, and can be NULL. The EXS_BLOCK flag value should be sup-
plied when the user wants the exs_shutdown() to operate synchronously rather than asyn-
chronously.

5 Basic data transfer over an EXS connection
There are two basic, complementary operations that transfer data over an EXS connection:
exs_send() and exs_recv(). These two operations are used regardless of how the connection
was established, since both clients and servers need to be able to both send and receive data.
Both of these functions are asynchronous, so they only start the data transfer—the user
must explicitly call exs_qdequeue() to know when the transfer finishes.

5.1 Sending data asynchronously

A user sends data asynchronously by using:
result = exs_send(fd, send_buffer, send_length, send_flags,

qhandle, ahandle, mhandle);

where fd identifies the connection, and the user has filled send_buffer with send_length
bytes of data prior to calling exs_send(). This send_buffer must be completely within
an area of memory that was assigned the memory registration key mhandle in a previous
call to exs_mregister(). send_flags will usually have the value 0; other flags currently
defined for exs_send() are discussed in sections 9 and 10 below. qhandle identifies an event
queue previously created by the user to wait for completion events. ahandle is an arbitrary
pointer value chosen by the user which will be returned in the exs_evt_ahandle field of the
completion event notification (discussed previously in section 2.1.3).

If exs_send() returns 0, then the operation has started and an asynchronous event will
be posted on the user’s event queue once the operation has completed. If the connection has
been gracefully shut down for writing, exs_send() will return -1 and set errno to EPIPE,
and no asynchronous completion event will be posted to the event queue. If the connection
has been abruptly terminated, exs_send() will return -1 and set errno to ECONNRESET,

17

and no asynchronous completion event will be posted to the event queue. If the socket
was never connected before calling exs_send(), exs_send() will return -1 and set errno to
ENOTCONN, and no asynchronous completion event will be posted to the event queue.

5.2 Receiving data asynchronously

A user receives data by using:
result = exs_recv(fd, recv_buffer, max_length, recv_flags,

qhandle, ahandle, mhandle);

where fd identifies the connection, and the user has reserved a recv_buffer capable of
holding max_length bytes of data. This recv_buffer must be completely within an area
of memory that was assigned the memory registration key mhandle in a previous call to
exs_mregister(). recv_flags will usually have the value 0, unless other flags are desired. As
of version 1.3.0, for SOCK_STREAM sockets, the MSG_WAITALL flag will make the
exs_recv() operation wait until it can fill all max_length bytes; otherwise, the operation
will complete as soon as any data is received. For SOCK_SEQPACKET sockets, the
MSG_WAITALL flag has no effect. Other effects of this flag and additional flags currently
defined for exs_recv() are discussed in sections 9 and 10 below. qhandle identifies an event
queue previously created by the user to wait for completion events. ahandle is an arbitrary
pointer value chosen by the user which will be returned in the exs_evt_ahandle field of the
completion event notification (discussed previously in section 2.1.3).

If exs_recv() returns 0, then the operation has started and an asynchronous event will be
posted on the user’s event queue once the operation has completed. If the connection has been
gracefully shut down for reading (i.e., via the exs_shutdown() or exs_close() functions on the
local or remote side of the connection), exs_recv() will complete asynchronously with both
an exs_evt_errno and exs_evt_length of 0 (this is done because a return value of 0 from
exs_recv() would otherwise be ambiguous, since it is used to mean that an asynchronous
event will follow). If the connection was terminated abruptly, exs_recv() will return -1 and
set errno to ECONNRESET, and no asynchronous completion event will be posted to the
event queue. If the socket was never connected before calling exs_recv(), exs_recv() will
return -1 and set errno to ENOTCONN, and no asynchronous completion event will be
posted to the event queue.

5.3 Waiting for asynchronous I/O completion events

The value returned by exs_send() or exs_recv() in result will be 0 if the operation was
successfully started, or -1 if there was an error of some sort, in which case the error code is
stored in the global errno and no asynchronous activity is started.

Once an exs_send() or exs_recv() is successfully started, it will operate asynchronously
to the user program. During this time the user must not in any way modify the area of
memory pointed to by the buffer parameter, because the data in that buffer has still not
been transferred across the connection. Eventually the user must use:
nevents = exs_qdequeue(qhandle, event_vector, count, timeout);

18

to wait for the operation to finish so that the buffer can be safely accessed again. The
exs_qdequeue() call was explained in section 2.1.3. qhandle must be the value used in
the exs_send() or exs_recv(), event_vector must be an array big enough to hold count
events of type exs_event_t, and timeout is the maximum amount of time the user wants
to wait for an event to happen (NULL for an indefinite wait).

If the value returned in nevents is positive, then each of the first nevents structures
of the event_vector array were filled in by the EXS interface with information to identify
the operation that caused this event and to convey the final results of that operation back
to the user. For each of these structures, the fields exs_evt_errno, exs_evt_socket, and
exs_evt_ahandle will be filled in by the EXS interface with the values explained previously
(in section 2.1.3). In addition:

exs_evt_type will indicate which type of operation caused the event: EXS_EVT_SEND if the
operation was exs_send(), or EXS_EVT_RECV if the operation was exs_recv().

exs_evt_union will contain a structure of type exs_evt_xfer

• exs_evt_buffer is the buffer address specified in the exs_send() or exs_recv()

• exs_evt_mhandle is the mhandle specified in the exs_send() or exs_recv()

• exs_evt_amount_lost is described below in section 5.4

• exs_evt_length is the number of bytes successfully transferred by this operation.

When the value of exs_evt_type is EXS_EVT_SEND and the operation was successful, the value
of exs_evt_length will always be equal to the value of the send_length parameter in the
original exs_send(). When the value of exs_evt_type is EXS_EVT_RECV and the operation
was successful, the value of exs_evt_length will always be less than or equal to the value
of the max_length parameter in the original exs_recv().

5.4 Matching sends with receives

Since the amount of data sent in one packet by an exs_send() may differ from the amount of
data requested in the remote side’s corresponding exs_recv(), the EXS interface layer must
rationalize any difference. For efficiency, the way it does this is very packet-oriented, and
hence differs somewhat from the way this is done in traditional sockets.

5.4.1 Receiver’s buffer is greater than or equal to amount of data in sender’s
packet

If the receiver provides a buffer whose size is greater than or equal to the size of the data in
the matching send packet, there is no problem—the EXS interface delivers all the sent data
into the beginning of the receiver’s buffer, any remaining space at the end of the receiver’s
buffer is left undefined, the value returned in exs_evt_length is the exact number of bytes
delivered into the buffer, and exs_evt_amount_lost is always zero.

19

5.4.2 Receiver’s buffer is less than amount of data in sender’s packet

If the receiver provides a buffer whose size is less than the size of the data in the matching
send packet, the resolution depends on the type of socket in use. For all socket types, the
EXS interface completely fills the receiver’s buffer with the first part of the sent data, and
returns in exs_evt_length the exact number of bytes delivered into the buffer.

