50, 100, 200 AND 400 GIGABIT ETHERNET TESTING SERVICE

Clause 137
PMD Test Plan
Version 1.0
Technical Document

Last Updated: January 27, 2020
TABLE OF CONTENTS

- MODIFICATION RECORD ... 3
- ACKNOWLEDGMENTS ... 4
- INTRODUCTION ... 5
- GROUP 1: TRANSMITTER ELECTRICAL SIGNALING REQUIREMENTS 7
 - Test 137.1.1 – Signaling Speed .. 8
 - Test 137.1.2 – DC Common Mode Output Voltage 9
 - Test 137.1.3 – Differential Output Amplitude 10
 - Test 137.1.4 – Common-Mode AC Output Voltage RMS 11
 - Test 137.1.5 – Output Jitter ... 12
- GROUP 2: TRANSMITTED WAVEFORM .. 13
 - Test 137.2.1 – Transmitter Output Waveform 14
 - Test 137.2.2 – Coefficient Step Size .. 15
 - Test 137.2.3 – Coefficient Initialization 16
 - Test 137.2.4 – Coefficient Range ... 17
 - Test 137.2.5 – Signal to Noise and Distortion Ratio 18
- GROUP 3: IMPEDANCE REQUIREMENTS ... 19
 - Test 137.3.1 – Common Mode to Differential Mode Output Return Loss 20
 - Test 137.3.2 – Common Mode to Common Mode Output Return Loss 21
 - Test 137.3.3 – Differential to Common Mode Return Loss 22
 - Test 137.3.4 – Transmitter Effective Return Loss 23
 - Test 137.3.5 – Receiver Effective Return Loss 24
- GROUP 4: RECEIVER ELECTRICAL SIGNALING REQUIREMENTS 25
 - Test 137.4.1 – Receiver Input Amplitude Tolerance 26
 - Test 137.4.2 – Receiver Interference Tolerance 27
 - Test 137.4.3 – Receiver Jitter Tolerance 28
- APPENDICES .. 29
 - Appendix I – Test Fixtures and Setups 30
MODIFICATION RECORD

January 27, 2020 Version 1.0
Michael Klempa: First draft.
ACKNOWLEDGMENTS

The University of New Hampshire would like to acknowledge the efforts of the following individuals in the development of this test plan.

Curtis Donahue UNH InterOperability Laboratory
Michael Klempa UNH InterOperability Laboratory
Jeff Lapak UNH InterOperability Laboratory
Paul Willis UNH InterOperability Laboratory
INTRODUCTION

The University of New Hampshire’s InterOperability Laboratory (IOL) is an institution designed to improve the interoperability of standards based products by providing an environment where a product can be tested against other implementations of a standard. This particular test plan has been developed to help implementers evaluate the functionality of the Physical Medium Dependent (PMD) sublayer of their 50GBASE-KR, 100GBASE-KR2 and 200GBASE-KR4 products.

These tests are designed to determine if a product conforms to specifications defined in Clause 137 of the IEEE Std 802.3cd-2018. Successful completion of all tests contained in this plan does not guarantee that the tested device will operate with other devices. However, combined with satisfactory operation in the IOL’s interoperability test bed, these tests provide a reasonable level of confidence that the Device Under Test (DUT) will function properly in many 100GBASE-KR4 environments.

The tests contained in this document are organized in such a manner as to simplify the identification of information related to a test, and to facilitate in the actual testing process. Tests are organized into groups, primarily in order to reduce setup time in the lab environment, however, the different groups typically also tend to focus on specific aspects of device functionality. A three-part numbering system is used to organize the tests, where the first number indicates the clause of the IEEE 802.3 standard on which the test plan is based. The second and third numbers indicate the test’s group number and test number within that group, respectively. This format allows for the addition of future tests to the appropriate groups without requiring the renumbering of the subsequent tests.

The test definitions themselves are intended to provide a high-level description of the motivation, resources, procedures, and methodologies pertinent to each test. Specifically, each test description consists of the following sections:

Purpose
The purpose is a brief statement outlining what the test attempts to achieve. The test is written at the functional level.

References
This section specifies source material external to the test plan, including specific subclauses pertinent to the test definition, or any other references that might be helpful in understanding the test methodology and/or test results. External sources are always referenced by number when mentioned in the test description. Any other references not specified by number are stated with respect to the test plan document itself.

Resource Requirements
The requirements section specifies the test hardware and/or software needed to perform the test. This is generally expressed in terms of minimum requirements, however in some cases specific equipment manufacturer/model information may be provided.
Last Modification
This specifies the date of the last modification to this test.

Discussion
The discussion covers the assumptions made in the design or implementation of the test, as well as known limitations. Other items specific to the test are covered here.

Test Setup
The setup section describes the initial configuration of the test environment. Small changes in the configuration should not be included here, and are generally covered in the test procedure section, below.

