40 AND 100 GIGABIT ETHERNET CONSORTIUM
40GBASE-R and 100GBASE-R PMA
Clause 83B Host Compliance Test Suite
Version 1.0

Technical Document

Last Updated: April 8, 2014

40 and 100 Gigabit Ethernet Consortium
121 Technology Drive, Suite 2
Durham, NH 03824
University of New Hampshire
Phone: (603) 862-0090
InterOperability Laboratory
Fax: (603) 862-4181
https://www.iol.unh.edu/services/testing/40and100gec/
TABLE OF CONTENTS

- **TABLE OF CONTENTS** ... 2
- **MODIFICATION RECORD** .. 3
- **ACKNOWLEDGMENTS** ... 4
- **INTRODUCTION** .. 5
- **GROUP 1: TX ELECTRICAL SIGNALING REQUIREMENTS** .. 7
 - **TEST 83B.1.1 – SIGNALING SPEED** ... 8
 - **TEST 83B.1.2 – MAXIMUM OUTPUT AC COMMON-MODE VOLTAGE RMS** 9
 - **TEST 83B.1.3 – TRANSITION TIME** .. 10
 - **TEST 83B.1.4 – TRANSMIT JITTER** ... 11
 - **TEST 83B.1.5 – TRANSMITTER EYE DIAGRAM** ... 12
- **GROUP 2: RX ELECTRICAL SIGNALING REQUIREMENTS** .. 13
 - **TEST 83B.2.1 – RECEIVER TOLERANCE** ... 14
- **GROUP 3: IMPEDANCE REQUIREMENTS** ... 15
 - **TEST 83B.3.1 – DIFFERENTIAL INPUT AND OUTPUT RETURN LOSS** 16
- **APPENDICES** ... 17
 - **APPENDIX I - TEST FIXTURES AND SETUPS** ... 18
April 8, 2014 Version 1.0
Michael Klempa: Initial draft.
The University of New Hampshire
InterOperability Laboratory

ACKNOWLEDGMENTS

The University of New Hampshire would like to acknowledge the efforts of the following individuals in the development of this test suite.

Michael Klempa UNH InterOperability Laboratory
Jeff Lapak UNH InterOperability Laboratory
Curtis Donahue UNH InterOperability Laboratory
INTRODUCTION

The University of New Hampshire’s InterOperability Laboratory (IOL) is an institution designed to improve the interoperability of standards based products by providing an environment where a product can be tested against other implementations of a standard. This particular suite of tests has been developed to help implementers evaluate the functionality of the Physical Medium Attachment (PMA) sublayer of their 40GBASE-R and 100GBASE-R products.

These tests are designed to determine if a product conforms to specifications defined in Clause 83B of the IEEE 802.3 2012 Standard. Successful completion of all tests contained in this suite does not guarantee that the tested device will operate with other devices. However, combined with satisfactory operation in the IOL’s interoperability test bed, these tests provide a reasonable level of confidence that the Device Under Test (DUT) will function properly in many 40GBASE-R and 100GBASE-R environments.

The tests contained in this document are organized in such a manner as to simplify the identification of information related to a test, and to facilitate in the actual testing process. Tests are organized into groups, primarily in order to reduce setup time in the lab environment, however the different groups typically also tend to focus on specific aspects of device functionality. A three-part numbering system is used to organize the tests, where the first number indicates the clause of the IEEE 802.3 standard on which the test suite is based. The second and third numbers indicate the test’s group number and test number within that group, respectively. This format allows for the addition of future tests to the appropriate groups without requiring the renumbering of the subsequent tests.

The test definitions themselves are intended to provide a high-level description of the motivation, resources, procedures, and methodologies pertinent to each test. Specifically, each test description consists of the following sections:

Purpose
The purpose is a brief statement outlining what the test attempts to achieve. The test is written at the functional level.

References
This section specifies source material external to the test suite, including specific subclauses pertinent to the test definition, or any other references that might be helpful in understanding the test methodology and/or test results. External sources are always referenced by number when mentioned in the test description. Any other references not specified by number are stated with respect to the test suite document itself.