If the socket type is SOCK_STREAM, the EXS interface ignores packet boundaries,
so it saves the remainder of the data that is in the matching send packet and uses it to match
with subsequent exs_recv() calls. No data is ever lost, so the value returned to the receiver
in exs_evt_amount_lost is always zero.

If the socket_type is SOCK_SEQPACKET, the EXS interface maintains packet boundaries,
so it discards the remainder of the data in the matching send packet, and returns to the
receiver in exs_evt_amount_lost the number of bytes discarded.

6 Basic flow control within the EXS interface
Because data sent by exs_send() operations on one end of a connection must be delivered
into buffers specified by exs_recv() operations on the other end, the EXS interfaces on both
ends must coordinate the flow of this data so that neither side runs out of buffers. This is
done in a manner that is largely transparent to the user.

Since a user must allocate and fill a memory buffer before specifying it as the send_buffer
parameter to exs_send(), the EXS interface does not have to provide any additional storage
for data on the sending side. However, the interface cannot actually send data until it knows
for sure that the user on the receiving side has provided a corresponding buffer into which
the sender’s data can be delivered without any additional copying or buffering (because EXS
uses direct memory to memory transfers). The EXS interface uses a credit mechanism to
accomplish this.

6.1 Send and Receive Credits

The interface on each end of an established connection internally maintains two dynami-
cally varying local credit values. At any time “send_credits” is the maximum number of
packets this interface is allowed to start sending to the other side using exs_send(); and
“recv_credits” is the maximum number of packets this interface is allowed to start receiving
from the other side using exs_recv(). At any time the value of send_credits on one side
must equal the value of recv_credits on the other side, and vice versa. As explained in
the next section (6.2), when an EXS connection is first established, the EXS interfaces on
both sides negotiate these numbers so that they are initialized to the same values.

Each time a user issues an exs_recv(), the receiving EXS interface reduces its local
recv_credits by one. If the balance would become negative, the receiving interface sets
errno to EBUSY and returns -1 (the caller is expected to then wait for previous exs_recv()
operations to complete by calling exs_qdequeue()). If the caller wishes to wait until a credit
is available, the EXS_CREDIT_WAIT flag can be provided, but then it is up to the caller to
ensure that this will not cause a deadlock. If the balance would not become negative, the
receiving interface sends an “advertisement” to the sending side and then returns a value of

20

0 to the caller of the exs_recv() to indicate that the exs_recv() has started successfully.
This advertisement contains no data, but rather information (or “metadata”) describing the
memory on the receiver that is now ready to receive data from the sender (i.e., its length,
location, and memory registration key).

The sending interface must keep track locally of the send_credits it has negotiated with
the receiver. Each time a sending user issues an exs_send(), the sending EXS interface
reduces its local send_credits by one. If the balance would become negative, the sending
interface sets errno to EBUSY and returns -1 (the caller is expected to then wait for
previous exs_send() operations to complete by calling exs_qdequeue()). If the caller wishes
to wait until a credit is available, the EXS_CREDIT_WAIT flag can be provided, but then it is up
to the caller to ensure that this will not cause a deadlock. If the balance would not become
negative, the sending interface adds the information (i.e., “metadata”) from this exs_send()
to an internal queue and returns a value of 0 to the caller of the exs_send() to indicate that
the exs_send() has been started successfully.

6.2 Negotiations at connection establishment

At the time an EXS connection is first established, the client side automatically sends the
server a short “setup request” message that contains the client’s EXS version number (cur-
rently 1), and the initial values of the client’s send_credits, and recv_credits. Upon
receiving this “setup request” message, the server side of the connection compares the val-
ues contained in this message with its own corresponding values. The minimum of each
corresponding value is used to reset the server’s own value and to build a “setup response”
message that it sends back to the client. Once the client receives this “setup response” mes-
sage, it uses those values to set its own corresponding values. Consequently, from that point
in time on, both ends of the newly established connection have the same value for each of
the corresponding parameters, and the flow control mechanism will now function properly.
These negotiations are transparent to the user.

Following these negotiations, the EXS interface on each side of a newly established con-
nection sets up one internal receive buffer for each local send_credit that it has negotiated
with the corresponding receiving side. These buffers are used to store EXS advertisements
as they arrive from the remote end. When the receiving interface sends an advertisement
to the sender, the advertisement is delivered directly into one of these interface buffers and
the sending interface is notified of this arrival by the OFED stack. Since the receiving in-
terface should never send more advertisements than it has local recv_credits, and since
the sending interface has posted one receive buffer for each of its local send_credits, no
advertisements should ever be lost for lack of a buffer when they arrive on the sending side.

6.3 Matching advertisements and receives

Each EXS interface keeps track of advertisements it has received and exs_send() operations
that its sending user has started. Whenever the user starts an exs_send() operation, the
EXS interface looks for an already received advertisement to match it with. Similarly, when-
ever an advertisement is received from the remote receiver, the receiving interface looks for

21

an already started exs_send() to match it with. Matching occurs in the manner already de-
scribed in section 5.4. The sending interface then issues an RDMA_WRITE_WITH_IMM
operation to its local CA (via the OFED stack) in order to actually transfer data into the
user’s buffer on the receiving side (as indicated in the advertisement) directly from the user’s
buffer on the sending side (as indicated in the exs_send()) without any extra copying or CPU
intervention on either side. This RDMA_WRITE_WITH_IMM operation is transparent
to the user on both sides of a connection.

When the receiving interface is notified by its receiving CA (via the OFED stack) that
a remotely issued RDMA_WRITE_WITH_IMM operation has completed, it will do two
things.

1. It uses the “immediate” value supplied in the local RDMA_WRITE_WITH_IMM
completion to locate the corresponding advertisement previously issued by that receiver
and posts the receiver’s completion event to tell the receiving user that its exs_recv()
has completed, and to convey the results to the receiving user via the exs_event_t

structure.

2. It increments it’s local recv_credits, and a new exs_recv() operation may commence
using this newly available credit.

When the sending interface is notified by its sending CA (via the OFED stack) that
the locally issued RDMA_WRITE_WITH_IMM operation has completed, it also does two
things.

1. It posts the sender’s completion event to tell the sending user that its exs_send() has
completed and to convey the results to the sending user via the exs_event_t structure.

2. It increments its local send_credits for this connection, and a new exs_send() oper-
ation may commence using this newly available credit.

Clearly this credit mechanism requires each EXS interface to allocate some hidden, in-
ternal buffers for exchanging advertisements. However, these buffers and advertisements are
small, since they are used only to send and receive a limited amount of control information,
not an unlimited amount of user data. Indeed, these buffers are small enough to be embed-
ded in internal control blocks that contain additional information needed locally by the EXS
interface.

