

Fast Ethernet Consortium 100BASE-TX Repeater Test Suite v1.1

InterOperability Lab - 220 Morse Hall - Durham, NH - 03824 - +1-603-862-1834

Consortium Manager:	Gerard Nadeau	grn@iol.unh.edu
Operations Manager:	Peter J. Scruton	pjs@iol.unh.edu
Suite Technician:	Peter J. Scruton	pjs@iol.unh.edu

Test Group 1: Data Handling Functions	
TEST #1.27 ¾ DATA FRAME FORWARDING	3
TEST #2.27 3/4 RECEIVED CODE VIOLATION HANDLING	4
TEST #3.27 ¾ SPEED HANDLING	5
Test Group 2: Propagation Delays	
TEST #4.27 3/4 START OF PACKET PROPAGATION DELAY	
TEST #5.27 3/4 START OF PACKET PROPAGATION DELAY VARIABILITY	
TEST #6.27 3/4 COLLISION-JAM PROPAGATION DELAY	10
TEST #7.27 3/4 CESSATION OF JAM PROPAGATION DELAY	12
Test Group 3: Receive Jabber Function	
TEST #8.27 ³ / ₄ JABBER_TIMER	15
TEST #9.27 3/4 RECEIVE JABBER FUNCTION	16
Test Group 4: Partition Function	
TEST #10.27 3/4 CCLIMIT	19
TEST #11.27 3/4 EFFECTS OF PARTITION	21
TEST #12.27 ³ / ₄ NO_COLLISION_TIMER	23
TEST #13.27 3/4 PARTITION FUNCTION RESET	25
TEST #14.27 3/4 CONSECUTIVE COLLISION COUNT	27
Test Group 5: Carrier Integrity Monitor	
TEST #15.27 3/4 FALSE CARRIER DETECT	
TEST #16.27 3/4 FCCLIMIT	32
TEST #17.27 ³ / ₄ FALSE_CARRIER_TIMER	
TEST #18.27 3/4 IPG_TIMER	34
TEST #19.27 ¾ VALID_CARRIER_TIMER	
TEST #20.27 3/4 IDLE_TIMER	
TEST #21.27 3/4 FALSE CARRIER COUNT	40

Test Group 1

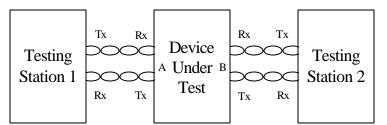
Data Handling Functions

Test #1.27 ³⁄₄ Data Frame Forwarding

Test Label: dff.repeater.100base-tx

Purpose: To verify that the repeater set properly forwards data frames

References: P802.3u/D5 March 23, 1995: subclause 27.3.1.2.1, figures 27-2 and 27-4


Resource Requirements:

• Two testing stations capable of encoding (decoding) data nibbles to (from) five-bit code groups as specified in clause 24 and sending (receiving) these code groups using the signaling method described in clause 25.

Last Modification: July 12, 1995

Test Setup:

Using category 5 UTP cable, connect testing station 1 to port A and testing station 2 to port B of the repeater under test.

Procedure:

1. Command testing station 1 to send a properly encapsulated, 64-byte, valid MAC frame. Testing station 1 will monitor transmit activity from port A. Testing station 2 will monitor transmit activity from port B.

Observable results:

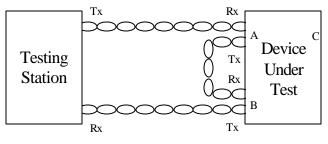
- a. Verify that the MAC frame sent by testing station 1 is reproduced on the transmitter of port B.
- b. Verify that the transmitter of port A sources only /I/ code groups.

Test #2.27 3/4 Received Code Violation Handling

Test Label: bad_code.repeater.100base-tx

Purpose: To verify that the repeater set properly forwards invalid code groups.

References: P802.3u/D5 March 23, 1995: subclause 27.3.1.2.2, figure 27-6, table 24-1.


Resource Requirements:

• A testing station capable of encoding (decoding) data nibbles to (from) five-bit code groups as specified in clause 24 and sending (receiving) these code groups using the signaling method described in clause 25. The testing station must capable of transmitting invalid code groups.

Last Modification: July 12, 1995

Test Setup:

Connect the transmitter of the testing station to the receiver of port A and the transmitter of port B to the receiver of the testing station. Connect the transmitter of port A to the receiver of port B to ensure that link_status(B)=OK. All connections are made with category 5 UTP wire.

Procedure:

1. Command the testing station to send a valid preamble (defined as the physical layer stream /J/K/A/A/A/A/A/A/A/A/A/A/A/A/A/B/) followed by 64 code group pairs. This stream will contain at least one invalid code group. The invalid code group will not be the last code group sent. The testing station will observe transmit activity from port B.

Observable results:

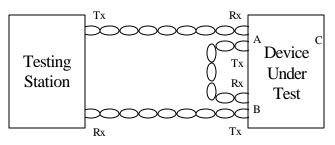
- a. Verify that:
 - 1. The repeater forwards the invalid code group and all subsequent code groups, unaltered, to all other attached ports, or...
 - 2. The repeater substitutes the /H/ code group for the violation code group and all subsequent code groups.