Resource Requirements
The requirements section specifies the test hardware and/or software needed to perform the test. This is generally expressed in terms of minimum requirements, however in some cases specific equipment manufacturer/model information may be provided.
The University of New Hampshire
InterOperability Laboratory

Last Modification
This specifies the date of the last modification to this test.

Discussion
The discussion covers the assumptions made in the design or implementation of the test, as well as known limitations. Other items specific to the test are covered here.

Test Setup
The setup section describes the initial configuration of the test environment. Small changes in the configuration should not be included here, and are generally covered in the test procedure section, below.

Test Procedure
The procedure section of the test description contains the systematic instructions for carrying out the test. It provides a cookbook approach to testing, and may be interspersed with observable results.

Observable Results
This section lists the specific observables that can be examined by the tester in order to verify that the DUT is operating properly. When multiple values for an observable are possible, this section provides a short discussion on how to interpret them. The determination of a pass or fail outcome for a particular test is generally based on the successful (or unsuccessful) detection of a specific observable.

Possible Problems
This section contains a description of known issues with the test procedure, which may affect test results in certain situations. It may also refer the reader to test suite appendices and/or whitepapers that may provide more detail regarding these issues.
GROUP 1: TX ELECTRICAL SIGNALING REQUIREMENTS

Overview:
The tests defined in this section verify the transmitter electrical signaling characteristics of the Physical Medium Dependent (PMD) layer defined in Clause 83B of IEEE 802.3-2012.
Test 83B.1.1 – Signaling Speed

Purpose: To verify that the baud rate of the DUT is within the conformance limits.

References:

[1] IEEE Std. 802.3-2012, Table 83B-5 – Host Electrical Output
[2] IEEE Std. 802.3-2012, subclause 83A.1.2 – Rate of Operation

Resource Requirements: See Appendix I

Last Modification: July 1, 2013

Discussion:

Reference [1] specifies the transmitter characteristics for 40GBASE-R and 100GBASE-R devices. This specification includes conformance requirements for the signaling speed, which is $10.3125\text{ Gbaud} \pm 100\text{ ppm per lane}$. This translates to $10.3125\text{ Gbaud} \pm 1.03125\text{ Mbaud}$, with a nominal Unit Interval (UI) of 96.96 ps.

Reference [2] specifies the overall signaling speed for 40GBASE-R and 100GBASE-R devices. This specification includes the number of lanes in parallel from the transmitter to achieve the necessary speeds for XLAUI and CAUI.

In this test, the signaling speed is measured while the DUT is connected to the DSO. The signal being transmitted by the DUT may be any valid 40GBASE-R or 100GBASE-R signal.

Test Setup: See Appendix I

Test Procedure:

1. Configure the DUT to send a valid signal or test pattern.
2. Connect the DUT’s transmitter to the DSO.
3. Measure the average TX signaling speed.

Observable Results:

a. The signaling speed per lane shall be within $10.3125\text{ Gbaud} \pm 1.03125\text{ Mbaud}$

Possible Problems: None.
Test 83B.1.2 – Maximum output AC common-mode voltage RMS

Purpose: To verify that the maximum output AC common-mode voltage is within the conformance limits.

References:

[1] IEEE Std. 802.3-2012, Table 83B - 5 – Host electrical output
[2] IEEE Std. 802.3-2012, subclause 86A.5.3.1 – AC common-mode voltage
[3] IEEE Std. 802.3-2012, Table 86-12 – Test patterns and related subclauses
[4] IEEE Std. 802.3-2012, Table 86-11 – Test-pattern definition

Resource Requirements: See Appendix I

Last Modification: April 8, 2014

Discussion:
Reference [1] specifies the transmitter characteristics for 40GBASE-R and 100GBASE-R devices. This specification includes conformance requirements for maximum output AC common-mode voltage defined in [2].