6.4 Number of internal buffers allocated

Using the mechanism discussed in the next section, a user can set the local values to use when
negotiating the initial send_credits and recv_credits values. Therefore, it is important
for the user to understand how the EXS interface uses these values to allocate its internal
buffers. The receiving interface needs two control blocks for each local recv_credit it has
initially negotiated with the sending interface: one for sending an advertisement, and one
for receiving the corresponding remotely issued RDMA_WRITE_WITH_IMM completion.
The sending interface also needs two control blocks for each local send_credit that it has
negotiated with the receiver: one for keeping track of waiting exs_send() operations that have

22

been started but for which no advertisement has been received yet, and one for receiving an
advertisement. However, one extra control block is allocated for each local send_credit to
ensure that receive buffers are always posted regardless of the inevitable time delays between
sending or receiving a message and being notified of the completion of that operation (at
which time a control block can be reused).

7 Tuning the UNH EXS interface
One of the differences between the UNH EXS interface and the ES-API is an additional
mechanism by which a user can “tune” some aspects of the EXS interface in order to increase
performance for a particular application. The user does this through the use of:
result = exs_fcntl(fd, command, argument);

The value of the fd parameter identifies the socket to be tuned, the value of the command
parameter indicates what the user wants to do to the socket, and the value of the argument
parameter depends on the command. This is a synchronous operation, so there is no
event associated with its completion. The value returned in result will also depend on the
command, although for all commands it will be -1 if there was an error of some sort, in which
case the error code is stored in the global errno.

7.1 Credit negotiation

As previously discussed in section 6, the credit value used to control the flow of data in EXS
is negotiated at the time a new connection is established. The value used in this negotiation
can be set by the user through the use of the exs_fcntl() function prior to the exs_connect()
and exs_accept() calls on the fd parameter. When the value of the command parameter to
the exs_fcntl() function is EXS_F_SETFLOWCONTROLCREDITS, the EXS interface will use the
value of the argument parameter as the local value to be used in the negotiation of the local
send_credits and recv_credits. The default value is 32. In previous versions, 32 was
also the maximum acceptable value, but this maximum has been removed as of version 1.3.0.
Negotiation occurs as part of connection establishment, and the result is the minimum value
supplied by either side. This command parameter value cannot be used in an exs_fcntl()
call on an established connection. The result returned by a successful exs_fcntl() call is
the old value of the corresponding local credit value.

When the command parameter to exs_fcntl() is EXS_F_GETFLOWCONTROLCREDITS, the
result returned by the exs_fcntl() depends on whether or not the connection has been es-
tablished. If exs_fcntl() is called with this command parameter value prior to a successful
call to exs_connect() or exs_accept() on the fd parameter, the value returned will be the
local value used in a future negotiation on that connection. If it is called after a connection
was successfully established, the value returned will be the local value that resulted from
the negotiation at the time the connection was established. Note that this return value is
not the dynamically varying credit value used to control the flow on the connection, but the
negotiated limit on that credit value.

23

7.2 Small unregistered packets

Because of the overhead involved in dynamically registering and unregistering memory
(see section 8), it may be faster to send and receive small amounts of data by having
the EXS library simply copy the data into/out of preregistered library buffers. Thus, in
SOCK_SEQPACKET mode, UNH EXS supports copying unregistered small packets. The defini-
tion of a “small” packet can be controlled through the use of the EXS_F_SETSPMAXSIZE value
of the command parameter to the exs_fcntl() function, in which case the value of the
argument parameter should be the value to be used in the negotiation of the definition of
“small”. The default value is 0. Negotiation occurs as part of connection establishment, and
the result is the minimum value supplied by either side. This command parameter value
cannot be used in an exs_fcntl() call on an established connection. The result returned by
a successful exs_fcntl() call is the old value of the corresponding local small packet max
size.

Setting a positive value for EXS_F_SETSPMAXSIZE effects the operation of exs_send() and
exs_recv() called with a value of EXS_MHANDLE_UNREGISTERED for the required mhandle
parameter. If the value of the required length parameter is less than or equal to the small
packet max size, then rather than dynamically registering and unregistering the data supplied
in the function call, the data is copied into a preregistered library buffer on exs_send() or
copied out of a preregistered library buffer on exs_recv().

When the command parameter to the exs_fcntl() function is EXS_F_GETSPMAXSIZE,
the result returned by the exs_fcntl() depends on whether or not the connection has been
established. If exs_fcntl() is called with this command parameter value prior to a suc-
cessful call to exs_connect() or exs_accept() on the fd parameter, the value returned will
be the local value used in a future negotiation on that connection. If it is called after a con-
nection was successfully established, the value returned will be the local value that resulted
from the negotiation at the time the connection was established.

In SOCK_STREAM mode, this is not supported since the stream mode does its own
buffering by default.

7.3 Using the hardware inline feature on exs_send()

Many RDMA interface cards support the optional “inline” feature, which allows the card to
enqueue a copy of small amounts of data as part of the metadata it enqueues on the send
queue at the time it starts an exs_send() operation. The effect of this is to make the transfer
slightly faster (i.e., to exhibit lower latency), because the data is already on the interface
card at the time it actually moves data onto the wire, so there is no need to involve the
memory bus in the transfer itself (the memory bus was involved at the time the exs_send()
was enqueued).

The definition of “small amounts” of data can be controlled to some extent through the
use of the EXS_F_SETINLINEMAXSIZE value of the command parameter to the exs_fcntl()
function, in which case the value of the argument parameter should be the definition of
“small amounts”. The default value is the largest value acceptable to the interface card. Ne-
gotiation occurs as part of connection establishment, and is explained next. This command
parameter value cannot be used in an exs_fcntl() call on an established connection. The

24

result returned by a successful exs_fcntl() call is the old value of the corresponding local
inline max size.

The user does not have complete control over this value, because this is an optional
feature of RDMA interface cards, and the maximum size possible depends on the particular
card used. Therefore, if the user uses the EXS_F_SETINLINEMAXSIZE value in the command
parameter to the exs_fcntl() function, then the user’s value of the argument parameter
is only a starting point for the EXS library to negotiate with the local interface card to set
the maximum inline size to use. If the user’s value is acceptable to the local interface card,
then that is the value used. If the user’s value is not acceptable, then the EXS library will
silently find and use the largest value acceptable to the interface card but smaller than the
user’s value.

Note that the scope of the maximum inline size is the local interface card—it is not
negotiated with the remote side when a connection is established by an exs_connect() or
exs_accept(), because the interface card on the remote side could be different from the local
interface card, and might support a different maximum value. In any case, maximum inline
size is only utilized by the EXS library on an exs_send(), since it only effects the queueing
performed locally when this function is called—it has no effect on an exs_recv() or on data
transferred on the wire.

Note also that the maximum inline size is independent of the small packet max size. The
maximum inline size is a hardware option that improves the latency of exs_send() operations,
regardless of whether or not themhandle parameter is given as EXS_MHANDLE_UNREGISTERED
in the exs_send(). Therefore the EXS library will use it by default on all calls to exs_send()
in which the value of the send_length parameter is less than or equal to the maximum
inline size. (Obviously if the user sets this maximum to 0, this feature will not be used.) The
small packet max size is a software option that improves the latency of exs_send(), but only
when themhandle parameter is given as EXS_MHANDLE_UNREGISTERED. The EXS library uses
will use it only on these calls, and only if the value of the send_length parameter is less
than or equal to the small packet max size.