Test Procedure
The procedure section of the test description contains the systematic instructions for carrying out the test. It provides a cookbook approach to testing, and may be interspersed with observable results.

Observable Results
This section lists the specific observables that can be examined by the tester in order to verify that the DUT is operating properly. When multiple values for an observable are possible, this section provides a short discussion on how to interpret them. The determination of a pass or fail outcome for a particular test is generally based on the successful (or unsuccessful) detection of a specific observable.

Possible Problems
This section contains a description of known issues with the test procedure, which may affect test results in certain situations. It may also refer the reader to test plan appendices and/or whitepapers that may provide more detail regarding these issues.
GROUP 1: TRANSMITTER ELECTRICAL SIGNALING REQUIREMENTS

Overview:
The tests defined in this section verify the transmitter’s electrical signaling characteristics of the Physical Medium Dependent (PMD) layer defined in Clause 137 of the IEEE Std. 802.3cd-2018.
Test 137.1.1 – Signaling Speed

Purpose: To verify that the baud rate of the DUT is within the conformance limits.

References:
[1] IEEE Std. 802.3cd-2018, Subclause 137.9.1 – MDI
[2] IEEE Std. 802.3-2018, Subclause 93.8.2.1 - Transmitter test fixture

Resource Requirements: See Appendix I.

Last Modification: April 10, 2019

Discussion:
Reference [1] specifies the transmitter characteristics for 50GBASE-KR, 100GBASE-KR2 or 200GBASE-KR4 devices. This specification includes conformance requirements for the signaling speed which states that the signaling speed should be 26.5625 Gbaud +/- 100 ppm per lane. This translates to 26.5625 Gbaud +/- 2.65625 Mbaud, with a nominal Unit Interval (UI) of 37.64706 ps.

In this test, the signaling speed is measured while the DUT is connected to the test fixture defined in [2], or its functional equivalent. The signal being transmitted by the DUT may be any valid 50GBASE-KR, 100GBASE-KR2 or 200GBASE-KR4 signal.

Test Setup: See Appendix I.

Test Procedure:
1. Configure the DUT to send a valid signal or test pattern.
2. Connect the DUT’s transmitter to the DSO.
3. Measure the average TX signaling speed.
4. Repeat steps 1-3 for each transmit lane.

Observable Results:
a. The signaling speed should be within 26.5625 Gbaud +/- 100 ppm per lane.

Possible Problems: None.
Test 137.1.2 – DC Common Mode Output Voltage

Purpose: To verify that the DC common mode output voltage of the DUT is within the conformance limits.

References:
[2] IEEE Std. 802.3-2018, Table 120D–1 - 200GAUI-4 and 400GAUI-8 C2C transmitter characteristics at TP0a
[3] IEEE Std. 802.3-2018, Subclause 93.8.2.1 - Transmitter test fixture

Resource Requirements: See Appendix I.

Last Modification: April 10, 2019

Discussion:
Reference [1] specifies the transmitter characteristics for 50GBASE-KR, 100GBASE-KR2, or 200GBASE-KR4 devices. This specification includes conformance requirements for the common mode output voltage defined in [2].

In this test, the DC common mode output voltage is measured while the DUT is connected to the test fixture defined in [3], or its functional equivalent. The signal being transmitted by the DUT shall be PRBS13Q as defined in [2].

Test Setup: See Appendix I.

Test Procedure:
1. Configure the DUT to send PRBS13Q.
2. Connect the DUT’s transmitter to the DSO.
3. Measure the common mode output voltage of SL<p> and SL<n>.
4. Repeat steps 1-3 for each transmit lane.

Observable Results:
a. The common mode output voltage should be less than 1.9 V with respect to the signal shield.

Possible Problems: None.
Test 137.1.3 – Differential Output Amplitude

Purpose: To verify that the differential output amplitude of the DUT transmitter is within the conformance limits.

References:
[3] IEEE Std. 802.3-2018, Subclause 93.8.2.1 - Transmitter test fixture
[4] IEEE Std. 802.3-2018, Subclause 93.7.6 – Transmit disable function
[5] IEEE Std. 802.3-2018, Subclause 93.7.7 – Lane by lane disable function

Resource Requirements: See Appendix I.

Last Modification: April 10, 2019

Discussion:

In this test, the maximum differential peak-to-peak output voltage is measured while the DUT is connected to the test fixture defined in [3], or its functional equivalent. The signal being transmitted by the DUT will be PRBS13Q as defined in [2].

Test Setup: See Appendix I.

Test Procedure:
1. Configure the DUT to send PRBS13Q.
2. Connect the DUT’s transmitter to the DSO.
3. Measure the maximum peak-to-peak differential output voltage.
4. Disable the transmitter and measure the peak-to-peak output voltage.
5. Repeat steps 1-4 for each transmit lane.