In this test, the differential amplitude is measured while the DUT is connected to the DSO. The common mode voltage can be found by averaging the signal+ and signal- at any time. RMS AC common-mode voltage may be calculated by applying the histogram function over 1 UI to the common mode signal. PRBS31 will be used as stated in [3].

Test Setup: See Appendix I

Test Procedure:

1. Configure the DUT to send test pattern 3 (PRBS31).
2. Connect the DUT’s transmitter to the DSO.
3. Measure the amplitude and convert to common mode.
4. Apply a histogram function over 1 UI of the signal.

Observable Results:

a. The maximum output AC common-mode voltage shall be less than 20 mV, RMS.

Possible Problems: None
Test 83B.1.3 – Transition Time

Purpose: To verify that the rising and falling edge transition times are within the conformance limits.

References:
[1] IEEE Std. 802.3-2012, Table 83B - 5 – Host electrical output
[2] IEEE Std. 802.3-2012, subclause 83A.3.3.2 – Rise/fall time
[3] IEEE Std. 802.3-2012, subclause 83.5.10 – PMA test patterns (optional)

Resource Requirements: See Appendix I

Last Modification: April 8, 2014

Discussion: Reference [1] specifies the transmitter characteristics for 40GBASE-R and 100GBASE-R devices. This specification includes conformance requirements for the rising and falling edge transition times defined in [2].

In this test, the transition time is measured while the DUT is connected to the DSO. The transition times are to be measured at the 20% and 80% levels as defined in [2]. Reference [2] also requires that the measurement be done using the square wave test pattern defined in [3], with no equalization and a run of at least eight consecutive ones.

Test Setup: See Appendix I

Test Procedure:
1. Configure the DUT so that it is sourcing the square wave test pattern with no equalization.
2. Connect the DUT’s transmitter to the DSO.
3. Capture a run of at least eight consecutive ones.
4. Measure the rising and falling edge transition times.

Observable Results:
a. The rising and falling edge transition times shall be greater than or equal to 24 ps.

Possible Problems: None
Test 83B.1.4 – Transmit Jitter

Purpose: To verify that the peak-to-peak transmit jitter of the DUT is within the conformance limits

References:
[1] IEEE Std. 802.3-2012, Table 83B - 5 – Host electrical output
[2] IEEE Std. 802.3-2012, subclause 83A.3.3.5 – Transmitter eye mask and transmitter jitter definition
[3] IEEE Std. 802.3-2012, subclause 83A.5.1 – Transmit jitter
[4] IEEE Std. 802.3-2012, subclause 83.5.10 – PMA test patterns (optional)
[5] IEEE Std. 802.3-2012, subclause 82.2.10 – Test-pattern generators

Resource Requirements: See Appendix I

Last Modification: April 8, 2014

Discussion:
Reference [1] specifies the transmitter characteristics for 40GBASE-R and 100GBASE-R devices. This specification includes conformance requirements for the peak-to-peak transmit jitter defined in [2] and [3]. In this test, the peak-to-peak transmit jitter is measured while the DUT is connected to the DSO. Reference [3] also requires that the DUT be transmitting test pattern PRBS31 as defined in [4] or scrambled idle as defined in [5] during this test.

Test Setup: See Appendix I

Test Procedure:
1. Configure the DUT so that it is sourcing test pattern 2 (PRBS31) or scrambled idle.
2. Configure de-emphasis on the DUT to the "off" state as defined by [3].
3. Connect the DUT’s transmitter to DSO.
4. Measure the random jitter, deterministic jitter, duty cycle distortion, and total transmit jitter.

Observable Results:
 a. The Deterministic Jitter value shall not exceed 0.42 UI.
 b. The Total Jitter value shall not exceed 0.62 UI.