When the command parameter to the exs_fcntl() function is EXS_F_GETINLINEMAXSIZE,
the result returned by the exs_fcntl() depends on whether or not the connection has been
established. If exs_fcntl() is called with this command parameter value prior to a suc-
cessful call to exs_connect() or exs_accept() on the fd parameter, the value returned will
be the local value used in a future negotiation with the local interface when a connection is
established. If it is called after a connection was successfully established, the value returned
will be the local value that resulted from the negotiation at the time the connection was
established.

7.4 Pinning the EXS completion thread to a CPU

Because of the asynchronous nature of its operation, the EXS library utilizes a “completion
thread”. One of the fine-tuning options available to users is the ability to pin this completion
thread to a particular CPU. If the user pins his/her threads to different CPUs, the execution
load will be distributed across a multi-core platform, which should give better performance.
If thread pinning is not performed, then the completion thread can be dynamically assigned
to various CPUs by the kernel scheduler.

25

Completion thread pinning is controlled through the use of the EXS_F_SETCOMPTHREADCPU
value of the command parameter to the exs_fcntl() function, in which case the value of
the argument parameter should be the number (starting at 0) of the CPU to which the
completion thread for the connection indicated by the fd parameter should be pinned. The
default value is INT_MAX, which means that the completion thread is NOT pinned to
any CPU. Pinning is done at the time a connection is established, and may be changed
dynamically after connection establishment. The result returned by a successful exs_fcntl()
call is the old CPU number. If this return value is INT_MAX, it means the completion
thread was not previously pinned to any CPU, and can be dynamically assigned to CPUs
by the kernel scheduler.

7.5 Busy polling for completions

By default, the UNH EXS completion thread releases the CPU whenever it has no work
to do in order to not consume CPU cycles unnecessarily. However, this requires kernel
intervention, both to release the CPU and again when the thread needs to be reawakened,
and this can add several microseconds overhead to the performance of an EXS transaction.
To avoid this, the user can select the “busy polling” option for a completion thread. This
option means that the completion thread will react faster to the completion of transactions,
which usually produces lower latency. But it also means the completion thread will never
give up the CPU, so that it will consume 100

Busy polling in the completion thread of the connection indicated by the fd is controlled
through the use of the EXS_F_SETFD value of the command parameter to the exs_fcntl()
function, in which case the value of the argument parameter should be a bit-mask containing
the EXS_FD_BUSYPOLL flag. The choice used by a completion thread is determined when that
thread is created as part of connection establishment. By default, this flag is not set, which
means that busy polling is not employed by the completion thread for an fd. The argument
bit-mask containing the EXS_FD_BUSYPOLL flag cannot be used in an exs_fcntl() call on an
established connection. The result returned by a successful exs_fcntl() call is the old flags
bit-mask.

When the value of the command parameter to the exs_fcntl() function is EXS_F_GETFD,
the result returned by the exs_fcntl() is the current flags value at that time. The value of
the argument parameter is ignored.

The proper way to set the EXS_FD_BUSYPOLL flag is to:

1. call exs_fcntl() with the EXS_F_GETFD value for the command parameter,

2. OR the result returned by that exs_fcntl() call with the EXS_FD_BUSYPOLL flag,

3. use the result of that OR operation as the argument parameter in a call to exs_fcntl()
with the EXS_F_SETFD value for the command parameter.

Doing it this way ensures that only a single flag value (in this case, the EXS_FD_BUSYPOLL

flag) gets changed.
Note that it is also possible to separately configure event queues to exclusively busy

poll or wait for notifications (the default is busy poll for a few cycles before waiting for
notification). This is described in section 11.2.6.

26

7.6 Stream receive buffer

As mentioned earlier in section 4.1, version 1.3.0 introduces an intermediate receive buffer
for SOCK_STREAM sockets. This buffer is meant to decrease latency for long-distance
communications that is introduced by the advertisement mechanism. When no advertise-
ments are pending, the sender will write data into this intermediate buffer instead of waiting
for an advertisement. exs_recv() will return data from this buffer whenever it contains data,
and will send advertisements only if there is no data in the buffer. As of version 1.3.2, the
receiver will send advertisements even if the MSG_WAITALL flag is not present. The
sender will make a best effort to write directly to the user-supplied memory area whenever it
gets an advertisement. However, it is possible that the sender had already written the data
to the intermediate buffer before it received the advertisement, in which case it will ignore
the advertisement. The actual algorithm by which this occurs is much more complex than
this simple overview implies, but a full discussion of the algorithm is outside the scope of
this document.

The intermediate receive buffer defaults to 3 Gigabytes in size, and this is also its maxi-
mum size due to limitations of the underlying OFED stack. There is a fallback mechanism
to decrease the size if the requested size cannot be allocated. However, due to the way that
memory allocation works in Linux and the fact that this intermediate buffer must be pinned
in virtual memory, this fallback mechanism is unlikely to work in practice if the available
physical memory is less than the desired buffer size.

To decrease the size of the intermediate receive buffer, call exs_fcntl() with the com-
mand parameter set to EXS_F_SETSTREAMBUFSIZE and the argument parameter set to the
desired size in bytes. This parameter must be set on the client side of the connection before
calling exs_connect() and on the server side before calling exs_accept() for the first time.
Note that as of UNH EXS 1.3.6, this will change the size of the remote receive buffer on each
side independently. That is, setting the size on the server side will change the size of the
receive buffer on the server side only, and setting the size on the client side will change the
size of the receive buffer on the client side only. The similar EXS_F_GETSTREAMBUFSIZE may
be used at any time to determine the actual size of the intermediate receive buffer, which
may be less than the requested size due to memory constraints.

In many cases, the intermediate receive buffer will increase performance dramatically;
however, there may be some use cases where this extra buffer is unwanted. To turn this fea-
ture off completely, set the desired stream buffer size to 0 with the EXS_F_SETSTREAMBUFSIZE
parameter. Note that currently, this also sets the EXS_FD_NODELAY flag for compatibility with
previous releases.

In the future, we plan to additionally support a send-side Nagle buffer for small packets.
The size of this buffer would then be controllable via the EXS_F_SETSPMAXSIZE command to
the exs_fcntl() function mentioned in the previous section.

8 Registered and unregistered memory
The EXS interface is designed to transfer data using direct memory-to-memory transfers
with no extra copying. This requires that memory buffers involved at each end of the

27

RDMA transmission be “registered” with the CA on each end prior to one side issuing the
exs_send() and the other side issuing the exs_recv(). This normally requires the user to
explicitly register and deregister the memory used in EXS transfers, on both the sending
and receiving sides (see section 8.1). However, it is possible for a user to implicitly register
and deregister the memory used on either the sending or receiving side of an EXS transfer,
or both (see section 8.2).