Observable Results:
 a. The maximum differential peak-to-peak output voltage should be less than 1200 mV, regardless of equalization setting.
 b. The transmitter output voltage should be less than or equal to 30 mV peak-to-peak when disabled as defined in [4] and [5].

Possible Problems: None.
Test 137.1.4 – Common-mode AC output voltage RMS

Purpose: To verify that the maximum AC common-mode output voltages are within the conformance limits.

References:
1. IEEE Std. 802.3cd-2018, Subclause 137.9.2 – Transmitter Characteristics
2. IEEE Std. 802.3-2018, subclause 93.8.1.3 – Signal Levels
3. IEEE Std. 802.3-2018, Subclause 93.8.2.1 - Transmitter test fixture

Resource Requirements: See Appendix I.

Last Modification: April 10, 2019

Discussion:
Reference [1] specifies the transmitter characteristics for 50GBASE-KR, 100GBASE-KR2 or 200GBASE-KR4 devices. This specification includes conformance requirements for maximum output AC common-mode voltage defined in [2].

In this test, the differential amplitude is measured while the DUT is connected to the DSO. The common mode voltage can be found by averaging the signal+ and signal- at any time. RMS AC common-mode voltage may be calculated by applying the histogram function over 1 UI to the common mode signal. The signal being transmitted by the DUT will be PRBS13Q as defined in [2].

Test Setup: See Appendix I.

Test Procedure:
1. Configure the DUT to send PRBS13Q.
2. Connect the DUT’s transmitter to the DSO.
3. Apply a histogram function over 1 UI of the common mode signal.
4. Measure the common mode RMS amplitude.
5. Repeat steps 1-5 for each transmit lane.

Observable Results:
 a. The maximum output AC common-mode voltage should be no greater than 30 mV.

Possible Problems: None.
Test 137.1.5 – Output Jitter

Purpose: To verify that the output jitter of the DUT is within the conformance limits.

References:
[5] IEEE Std. 802.3-2018, Table 120D-4 – PRBS13Q pattern symbols used for jitter measurement

Resource Requirements: See Appendix I.

Last Modification: April 10, 2019

Discussion:
Reference [1] specifies the transmitter characteristics for 50GBASE-KR, 100GBASE-KR2 or 200GBASE-KR4 devices. This specification includes conformance requirements for even-odd jitter, J_{3u} jitter and J_{RMS} jitter.

In this test, there are three components of jitter that are measured. Jitter is measured while the DUT is transmitting PRBS13Q and is performed on 12 specific transitions detailed in [2]. J_{3u} jitter and J_{RMS} jitter are also measured on a PRBS13Q pattern. The procedure is performed as defined in [3] and [4]. All measurements will be performed with the DUT connected to the test fixture defined in [5] or its functional equivalent.

Test Setup: See Appendix I.

Test Procedure:
1. Configure the DUT so that it is sourcing a PRBS13Q pattern.
2. Connect the DUT’s transmitter to the DSO.
3. Capture a statistically sufficient number of instances of the 12 transitions detailed in [2].
5. Calculate J_{3u}.
6. Calculate J_{RMS}.
7. Repeat steps 1-5 for each transmit lane.

Observable Results:
a. The Even-Odd Jitter value should not exceed 0.019 UI.
b. The J_{3u} value should not exceed 0.115 UI.
c. The J_{RMS} value should not exceed 0.023 UI.

Possible Problems: None.
GROUP 2: TRANSMITTED WAVEFORM

Overview:

The tests defined in this section verify the transmitted waveform characteristics of the Physical Medium Dependent (PMD) layer defined in Clause 137 of the IEEE Std. 802.3cd-2018. The point for the tests in Group 2 is to eliminate the channel that connects the chip to the transmitter. This is necessary because in order to correctly characterize the effects of the coefficient changes, the intrinsic effects of the channel need to be accounted for. This means each test below besides test 137.2.1 steady state voltage must be run ‘N’ times, where ‘N’ is the number of possible coefficient combinations.
Test 137.2.1 – Transmitter Output Waveform

Purpose: To verify that the transmitter output waveform of the DUT is within the conformance limits.

References:
[2] IEEE Std. 802.3cd-2018, subclause 137.9.3.1.2 – Steady state voltage and linear fit pulse peak
[4] IEEE Std. 802.3-2018, subclause 72.6.10.2.3.1 – Preset

Resource Requirements: See Appendix I.

Last Modification: April 11, 2019

Discussion:
Reference [1] specifies the transmitter characteristics for 50GBASE-KR, 100GBASE-KR2, or 200GBASE-KR4 devices. This specification includes conformance requirements for the transmitter output waveform related to transmitter steady state voltage defined in [2].