Possible Problems: None
Test 83B.1.5 – Transmitter Eye Diagram

Purpose: To verify that the transmitter meets the eye mask conformance limits

References:
[1] IEEE Std. 802.3-2012, Table 83B - 5 – Host electrical output
[2] IEEE Std. 802.3-2012, subclause 83A.3.3.5 – Transmitter eye mask and transmitter jitter definition
[3] IEEE Std. 802.3-2012, subclause 83A.5.1 – Transmit jitter
[4] IEEE Std. 802.3-2012, subclause 83.5.10 – PMA test patterns (optional)
[5] IEEE Std. 802.3-2012, subclause 82.2.10 – Test-pattern generators

Resource Requirements: See Appendix I

Last Modification: April 8, 2014

Discussion:
Reference [1] specifies the transmitter characteristics for 40GBASE-R and 100GBASE-R devices. This specification includes conformance requirements for the eye diagram defined in [2] and [3].

In this test, the eye diagram is measured while the DUT is connected to DSO. Reference [3] also requires that the DUT be transmitting test pattern PRBS31 as defined in [4] or scrambled idle as defined in [5] during this test.

Test Setup: See Appendix I

Test Procedure:
1. Configure the DUT so that it is sourcing test pattern 2 (PRBS31) or scrambled idle.
2. Configure de-emphasis on the DUT to the "off" state as defined by [3].
3. Make sure all the DUT’s transmit lanes are active and all receive lanes are receiving maximum amplitude and fastest rise time as defined in [1].
4. Connect the DUT’s transmitter to DSO.
5. Capture the eye diagram.

Observable Results:
a. The eye diagram should stay within the mask shown above.

Possible Problems: None

X1 = 0.31 UI X2 = 0.50 UI Y1 = 42.5 mV Y2 = 425 mV
GROUP 2: RX ELECTRICAL SIGNALING REQUIREMENTS

Overview:

The tests defined in this section verify the receiver electrical signaling characteristics of the Physical Medium Dependent (PMD) layer defined in Clause 83B of IEEE 802.3-2012.
Test 83B.2.1 – Receiver Tolerance

Purpose: To verify that the bit error ratio (BER) of the DUT’s receiver is within the conformance limits

References:

[1] IEEE Std. 802.3-2012, Table 83B - 4 – Specifications at module compliance points
[2] IEEE Std. 802.3-2012, Table 86A – 6 – Test patterns
[3] IEEE Std. 802.3-2012, subclause 83B.2.3 – Host Input Tolerance Signal

Resource Requirements: See Appendix I

Last Modification: April 8, 2014

Discussion:
Reference [1] specifies the compliance characteristics for 40GBASE-R and 100GBASE-R modules. This specification includes conformance requirements for the receiver tolerance defined in [3]. A major problem in communicating of multi-channel transceivers is interference. The interfering signal can come from a variety of sources including: a) Crosstalk from other data channels running the same kind of signals as the channel of interest. This type of interference is usually subdivided into: 1) Far-end crosstalk (FEXT) coming from data traveling in the same general direction as the channel of interest. 2) Near-end crosstalk (NEXT) originating from a channel with a transmitter near the receiver of the channel of interest. b) Self interference caused by reflections due to impedance discontinuities, stubs, etc. This is a form of intersymbol interference (ISI) that is beyond what a reasonable equalizer can compensate. c) Alien crosstalk which is defined to be interference from unrelated sources such as clocks, other kinds of data, power supply noise, etc. For the channel to work, the receiver must be able to extract correct data from the lossy channel in the presence of interference. The ability of the receiver to extract data in the presence of interference is an important characteristic of the receiver and needs to be measured. This ability is called interference tolerance.

In this test, BER is measured while the DUT is subjected to a compliant input signal with interference as specified in [3]. The XLAUI/CAUI jitter tolerance test setup in Figure 83A–15 or its equivalent shall meet the receiver eye mask defined in Table 83A–2. Random jitter is added to the test signal using an interference generator which is a broadband noise source capable of producing white Gaussian noise with adjustable amplitude. The power spectral density shall be flat to ±3 dB from 50 MHz to 6 GHz with a crest factor of no less than 5. The amplitude and output jitter of the filter stress plus limiter and random jitter injection shall meet the receiver eye mask defined in Table 83A–2. All XLAUI/CAUI lanes shall be active during jitter tolerance testing. The PRBS31 pattern defined in 83.5.10 or scrambled idle defined in 82.2.10 is used for evaluating XLAUI/CAUI jitter tolerance.