8.1 Explicit memory registration and deregistration

A user explicitly registers memory using:
mhandle = exs_mregister(address, length, flags);

where address points to an area of memory containing length bytes to be registered. The
value of flags is usually 0 to allow both send and receive operations on the memory area. The
flag EXS_MRF_RECV_DISABLE can be specified to only allow send operations on the memory
area. Note that prior to calling exs_mregister(), the memory at address must already be
allocated by the user, either statically or dynamically.

If the exs_mregister() is successful, the value returned in mhandle will be an opaque
memory handle that can be used as a parameter to an exs_send() when the send buffer is lo-
cated anywhere within this area of memory, and/or as a parameter to an exs_recv() when the
receive buffer is located anywhere within this area of memory. If the exs_mregister() fails for
any reason, the value returned inmhandle will be the constant EXS_MHANDLE_INVALID
and an error code will be stored in the global errno.

Note that once an mhandle has been successfully registered, it can be used repeatedly
in subsequent calls to exs_send() and/or exs_recv() that have buffers in that memory area.
Only when a user is completely finished using an explicitly registered area of memory for
I/O does he or she deregister it using:
result = exs_mderegister(mhandle, flags);

where mhandle must be the value returned by a prior successful call to exs_mregister(),
and the value of flagsmust be 0 since no flags are currently supported for exs_mderegister().

8.2 Implicit memory registration and deregistration

The EXS standard provides a simple mechanism to implicitly register and deregister mem-
ory buffers used in exs_send() and exs_recv() operations. To do this, wherever an mhan-
dle parameter is required in an EXS function call, the user simply supplies the constant
EXS_MHANDLE_UNREGISTERED to indicate that the user has not explicitly registered the buffer
parameter specified in that function call. Given this value, the EXS interface will dynamically
register and deregister the buffer as necessary. Of course this adds considerable overhead in-
terface to dynamically register and deregister memory as part of an exs_send() or exs_recv()
call, but if an area of memory is used for I/O only once or twice, rather than repeatedly, the
user may find it more convenient to let the EXS interface perform the registration required
by the CA rather than coding out explicit calls to exs_mregister() and exs_mderegister().

28

Note that memory registration applies only to the process calling the exs_mregister()
function (and to threads attached to that process). If a process forks a child process, that
child does not inherit any of the parent’s memory registrations.

8.3 Memory alignment

For best performance, large messages should be aligned at a cache-line boundary, since the
channel adapter copies a cache line at a time. If a large user data buffer is unaligned, each
cache line must be accessed twice by the channel adapter, which will have a noticeable effect
on throughput. On most modern systems, cache lines are usually 64, 128, or 256 bytes.
For the channel adapter, this can be queried using the lspci utility. The CPU’s cache line
size can be queried by examining the /proc/cpuinfo file on Linux. To allocate an aligned
memory area, one can use the posix_memalign() function defined in POSIX.1-2001 or the
aligned_alloc() function defined in ISO/IEC 9899:2011 (C11).

9 Synchronous I/O
The EXS interface is designed to transfer data asynchronously, as already described in section
5. However, some applications have no need for asynchronous I/O, although they still
want to use RDMA. To accommodate this type of application, the user can simply supply
the value EXS_BLOCK in the flags parameter to exs_accept(), exs_connect(), exs_close(),
exs_send(), or exs_recv(). When this flag is present, qhandle and ahandle parameters
required in these EXS function calls are ignored by the EXS interface and can be NULL. The
EXS_BLOCK flag indicates that the user wants this function to both start an operation and
wait for its completion. If the result returned by this function is -1, the error code may apply
either to the start phase or the completion phase—the user has to somehow determine which.
Otherwise, the result is a value taken from one of the fields in the successful completion event
(which is hidden from the user by the EXS interface). For an exs_send() or exs_recv(), the
result will be the number of bytes actually transmitted. For an exs_accept() it will be the
fd of the new connection. For an exs_connect() or exs_close() it will be 0.

For convenience when the user wishes to both block and use unregistered memory in a
send or receive operation, two additional functions have been provided: exs_write() and
exs_read(). These are described below in terms of their exs_send() and exs_recv() equiv-
alents.

9.1 Sending data synchronously

A user sends registered data synchronously by using:
result = exs_send(fd, write_buffer, write_length, EXS_BLOCK, NULL, NULL,

mhandle);

or the more convenient:
result = exs_blocking_send(fd, write_buffer, write_length, send_flags,

mhandle);

29

in which the user does not have to supply the value EXS_BLOCK in the send_flags parameter.
A user sends unregistered data synchronously by using either:

result = exs_send(fd, write_buffer, write_length, EXS_BLOCK, NULL, NULL,
EXS_MHANDLE_UNREGISTERED);

or the more convenient:
result = exs_write(fd, write_buffer, write_length);

In all these situations, fd identifies the connection, and the user has filled write_buffer
with write_length bytes of data prior to the call. When using these functions, the EXS
interface will automatically wait for completion of the data transfer before returning. If
the transfer is successful, the value returned in result will be the number of bytes actually
written. Otherwise, the value returned in result will be -1 to indicate that there was an
error of some sort, in which case the error code is stored in the global errno.

9.2 Receiving data synchronously

A user receives registered data synchronously by using:
result = exs_recv(fd, read_buffer, max_length, EXS_BLOCK, NULL, NULL,

mhandle);

or the more convenient:
result = exs_blocking_recv(fd, read_buffer, max_length, recv_flags,

mhandle);

in which the user does not have to supply the value EXS_BLOCK in the recv_flags parameter.
A user receives unregistered data synchronously by using either:

result = exs_recv(fd, read_buffer, max_length, EXS_BLOCK, NULL, NULL,
EXS_MHANDLE_UNREGISTERED);

or the more convenient:
result = exs_read(fd, read_buffer, max_length);

In all these situations, fd identifies the EXS connection, and the user has reserved a
read_buffer capable of holding max_length bytes of data. When using these functions,
the EXS interface will automatically wait for completion of the data transfer before returning.
If the transfer is successful, the value returned in result will be the number of bytes actually
read. Otherwise, the value returned in result will be -1 to indicate that there was an error
of some sort, in which case the error code is stored in the global errno.

9.3 Establishing an EXS client connection synchronously

The EXS_BLOCK constant can also be used as the value of the flags parameter in the the
exs_connect() function so that it will operate synchronously rather than asynchronously.
When this flag value is present, the value of the qhandle and ahandle parameters to this
function are ignored by the EXS interface, and can be NULL. For convenience and similarity
to the equivalent functions for normal sockets, the following synchronous function is also
provided:

30

result = exs_blocking_connect(fd, server_address, server_addrlen);

where the parameters are identical to those for the corresponding “normal” TCP/IP socket
connect() function.