In this test, the DUT’s equalizer is manipulated to every coefficient combination, including preset as specified in [4]. For each combination one complete cycle of the PRBS13Q test pattern is captured. This data is then post-processed using the procedure defined in [3] to compute the least mean square fit of the captured waveform. Additional parameters such as the steady state voltage and linear fit pulse response are derived from captured data and the fitting process.

Test Setup: See Appendix I.

Test Procedure:
1. Force the DUT transmitter equalizer to preset.
2. Configure the DUT so that it is sourcing a PRBS13Q pattern.
3. Capture at least one complete cycle of the test pattern.
4. Calculate the linear fit pulse response \(p(k) \).
5. Repeat steps 1-4 for all combination of equalizer coefficients.
6. Repeat steps 1-5 for each transmit lane.

Observable Results:
 a. The transmitter’s level separation mismatch ratio shall be greater than 0.95.
 b. The transmitter’s steady state voltage, the sum of \(p(k) \) divided by \(M \), should be no less than 0.354 V and not exceed 0.6 V.
 c. The peak of \(p(k) \) should be no less than the transmitter steady state voltage multiplied by 0.49.

Possible Problems: None.
Test 137.2.2 – Coefficient Step Size

Purpose: To verify that the change in the normalized amplitude of each equalizer coefficient is within the conformance limits when responding to an increment or decrement request.

References:

[2] IEEE Std. 802.3cd-2018, subclause 137.9.3.1.4 – Coefficient Step Size
[3] IEEE Std. 802.3-2012, subclause 85.8.3.3 – Transmitter output waveform
[4] IEEE Std. 802.3-2012, subclause 85.8.3.3.2 – Coefficient step size

Resource Requirements: See Appendix I.

Last Modification: April 10, 2019

Discussion:

Reference [1] specifies the transmitter characteristics for 50GBASE-KR, 100GBASE-KR2, or 200GBASE-KR4 devices. This specification includes conformance requirements for the transmitter output equalizer coefficients related to absolute coefficient step size defined in [2].

In this test, the transmit equalizer functional model shown in [3] is sent “increment” or “decrement” requests. After an “increment” request the device will have stepped up that change must be within the conformance limits. After a “decrement” request the device will have stepped down that change must be within the conformance limits.

Test Setup: See Appendix I.

Test Procedure:

1. Configure the DUT so that it is sourcing a low frequency test pattern.
2. Connect the DUT’s transmitter to the DSO.
3. Measure the normalized amplitude of the c(-2) equalizer coefficient.
4. Send an “increment” request to c(-2).
5. Measure the normalized amplitude of the incremented c(-2) equalizer coefficient.
6. Repeat steps 3-5 with a “decrement” request.
7. Repeat steps 1-6 for c(-1), c(0), and c(1).
8. Repeat steps 1-7 for each transmit lane.

Observable Results:

a. The absolute coefficient step size should be within 0.005 and 0.025 for c(-2).
b. The absolute coefficient step size should be within 0.005 and 0.05 for c(-1), c(0) and c(1).

Possible Problems: None.
Test 137.2.3 – Coefficient Initialization

Purpose: To verify that the equalizer coefficient value is within the conformance limits when entering the NEW_IC state.

References:
[2] IEEE Std. 802.3cd-2018, subclause 137.9.3.1.3 – Coefficient Initialization
[3] IEEE Std. 802.3cd-2018, Figure 137–9—Coefficient update state diagram

Resource Requirements: See Appendix I.

Last Modification: April 11, 2019

Discussion:
Reference [1] specifies the transmitter characteristics for 50GBASE-KR, 100GBASE-KR2 or 200GBASE-KR4 devices. This specification includes conformance requirements for the transmitter output equalizer initial coefficients related to absolute coefficient step size defined in [2].

In this test, the transmit equalizer functional model shown in [3] is sent an “initialize” request. Once the DUT has responded to the initialize request the equalizer coefficient values should satisfy the ratios provided below as defined in [2].

Test Setup: See Appendix I.

Test Procedure:
1. Force the DUT transmitter equalizer to OUT_OF_SYNC.
2. Record the c(-2), c(-1), c(0), and c(1) equalizer coefficient values from the DUT management settings.
3. Step up ic_req.
4. Record the c(-2), c(-1), c(0), and c(1) equalizer coefficient values from the DUT management settings.
5. Repeat for each ic_req state.
6. Repeat for each transmit lane.

Observable Results:
 a. The DUT equalizer coefficient values should satisfy the conditions defined in [2].

Possible Problems: None.
Test 137.2.4 – Coefficient Range

Purpose: To verify that the coefficient full-scale range of the DUT is within the conformance limits.

References:

[2] IEEE Std. 802.3cd-2018, subclause 137.9.3.1.5 – Coefficient range
[3] IEEE Std. 802.3-2012, subclause 85.8.3 – Transmitter Characteristics
[4] IEEE Std. 802.3-2012, subclause 85.8.3.3 – Transmitter output waveform
[5] IEEE Std. 802.3-2012, subclause 85.8.3.3.3 – Coefficient range

Resource Requirements: See Appendix I.