Test Setup: See Appendix I

Test Procedure:

1. Configure the DUT so that it is sourcing test pattern 3 (PRBS31).
2. Connect the DUT’s receiver to a jitter source that is capable of operating as defined in [3].
3. Calculate the BER based on the received bits.

Observable Results:

a. The receiver shall operate with a BER of better then 10^{-12}

Possible Problems: None
GROUP 3: IMPEDANCE REQUIREMENTS

Overview:
The tests defined in this section verify the impedance characteristics of the Physical Medium Attachment (PMA) layer defined in Clause 83B of IEEE 802.3.
Test 83B.3.1 – Differential Input and Output Return Loss

Purpose: To verify that the differential input and output return loss of the DUT is within the conformance limits.

References:

1. IEEE Std. 802.3-2012, Table 83B – 4 - Specifications at host compliance points
2. IEEE Std. 802.3-2012, subclause 83.5.10 – PMA test patterns (optional)

Resource Requirements: See Appendix I

Last Modification: April 8, 2014

Discussion:
Reference [1] specifies the transmitter characteristics for 40GBASE-R and 100GBASE-R devices. This specification includes conformance requirements for the differential output return loss, which are specified in [2].

For the purpose of this test, the differential output return loss is defined as the magnitude of the reflection coefficient expressed in decibels. The reflection coefficient is the ratio of the voltage in the reflected wave to the voltage in the incident wave. Note that this is also known as the S22 parameter (s-parameter). For frequencies from 10 MHz to 11.1 GHz, the differential return loss of the driver shall exceed Equation 83B-7. The reference impedance for differential return loss measurements is 100 Ω.

\[
\text{Return_loss}(f) \geq \begin{cases}
12 - 2\sqrt{f} & 0.01 \leq f \leq 2.19 \\
5.56 - 8.7\log_{10}\left(\frac{f}{5.5}\right) & 2.19 \leq f \leq 11.1
\end{cases} \quad (dB) \quad (EQ.83B-7)
\]

Test Setup: See Appendix I

Test Procedure:

1. Calibrate the VNA to remove the effects of the coaxial cables.
2. Configure the DUT so that it is sourcing normal IDLE signaling [2].
3. Connect the DUT’s transmitter to the VNA.
4. Measure the reflection coefficient at the DUT transmitter from 10 MHz to 11.1 GHz.
5. Compute the return loss from the reflection coefficient values.

Observable Results:

a. The differential output return loss shall exceed the limits described by Equation 83B-7.
b. The differential input return loss shall exceed the limits described by Equation 83B-7.

Possible Problems: None
Overview:
Test suite appendices are intended to provide additional low-level technical detail pertinent to specific tests contained in this test suite. These appendices often cover topics that are outside of the scope of the standard, and are specific to the methodologies used for performing the measurements in this test suite. Appendix topics may also include discussion regarding a specific interpretation of the standard (for the purposes of this test suite), for cases where a particular specification may appear unclear or otherwise open to multiple interpretations.

Scope:
Test suite appendices are considered informative supplements, and pertain solely to the test definitions and procedures contained in this test suite.
Appendix I - Test Fixtures and Setups

Purpose: To specify the measurement hardware, test fixtures, and setups used in this test suite

References:
[1] IEEE Std. 802.3-2012, Annex 83B

Last Modification: September 11, 2013

Setup A

Equipment List:
1. Digital Storage Oscilloscope, 20 GHz bandwidth (minimum)
2. Post Processing Capabilities
3. 50Ω matched coax cables
4. Host compliance board

Setup B

Equipment List:
1. BERT Scope
2. Post Processing Capabilities
3. 50Ω matched coax cables
4. Host compliance board
Setup C

Equipment List:
1. Vector Network Analyzer
2. Post Processing Capabilities
3. 50Ω matched coax cables
4. Host compliance board