9.4 Accepting connections on the server synchronously

The EXS_BLOCK constant can also be used as the value of the flags parameter in the the
exs_accept() function so that it will operate synchronously rather than asynchronously.
When this flag value is present, the value of the qhandle parameter to this function is
ignored by the EXS interface, and can be NULL. For convenience and similarity to the
equivalent function for normal sockets, the following synchronous function is also provided:
result = exs_blocking_accept(fd, peer_address, &peer_addrlen);

exs_blocking_accept() blocks until a remote client connects, at which time the result it
returns will be the fd for the new connection to the remote client. No exs_event_t structure
is generated for the user, so the other fields in that structure are not available to the user.

It is important to note that the second and third parameters to exs_blocking_accept()
differ from the corresponding parameters to exs_accept() (see section 4.3.2). Instead of
giving an address_vector array of structures of type exs_acceptaddr and a count pa-
rameter indicating the number of elements in the array, exs_blocking_accept() takes as
its peer_address parameter a pointer to a structure of type struct sockaddr into which
the IPv4/IPv6 address and port number of a new remote client will be stored by the EXS
interface. The peer_addrlen parameter is the number of bytes allocated by the user to the
structure pointed to by peer_address. These two parameters to exs_blocking_accept()
are identical to the first two fields in an element of the address_vector parameter to
exs_accept(), and make the 3 parameters to exs_blocking_accept() identical to the 3
parameters of the “normal” TCP/IP socket function accept().

Note also that the EXS_BLOCK flag does NOT have to be included in the accept_flags
parameter to exs_blocking_accept().

9.5 Closing EXS connections synchronously

An EXS connection of any type can be closed synchronously by using either:
result = exs_close(fd, EXS_BLOCK, NULL, NULL);

or the more convenient:
result = exs_blocking_close(fd);

where fd indicates the connection to be closed.

31

10 Converting programs from using normal sockets to
using EXS sockets

The availability in EXS of both implicit memory registration and synchronous I/O means
that users who wish to convert existing programs using “normal” sockets (see section 10.1)
to full use of EXS sockets have a choice of how to proceed. They can start by using EXS
sockets in synchronous mode and use only implicit memory registration (see section 10.2).
Such usage is almost identical with the use of “normal” sockets (essentially just the function
names change), but it does give the user access to the RDMA hardware. Once that is
working, the user can choose between converting first to using explicit memory registration
while continuing to use synchronous mode (see section 10.3), or converting first to using
asynchronous mode while continuing to use implicit memory registration (see section 10.4).
Once that step has been finished and is working properly, the other step can be taken to
give fully asynchronous operation with explicitly registered memory (see section 10.5).

10.1 Client using normal sockets

The following gives an example of the complete conversion just mentioned, starting with
the general outline for a client that uses “normal” sockets (and therefore cannot use RDMA
hardware):
fd = socket(PF_INET, SOCK_STREAM, 0);
connect(fd, server_address, server_addrlen);
loop

write(fd, out_buffer, out_bytes);
in_bytes = read(fd, in_buffer, maxbytes);

endloop;
close(fd);

10.2 Client using EXS sockets in synchronous mode with implicit
memory registration

The first conversion step mentioned above gives an almost identical program that uses syn-
chronous mode and implicit memory registration so that it can therefore use RDMA hard-
ware. Note that this program is identical to the normal program except for the introduction
of the one-time call to exs_init() at the start, and the name changes of the various socket
functions.
exs_init(EXS_VERSION);
fd = exs_socket(PF_INET, SOCK_STREAM, 0);
exs_blocking_connect(fd, server_address, server_addrlen);
loop

exs_write(fd, out_buffer, out_bytes);
in_bytes = exs_read(fd, in_buffer, maxbytes);

endloop;
exs_blocking_close(fd);

32

10.3 Client using EXS sockets in synchronous mode with explicit
memory registration

We now have a choice of which feature of EXS to apply first. Let’s choose to register memory
before we go to asynchronous operation (so we will continue to use only EXS functions that
are “blocking”). The general outline for this version of the client would be:
exs_init(EXS_VERSION);
fd = exs_socket(PF_INET, SOCK_STREAM, 0);
exs_blocking_connect(fd, server_address, server_addrlen);
in_mhandle = exs_mregister(in_buffer, max_in_bytes, flags);
out_mhandle = exs_mregister(out_buffer, max_out_bytes, flags);
loop

exs_blocking_send(fd, out_buffer, out_bytes, 0, out_mhandle);
in_bytes = exs_blocking_recv(fd, in_buffer, in_bytes, 0, in_mhandle);

endloop;
exs_mderegister(out_mhandle);
exs_mderegister(in_mhandle);
exs_blocking_close(fd);

10.4 Client using EXS sockets in asynchronous mode with implicit
memory registration

Alternatively, we could choose to utilize EXS asynchronous operations before registering
memory. The general outline for this version of the client would be:
exs_init(EXS_VERSION);
fd = exs_socket(PF_INET, SOCK_STREAM, 0);
management_qhandle = exs_qcreate(1);
exs_connect(fd, server_address, server_addrlen, 0, NULL, management_qhandle,

NULL);
/*---- perform computation in parallel with EXS activity ----*/
exs_qdequeue(management_qhandle, &management_event, 1, NULL);
in_qhandle = exs_qcreate(3);
out_qhandle = exs_qcreate(3);
loop

exs_send(fd, out_buffer, out_bytes, 0, out_qhandle,
NULL, EXS_MHANDLE_UNREGISTERED);

/*---- perform computation in parallel with data transfer ----*/
exs_qdequeue(out_qhandle, &out_event, 1, NULL);
exs_recv(fd, in_buffer, max_in_bytes, 0, in_qhandle,

NULL, EXS_MHANDLE_UNREGISTERED);
/*---- perform computation in parallel with data transfer ----*/
exs_qdequeue(in_qhandle, &in_event, 1, NULL);
in_bytes = in_event.exs_evt_union.exs_evt_xfer.exs_evt_length;

endloop;
exs_qdelete(out_qhandle);
exs_qdelete(in_qhandle);
exs_close(fd, 0, management_qhandle, NULL);
/*---- perform computation in parallel with EXS activity ----*/
exs_qdequeue(management_qhandle, &management_event, 1, NULL);
exs_qdelete(management_qhandle);

33

10.5 Client using EXS sockets in asynchronous mode with explicit
memory registration

Our final step is to combine the changes made independently in the previous two steps,
giving us a program that uses both EXS registered memory and EXS asynchronous I/O for
RDMA transfers:
exs_init(EXS_VERSION);
fd = exs_socket(PF_INET, SOCK_STREAM, 0);
management_qhandle = exs_qcreate(1);
exs_connect(fd, server_address, server_addrlen, 0, NULL, management_qhandle,