Last Modification: April 12, 2019

Discussion:

Reference [1] specifies the transmitter characteristics for 50GBASE-KR, 100GBASE-KR2 or 200GBASE-KR4 devices. This specification includes conformance requirements for the transmitter output equalizer coefficients related to full-scale range defined in [2].

In this test, the transmit equalizer functional model shown in [4] is sent sufficient requests such that a coefficient will reach the minimum or maximum value for three cases.

Test Setup: See Appendix I.

Test Procedure:

1. Force the DUT transmitter equalizer to preset.
2. Set c(-2) and c(-1) to zero and c(0) and c(1) having received sufficient “decrement” requests so that they are at their minimum.
3. Record the value of c(1).
4. Set c(-2) and c(1) to zero and c(-1) and c(0) having received sufficient “decrement” requests so that they are at their minimum.
5. Record the value of c(-1).
6. Set c(-1) and c(1) to zero, c(0) having received sufficient “decrement” requests so that it’s are at its minimum and c(2) having received sufficient “increment” requests so that it’s are at its maximum.
7. Record the value of c(-2).
8. Repeat for each transmit lane.

Observable Results:

a. The value of c(1) in step 3 shall be less than or equal to -0.25.
 b. The value of c(-1) in step 5 shall be less than or equal to -0.25.
 c. The value of c(-2) in step 7 shall be greater than or equal to 0.1.

Possible Problems: None.
Test 137.2.5 – Signal to Noise and Distortion Ratio

Purpose: To verify that the transmit signal to noise ratio of the DUT is within the conformance limits.

References:

Resource Requirements: See Appendix I.

Last Modification: April 1, 2019

Discussion: Reference [1] specifies the transmitter characteristics for 200GAUI-4 and 400GAUI-8 devices. This specification includes conformance requirements for signal to noise and distortion ratio (SNDR).

In this test, the RMS deviation error will be measured while each lane is sourcing PRBS13Q as defined in [2]. The RMS deviation from the mean voltage will be measured over the run of at least 6 consecutive identical bits for each level. The average of the four measurements is denoted as \(\sigma_n \). The peak value of the linear interpolated waveform will also be used in this measurement. SNDR is found with Equation 120D-7:

\[
SNDR = 10 \log_{10} \left(\frac{p_{\text{max}}}{\sigma_r^2 + \sigma_n^2} \right)
\]

Eq. 120D-7

Test Setup: See Appendix I.

Test Procedure:
1. From the linear fit pulse response, find the peak of the interpolated waveform as well as the RMS standard deviation error.
2. Configure the DUT to source PRBS31Q on all lanes not under test with the same equalization settings as the lane under test.
3. Configure the DUT to source PRBS13Q on the lane under test.
4. Connect the DUT to the DSO.
5. Measure the RMS deviation on at least six consecutive identical bits in a single pattern.
6. Use equation 120D-7 to calculate SNDR.

Observable Results:
 a. The SNDR shall be greater than 32.2 dB regardless of transmitter equalization setting.

Possible Problems: None.
GROUP 3: IMPEDANCE REQUIREMENTS

Overview:

The tests defined in this section verify the impedance characteristics of the Physical Medium Dependent (PMD) layer defined in Clause 137 of the IEEE Std. 802.3cd-2018.
Test 137.3.1 – Common Mode to Differential Mode Output Return Loss

Purpose: To verify that the output return loss of the DUT is within the conformance limits.

References:

[2] IEEE Std. 802.3-2018, Subclause 92.8.3.3 – Common mode to differential mode output return loss

Resource Requirements: See Appendix I.

Last Modification: April 19, 2019

Discussion:

Reference [1] specifies the transmitter characteristics for 50GBASE-KR, 100GBASE-KR2, or 200GBASE-KR4 devices. This specification includes conformance requirements for the common mode to differential output return loss, which are specified in [2].

For the purpose of this test, the common mode output return loss is defined as the magnitude of the reflection coefficient expressed in decibels of the DUT’s transmitter. The reflection coefficient is the ratio of the voltage in the reflected wave to the voltage in the incident wave. The common mode output return loss of the driver should exceed (92 - 2). The reference impedance for common mode return loss measurements shall be 25 Ω.

\[
\text{Return Loss}(f) \geq \begin{cases}
22 - \left(\frac{20}{25.78}\right)f & 0.01 \leq f \leq 12.89 \\
15 - \left(\frac{6}{25.78}\right)f & 12.89 \leq f \leq 19
\end{cases} \ (dB) \quad (92 - 2)
\]

Test Setup: See Appendix I.