NULL);
/*---- perform computation in parallel with EXS activity ----*/
exs_qdequeue(management_qhandle, &management_event, 1, NULL);
in_mhandle = exs_mregister(in_buffer, max_in_bytes, flags);
out_mhandle = exs_mregister(out_buffer, max_out_bytes, flags);
in_qhandle = exs_qcreate(3);
out_qhandle = exs_qcreate(3);
loop

exs_send(fd, out_buffer, out_bytes, 0, out_qhandle, NULL, out_mhandle);
/*---- perform computation in parallel with data transfer ----*/
exs_qdequeue(out_qhandle, &out_event, 1, NULL);
exs_recv(fd, in_buffer, max_in_bytes, 0, in_qhandle, NULL, in_mhandle);
/*---- perform computation in parallel with data transfer ----*/
exs_qdequeue(in_qhandle, &in_event, 1, NULL);
in_bytes = in_event.exs_evt_union.exs_evt_xfer.exs_evt_length;

endloop;
exs_qdelete(out_qhandle);
exs_qdelete(in_qhandle);
exs_mderegister(out_mhandle);
exs_mderegister(in_mhandle);
exs_close(fd, 0, management_qhandle, NULL);
/*---- perform computation in parallel with EXS activity ----*/
exs_qdequeue(management_qhandle, &management_event, 1, NULL);
exs_qdelete(management_qhandle);

This program runs, but as it stands there isn’t much parallel activity between the asyn-
chronous EXS activity and the user thread, which should perform parallel computation in
the places now marked in the code only by appropriate comments. To take advantage of
the potential parallelism, this program needs to be modified to perform useful computation
between the call of an exs_close() or an exs_connect() or an exs_send() or an exs_recv()
that starts an EXS operation and the corresponding exs_qdequeue() that waits for the
completion of the EXS operation.

34

11 Status of UNH EXS 1.4.1

11.1 Comparison with the Extended Sockets API (ES-API) Issue
1.0 Specification

UNH EXS function origin UNH EXS status section discussed
exs_accept() ES-API standard implemented 4.3.2
exs_bind() POSIX implemented 4.3.1
exs_blocking_accept() POSIX implemented 9.4
exs_blocking_close() POSIX implemented 9.5
exs_blocking_connect() POSIX implemented 9.3
exs_blocking_recv() non-standard implemented 9.1
exs_blocking_send() non-standard implemented 9.1
exs_cancel() ES-API standard not implemented
exs_close() non-standard implemented 4.4
exs_connect() ES-API standard implemented 4.2
exs_init() ES-API standard implemented 3.1
exs_fcntl() non-standard implemented 7
exs_listen() POSIX implemented 4.3.1
exs_mderegister() ES-API standard implemented 8.1
exs_mmodify() ES-API standard not implemented
exs_mregister() ES-API standard implemented 8.1
exs_poll() ES-API standard not implemented
exs_qcreate() ES-API standard implemented 2.1.1
exs_qdelete() ES-API standard implemented 2.1.2
exs_qdequeue() ES-API standard implemented 2.1.3
exs_qmodify() ES-API standard implemented
exs_qstatus() ES-API standard implemented
exs_read() POSIX implemented 9.2
exs_recv() ES-API standard implemented 5.2
exs_recvmsg() ES-API standard not implemented
exs_send() ES-API standard implemented 5.1
exs_sendfile() ES-API standard not implemented
exs_sendmsg() ES-API standard not implemented
exs_shutdown() non-standard implemented 4.5
exs_socket() POSIX implemented 4.1
exs_write() POSIX implemented 9.1

11.2 Modifications to the ES-API standard in the UNH EXS im-
plementation

11.2.1 exs.h header file

The definitions of all symbols, structures, and function prototypes introduced by UNH EXS
are found in the header file “exs.h”, not “sys/exs.h” as stated in the ES-API standard. There-

35

fore, each “.c” file using UNH EXS should have the following line after all other “include”
directives at the beginning of the compilation unit:
#include <exs.h>

The EXS_DISABLE_DEPRECATED feature test macro, if defined before “exs.h” is
included, will cause deprecated symbols to not be made visible to the compiler. This allows
users to verify that their programs do not make use of deprecated symbols.

11.2.2 exs_accept()

The EXS_BLOCK flag has been added in UNH-EXS to indicate that the user wants this function
to both start an operation and wait for its completion. When this flag is present, the value
of the qhandle parameter required in the exs_accept() function call is ignored by the EXS
interface and can be NULL. The result returned by a successful exs_accept() with the
EXS_BLOCK flag is the fd of the new connection to a remote client.

11.2.3 exs_close()

The EXS_BLOCK flag has been added in UNH-EXS to indicate that the user wants this function
to both start an operation and wait for its completion. When this flag is present, the values
of the qhandle and ahandle parameters that are required in the exs_close() function call
are ignored by the EXS interface and can be NULL.

11.2.4 exs_connect()

A non-NULL value for the timeout parameter, allowed in the ES-API standard, is not yet
supported in UNH-EXS.

The EXS_BLOCK flag has been added in UNH-EXS to indicate that the user wants this
function to both start an operation and wait for its completion. When this flag is present,
the values of the qhandle and ahandle parameters that are required in the exs_connect()
function call are ignored by the EXS interface and can be NULL.

11.2.5 exs_mregister()

The nonstandard EXS_LOCAL_READ, EXS_LOCAL_WRITE, EXS_REMOTE_READ, EXS_REMOTE_WRITE,
and EXS_ACCESS_ALL flags introduced in prior UNH EXS versions are deprecated as of UNH
EXS 1.3.6. Prior to UNH EXS 1.3.6, memory registration handles created without specifying
any flags were usable only with exs_send() In UNH EXS 1.3.6, this default is changed and
memory registration handles created without specifying any flags are now usable with both
exs_send() and exs_recv(), and a new flag EXS_MRF_RECV_DISABLE was added to create a
memory registration handle usable for sending but not receiving.

11.2.6 exs_qcreate()

The exs_qcreate() function takes an integer parameter specifying the depth of the queue.
In UNH EXS, this is only used to determine the number of event structures to pre-allocate;
the queue can hold a theoretically unlimited number of elements. That said, limiting the

36

usage of the queue to the specified depth will improve performance by not requiring calls to
malloc() in the data transfer path.

11.2.7 exs_qmodify()

The exs_qmodify() function, in addition to accepting the standard EXS_QATTR_SIGNAL and
EXS_QATTR_EVENTS attributes, takes an attribute specific to UNH EXS, EXS_QATTR_WAIT,
which was introduced in UNH EXS 1.3.6. This attribute specifies how exs_qdequeue()
should wait if there are no events posted when it is called. Note that this attribute may only
be modified prior to the first time that the queue is used, since it may alter the way that
the queue is synchronized internally for access by multiple threads.

The default value of this attribute is EXS_WAIT_ADAPTIVE, meaning exs_qdequeue() will
busy poll the queue for a given number of cycles before giving up the CPU and waiting for
notification of a new event. The number of cycles to spin is adjusted on-the-fly based on
whether or not events are retrieved via the initial busy polling loop. The exact number of
cycles and how it is adjusted are subject to change in future versions of UNH EXS.

The other values of this attribute are EXS_WAIT_BUSY_POLL and EXS_WAIT_NOTIFY, which
cause exs_qdequeue() to busy poll or give up the CPU and wait for notification, respectively.