Test Procedure:

1. Calibrate the VNA to remove the effects of the coaxial cables.
2. Connect the DUT’s transmitter to the VNA.
3. Measure the common mode output return loss of the DUT.
4. Repeat steps 1-3 for each transmit lane.

Observable Results:

a. The output return loss should exceed the limits described by (92-2).

Possible Problems: None.
Test 137.3.2 – Common Mode to Common Mode Output Return Loss

Purpose: To verify that the output return loss of the DUT is within the conformance limits.

References:

[2] IEEE Std. 802.3-2018, Subclause 92.8.3.4 – Common mode to common mode output return loss

Resource Requirements: See Appendix I.

Last Modification: April 19, 2019

Discussion:

Reference [1] specifies the transmitter characteristics for 50GBASE-KR, 100GBASE-KR2, or 200GBASE-KR4 devices. This specification includes conformance requirements for the common mode to common mode output return loss, which are specified in [2].

For the purpose of this test, the common mode output return loss is defined as the magnitude of the reflection coefficient expressed in decibels of the DUT’s transmitter. The reflection coefficient is the ratio of the voltage in the reflected wave to the voltage in the incident wave. The common mode output return loss of the driver should exceed \((92 - 3)\). The reference impedance for common mode return loss measurements shall be 25 \(\Omega\).

\[
\text{Return loss}(f) \geq \begin{cases} 2 & 0.02 \leq f \leq 19 \text{ (} dB \text{)} \\ (92 - 3) & \end{cases}
\]

Test Setup: See Appendix I.

Test Procedure:

1. Calibrate the VNA to remove the effects of the coaxial cables.
2. Connect the DUT’s transmitter to the VNA.
3. Measure the common mode output return loss of the DUT.
4. Repeat steps 1-3 for each transmit lane.

Observable Results:

a. The output return loss should exceed the limits described by \((92-3)\).

Possible Problems: None
Test 137.3.3 – Differential to Common Mode Return Loss

Purpose: To verify that the input return loss of the DUT is within the conformance limits.

References:

[2] IEEE Std. 802.3-2018, Subclause 92.8.4.3 – Differential to common mode input return loss

Resource Requirements: See Appendix I.

Last Modification: October 2, 2014

Discussion:

Reference [1] specifies the receiver characteristics for 50GBASE-KR, 100GBASE-KR2, or 200GBASE-KR4 devices. This specification includes conformance requirements for the differential to common mode input return loss, which are specified in [2].

For the purpose of this test, the differential to common mode return loss is defined as the magnitude of the reflection coefficient expressed in decibels of the DUT’s receiver. The reflection coefficient is the ratio of the voltage in the reflected wave to the voltage in the incident wave. The differential to common mode return loss of the driver should exceed (92-21).

\[
Return_loss(f) \geq \begin{cases}
22 - \left(\frac{20}{25.78}\right)f & 0.01 \leq f \leq 12.89 \\
15 - \left(\frac{6}{25.78}\right)f & 12.89 \leq f \leq 19
\end{cases} \text{ (dB)} \quad (92 - 21)
\]

Test Setup: See Appendix I

Test Procedure:

1. Calibrate the VNA to remove the effects of the coaxial cables.
2. Connect the DUT’s receiver to the VNA.
3. Measure the differential to common mode return loss of the DUT.
4. Repeat steps 1-3 for each receiver lane.

Observable Results:

a. The differential to common mode return loss should exceed the limits described by (92-21).

Possible Problems: None.
Test 137.3.4 – Transmitter Effective Return Loss

Purpose: To verify that the transmit signal to noise ratio of the DUT is within the conformance limits.

References:
[2] IEEE Std. 802.3cd-2018, 137.9.3.4 – Transmitter effective return loss

Resource Requirements: See Appendix I.

Last Modification: April 1, 2019

Discussion:
Reference [1] specifies the transmitter characteristics for 200GAUI-4 and 400GAUI-8 devices. This specification includes conformance requirements for effective return loss (ERL).

In this test, the electromagnetic wave reflection from a device output is compared against the ratio of its transmit output characteristics. The limit for the output ERL is found with Equation 137-6 and is compared to the ERL value found in the procedure defined in [3]:

\[ERL \geq 40 \log_{10} \left(\frac{v_f}{\max (p(k))} \right) \]

Eq. 137-6

Test Setup: See Appendix I.

Test Procedure:
1. Calibrate the VNA to remove the effects of the coaxial cables.
2. Connect the DUT’s transmitter to the VNA.
3. Measure ERL of the DUT.
4. Repeat steps 1-3 for each transmit lane.

Observable Results:
 a. The ERL shall be greater than equation 137-6.

Possible Problems: None.
Test 137.3.5 – Receiver Effective Return Loss

Purpose: To verify that the transmit signal to noise ratio of the DUT is within the conformance limits.

References:
[2] IEEE Std. 802.3-2018, 137.9.3.4 – Transmitter effective return loss

Resource Requirements: See Appendix I.

Last Modification: April 1, 2019

Discussion:
Reference [1] specifies the receiver characteristics for 200GAUI-4 and 400GAUI-8 devices. This specification includes conformance requirements for effective return loss (ERL).

In this test, the electromagnetic wave reflection from a device input is measured. The limit for the input ERL is defined in [3]:

Test Setup: See Appendix I.

Test Procedure:
5. Calibrate the VNA to remove the effects of the coaxial cables.
6. Connect the DUT’s receiver to the VNA.
7. Measure ERL of the DUT.
8. Repeat steps 1-3 for each transmit lane.

Observable Results:
b. The ERL shall be greater than equation 10dB.

Possible Problems: None.
GROUP 4: RECEIVER ELECTRICAL SIGNALING REQUIREMENTS

Overview:
The tests defined in this section verify the receiver’s electrical signaling characteristics of the Physical Medium Dependent (PMD) layer defined in Clause 137 of the IEEE Std. 802.3-2018.
Test 137.4.1 – Receiver Input Amplitude Tolerance

Purpose: To verify that the bit error ratio (BER) of the DUT’s receiver is within the conformance limits while communicating over a lossy channel with coupled interference.

References:
[1] IEEE Std. 802.3-2018, Subclause 137.9.3 - Receiver Characteristics
[2] IEEE Std. 802.3-2018, Table 137 – 14 – Summary of receiver specifications at TP3
[3] IEEE Std. 802.3-2018, Subclause 137.9.4.1- Receiver input amplitude tolerance

Resource Requirements: See Appendix I.

Last Modification: April 16, 2019

Discussion:
Reference [1] specifies the receiver tolerance requirements for 50GBASE-KR, 100GBASE-KR2 or 200GBASE-KR4 devices. In this test, BER is measured while the DUT is subjected to an input victim signal of 1200mV as specified in [3] through a compliant cable assembly at preset 1.

Test Setup: See Appendix I.

Test Procedure:
1. Configure the pattern generator output to transmit a PRBS13Q waveform at an amplitude of 1200 mV.
2. Connect the lane under test’s transmitter to an error detector.
3. Enable an externally facing loopback on the DUT.
4. Transmit at least 7.2×10^4 bits from the victim pattern generator and calculate the BER from the number of errors on the error detector.
5. Repeat steps 1-4 with signaling speed of 26.5625 Gbd - 100 ppm and 26.5625 Gbd + 100 ppm.
6. Repeat steps 1-5 for each receive lane.

Observable Results:
- The receiver shall operate with a bit error ratio of 2.4×10^{-4} or better.

Possible Problems: None.
The University of New Hampshire
InterOperability Laboratory

Test 137.4.2 – Receiver Interference Tolerance

Purpose: To verify that the bit error ratio (BER) of the DUT’s receiver is within the conformance limits while communicating over a lossy channel with coupled interference.

References:
- [1] IEEE Std. 802.3-2018, Subclause 137.9.3 - Receiver Characteristics
- [2] IEEE Std. 802.3-2018, Table 137 – 14 – Summary of receiver specifications at TP3
- [3] IEEE Std. 802.3-2018, Subclause 137.9.3.2- Receiver interference tolerance
- [4] IEEE Std. 802.3-2018, Table 137 – 15 - Receiver interference tolerance parameters
- [6] IEEE Std. 802.3-2018, Table 94 – 17 COM parameter values

Resource Requirements: See Appendix I.

Last Modification: April 16, 2019

Discussion:
Reference [1] specifies the receiver tolerance characteristics for 50GBASE-KR, 100GBASE-KR2 or 200GBASE-KR4 devices. A major problem in the communication of multi-channel transceivers is interference. The interfering signal can come from a variety of sources including: a) Crosstalk from other data channels running the same kind of signals as the channel of interest. This type of interference is usually subdivided into: 1) Far-end crosstalk (FEXT) coming from data traveling in the same general direction as the channel of interest. 2) Near-end crosstalk (NEXT) originating from a channel with a transmitter near the receiver of the channel of interest. b) Self interference caused by reflections due to impedance discontinuities, stubs, etc. This is a form of intersymbol interference (ISI) that is beyond what a reasonable equalizer can compensate. c) Alien crosstalk which is defined to be interference from unrelated sources such as clocks, other kinds of data, power supply noise, etc. For the channel to work, the receiver must be able to extract correct data from the lossy channel in the presence of interference. The ability of the receiver to extract data in the presence of interference is an important characteristic of the receiver and needs to be measured. This ability is called interference tolerance.

In this test, BER is measured while the DUT is subjected to an input victim signal with far-end crosstalk disturber interference as specified in [3]. Reference [4] specifies four sets of test values which describe the setup parameters for the test. The test channel will be calibrated using COM as described in [5].