Note that the wait type for event queues is completely independent of the wait type for
the RDMA completion thread, as discussed in Section 7.5.

11.2.8 exs_qstatus()

The exs_qstatus() function accepts the EXS_QATTR_WAIT attribute, which returns the wait
type of the queue.

11.2.9 exs_recv()

The ES-API standard MSG_PEEK and MSG_OOB flag values are not supported in UNH-
EXS.

The EXS_DONTWAIT flag is ignored as of UNH-EXS 1.3.1.
The EXS_CREDIT_WAIT flag has been added in UNH-EXS 1.3.2 to indicate that the user

wants this function to wait until a credit is available, but otherwise run asynchronously.
The EXS_BLOCK flag has been added in UNH-EXS to indicate that the user wants this

function to both start an operation and wait for its completion. When this flag is present,
the values of the qhandle and ahandle parameters that are required in the exs_recv()
function call are ignored by the EXS interface and can be NULL.

The EXS_UNSIGNALED flag has been added in UNH-EXS to indicate that the user does not
want the completion of an asynchronous exs_recv() to generate an event. It is ignored when
the EXS_BLOCK flag is present. When EXS_UNSIGNALED is present, the value of the qhandle
parameter that is required in the exs_recv() function call may be NULL, in which case
no event is generated upon the completion of the exs_recv(). However, if the value of the
qhandle parameter is not NULL, an event will be generated in the event queue ONLY if the
operation did NOT complete successfully—no event is generated if the operation completed
successfully.

37

11.2.10 exs_send()

The ES-API standard MSG_EOR and MSG_OOB flags are not supported in UNH-EXS.
The EXS_DONTWAIT flag is ignored as of UNH-EXS 1.3.1.
The EXS_CREDIT_WAIT flag has been added in UNH-EXS 1.3.2 to indicate that the user

wants this function to wait until a credit is available, but otherwise run asynchronously.
The EXS_BLOCK flag has been added in UNH-EXS to indicate that the user wants this

function to both start an operation and wait for its completion. When this flag is present,
the values of the qhandle and ahandle parameters that are required in the exs_send()
function call are ignored by the EXS interface and can be NULL.

The EXS_UNSIGNALED flag has been added in UNH-EXS to indicate that the user does not
want the completion of an asynchronous exs_send() to generate an event. It is ignored when
the EXS_BLOCK flag is present. When EXS_UNSIGNALED is present, the value of the qhandle
parameter that is required in the exs_send() function call may be NULL, in which case
no event is generated upon the completion of the exs_send(). However, if the value of the
qhandle parameter is not NULL, an event will be generated in the event queue ONLY if the
operation did NOT complete successfully—no event is generated if the operation completed
successfully.

11.2.11 exs_sendfile()

exs_sendfile() currently only supports file sizes of under 1GB, and only supports a single
sendvec element per call (sendvec_cnt == 1). Additionally, the exs_iov field of union

exs_xfvec is not supported.
UNH EXS supports an additional member of union exs_xfvec not specified in the ES-

API standard, exs_pathv, which takes a pathname string as opposed to a file descriptor.
This will cause UNH EXS to implicitly open the file at the start of the operation and close
it at the end of the operation.

The EXS_UNSIGNALED flag has been added in UNH-EXS to indicate that the user does not
want the completion of an asynchronous exs_send() to generate an event. It is ignored when
the EXS_BLOCK flag is present. When EXS_UNSIGNALED is present, the value of the qhandle
parameter that is required in the exs_send() function call may be NULL, in which case
no event is generated upon the completion of the exs_send(). However, if the value of the
qhandle parameter is not NULL, an event will be generated in the event queue ONLY if the
operation did NOT complete successfully—no event is generated if the operation completed
successfully.

11.3 Known deficiencies

11.3.1 thread cancellation

At the present time, the UNH EXS library functions are NOT cancellation safe, because
there are NO cancellation cleanup handlers implemented for any of them. Users are therefore
advised NOT to call pthread_cancel() for any of their threads when they might be executing
in code using the UNH EXS library.

38

11.3.2 fork()

The UNH EXS library has several limitations regarding the forking of child processes, due
to limitations of the OpenFabrics software stack that it is built on top of:

• Calling exs_init() in a child process is not supported, unless the process has first called
exec(). This means that EXS is completely unusable in a child process after a fork(),
unless the child process calls exec().

• Registered memory is unavailable to child processes. That is, the memory area that is
registered will not be mapped in the child process. See the Linux madvise(2) manual
page for more information.

If you do not need fork support, you may set the EXS_FORK_UNSAFE environment
variable. This means that your application must not call fork() once your process has called
exs_init(), whether implicitly or explicitly, or silent data corruption may result.

39

	Introduction
	Overview of the EXS style of programming
	Asynchronous I/O
	Creating an event queue
	Deleting an event queue
	Using an event queue

	Memory registration

	Establishing the EXS environment
	Managing an EXS connection
	Creating an EXS socket
	Establishing an EXS client connection
	Establishing a server EXS connection
	Establishing a server listening post
	Accepting connections on the server

	Closing an EXS connection
	Half-closing an EXS connection

	Basic data transfer over an EXS connection
	Sending data asynchronously
	Receiving data asynchronously
	Waiting for asynchronous I/O completion events
	Matching sends with receives
	Receiver's buffer is greater than or equal to amount of data in sender's packet
	Receiver's buffer is less than amount of data in sender's packet

	Basic flow control within the EXS interface
	Send and Receive Credits
	Negotiations at connection establishment
	Matching advertisements and receives
	Number of internal buffers allocated

	Tuning the UNH EXS interface
	Credit negotiation
	Small unregistered packets
	Using the hardware inline feature on exs_send()
	Pinning the EXS completion thread to a CPU
	Busy polling for completions
	Stream receive buffer

	Registered and unregistered memory
	Explicit memory registration and deregistration
	Implicit memory registration and deregistration
	Memory alignment

	Synchronous I/O
	Sending data synchronously
	Receiving data synchronously
	Establishing an EXS client connection synchronously
	Accepting connections on the server synchronously
	Closing EXS connections synchronously

	Converting programs from using normal sockets to using EXS sockets
	Client using normal sockets
	Client using EXS sockets in synchronous mode with implicit memory registration
	Client using EXS sockets in synchronous mode with explicit memory registration
	Client using EXS sockets in asynchronous mode with implicit memory registration
	Client using EXS sockets in asynchronous mode with explicit memory registration

	Status of UNH EXS 1.4.1
	Comparison with the Extended Sockets API (ES-API) Issue 1.0 Specification
	Modifications to the ES-API standard in the UNH EXS implementation
	exs.h header file
	exs_accept()
	exs_close()
	exs_connect()
	exs_mregister()
	exs_qcreate()
	exs_qmodify()
	exs_qstatus()
	exs_recv()
	exs_send()
	exs_sendfile()

	Known deficiencies
	thread cancellation
	fork()