Test Setup: See Appendix I.

Test Procedure:
1. Configure the victim, far end and near end pattern generator output to transmit a jittered PRBS13Q waveform.
2. Connect the lane under test’s transmitter to an error detector.
3. Enable an externally facing loopback on the DUT.
4. Transmit at least 7.2x10^4 bits from the victim pattern generator and calculate the BER from the number of errors on the error detector.
5. Repeat steps 1-4 for all test values in [4].
6. Repeat steps 1-4 with signaling speed of 26.5625 Gbd - 100 ppm and 26.5625 Gbd + 100 ppm.
7. Repeat steps 1-8 for each receive lane.

Observable Results:
- a. The receiver shall operate with a bit error ratio of 2.4x10^-4 or better.

Possible Problems: None.
Test 137.4.3 – Receiver jitter Tolerance

Purpose: To verify that the RS-FEC symbol error ratio of the DUT’s receiver is within the conformance limits while communicating over a lossy channel.

References:
[1] IEEE Std. 802.3-2018, Subclause 137.9.3 - Receiver Characteristics
[2] IEEE Std. 802.3-2018, Subclause 137.9.3.3.1 - Receiver jitter tolerance
[3] IEEE Std. 802.3-2018, Table 120D – 7 Receiver jitter tolerance parameters
[5] IEEE Std. 802.3-2018, Table 94 – 17 COM parameter values

Resource Requirements: See Appendix I.

Last Modification: April 16, 2019

Discussion:
Reference [2] specifies the receiver tolerance characteristics for 50GBASE-KR, 100GBASE-KR2 or 200GBASE-KR4 devices. A major problem in the communication of multi-channel transceivers is jitter. The interfering signal can come from a variety of sources including: a) Crosstalk from other data channels running the same kind of signals as the channel of interest. This type of interference is usually subdivided into: 1) Far-end crosstalk (FEXT) coming from data traveling in the same general direction as the channel of interest. 2) Near-end crosstalk (NEXT) originating from a channel with a transmitter near the receiver of the channel of interest. b) Self interference caused by reflections due to impedance discontinuities, stubs, etc. This is a form of intersymbol interference (ISI) that is beyond what a reasonable equalizer can compensate. c) Alien crosstalk which is defined to be interference from unrelated sources such as clocks, other kinds of data, power supply noise, etc. For the channel to work, the receiver must be able to extract correct data from the lossy channel in the presences of interference. The ability of the receiver to extract data in the presence of interference is an important characteristic of the receiver and needs to be measured. This ability is called interference tolerance.

In this test, the BER is measured while the DUT is subjected to a lossy channel as specified in [3]. Reference [2] specifies test value four will be used to describe the setup parameters for the test in reference [4].

Test Setup: See Appendix I.

Test Procedure:
1. Configure the DUT to have an optimized equalization register settings.
2. Configure the test transmitter to source a scrambled idle pattern.
3. Configure the test channel to meet the requirements described in [2].
4. Transmit at least 7.2x10^4 bits from the victim pattern generator and calculate the BER from the number of errors on the error detector.
5. Repeat steps 1-4 for all test values in [3].
6. Repeat steps 1-6 with signaling speed of 26.5625 Gbd - 100 ppm and 26.5625 Gbd + 100 ppm.
7. Repeat steps 1-6 for each receive lane.

Observable Results:
 a. The receiver shall operate with a bit error ratio of 2.4x10^{-4} or better.

Possible Problems: None.
APPENDICES

Overview:
Test suite appendices are intended to provide additional low-level technical detail pertinent to specific tests contained in this test plan. These appendices often cover topics that are outside of the scope of the standard and are specific to the methodologies used for performing the measurements in this test plan. Appendix topics may also include discussion regarding a specific interpretation of the standard (for the purposes of this test plan), for cases where a particular specification may appear unclear or otherwise open to multiple interpretations.

Scope:
Test plan appendices are considered informative supplements and pertain solely to the test definitions and procedures contained in this test plan.
Appendix I – Test Fixtures and Setups

Purpose: To specify the test equipment and setup used to test all electrical characteristic as well as waveform characteristics in this test plan.

Last Modification: January 8, 2020

Equipment List:
1. Digital Storage Oscilloscope, 35 GHz bandwidth (minimum)
2. Vector Network Analyzer, capable of measuring up to 19 GHz (minimum)
3. Bit Error Rate Tester (BERT)
4. 50 Ω matched coax cables
5. Host compliance board (HCB)
6. Channel for Receiver Testing
7. Noise Source

137.I – 1: Setup used for Group 1: Transmitter Electrical testing

137.I – 2: Setup used for Group 3: Impedance Requirements testing
137.1 – 3: Setup used for Group 4: Receiver Electrical Requirements testing