Test #3.27 ³⁄₄ Speed Handling

Test Label: speed.repeater.100base-tx

Purpose: To verify that the repeater blocks the flow of non-100Mbps signals.

References: P802.3u/D5 March 23, 1995: subclause 27.3.1.5.2.


Resource Requirements:

• A testing station capable of encoding (decoding) data nibbles to (from) five-bit code groups as specified in clause 24 and sending (receiving) these code groups using the signaling method described in clause 25. The testing station must be capable of generating arbitrarily long bit streams. The testing station must be capable of generating 10Mbps data streams using the signaling method described in section 14 of IEEE Standard 802.3.

Last Modification: July 20, 1995

Test Setup:

Connect the transmitter of the testing station to the receiver of port A and the transmitter of port B to the receiver of the testing station. Connect the transmitter of port A to the receiver of port B to ensure that link_status(B)=OK. All connections are made with category 5 UTP wire.

Procedure:

1. Command the testing station to apply a 10Mbps Manchester encoded, 64-byte, valid MAC frame to port A of the repeater under test. The testing station will monitor transmit activity on port B.

Observable results:

a. Verify that the repeater under test blocks the flow of the 10Mbps signal.

Existing Problems: This test does not apply to those repeaters that incorporate both 10Mbps and 100Mbps repeater functionality.

Test Group 2

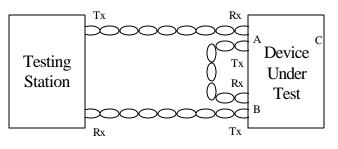
Propagation Delay Measurements

Test #4.27 ³⁄₄ Start of Packet Propagation Delay

Test Label: sop.repeater.100base-tx

Purpose: To measure the start of packet propagation delay for the repeater set.

References: P802.3u/D5 March 23, 1995: subclause 24.6, subclause 27.3.1.3.3, table 27-2, annex 27A


Resource Requirements:

• A testing station capable of encoding (decoding) data nibbles to (from) five-bit code groups as specified in clause 24 and sending (receiving) these code groups using the signaling method described in clause 25. The testing station must be able to time- stamp transmitted (received) streams.

Last Modification: July 12, 1995

Test Setup:

Connect the transmitter of the testing station to the receiver of port x and the transmitter of port y to the receiver of the testing station. Connect the transmitter of port x to the receiver of port y to ensure that link_status(y)=OK. All connections are made with category 5 UTP wire.

Procedure:

- 1. Connect the testing station and the device under test so that x=A and y=B. Command the testing station to send a properly encapsulated, 64-byte, valid MAC frame. Let $t = t_0$ represent the 50% point of the mid-cell transition corresponding to the leading bit of the /J/ code group arriving at port x. Let $t = t_1$ represent the 50% point of the mid-cell transition corresponding to the leading bit of the /J/ code group appearing on port y. The time difference $t_1 t_0$ is SOP(AB).
- 2. Connect the testing station and the device under test so that x=B and y=C. Repeat step 1. This time difference is SOP(BC).
- 3. Connect the testing station and the device under test so that x=A and y=C. Repeat step 1. This time difference is SOP(AC).

Observable results:

a. Verify that SOP(xy), in conjunction with the results from test #6.27, meets the constraint shown below.

Repeater Class	Ι	II (all ports FX/TX)
SOP+SOJ Constraint	$SOP + SOJ \le 140BT$	$SOP \le 46BT$
		$SOJ \le 46 BT$

b. Verify that SOP(AC) < SOP(AB) + SOP(BC).

Existing Problems: The value of SOP(xy) measured by the testing station is inaccurate due to cable propagation delays and the testing station's internal propagation delay. If t_{PDS} is the total propagation delay through the testing station and t_{PDC} is the total cable propagation delay, then:

$$SOP(xy) = t_1 - (t_0 + t_{PDS} + t_{PDC})$$

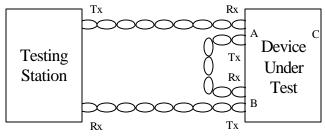
Accuracy can be improved if the t_{PDS} is known (and consistent) and all cable lengths are kept short (t_{PDC} is approximately zero).

Test #5.27 3/4 Start of Packet Propagation Delay Variability

Test Label: sop_var.repeater.100base-tx

Purpose: To measure the start of packet propagation delay variability for the repeater set.

References: P802.3u/D5 March 23, 1995: subclause 27.3.1.3.4, table 27-1.


Resource Requirements:

• A testing station capable of encoding (decoding) data nibbles to (from) five-bit code groups as specified in clause 24 and sending (receiving) these code groups using the signaling method described in clause 25. The testing station must be able to time- stamp transmitted (received) streams.

Last Modification: July 12, 1995

Test Setup:

Connect the transmitter of the testing station to the receiver of port A and the transmitter of port B to the receiver of the testing station. Connect the transmitter of port A to the receiver of port B to ensure that link_status(B)=OK. All connections are made with category 5 UTP wire.

Procedure:

1. Command the testing station to send consecutive, properly encapsulated valid MAC frames spaced by 96BT for class I repeaters and 89BT for class II repeaters. The MAC frame length should alternate between 1,518 and 64 bytes, the first packet sent being 1,518 bytes long. The difference in SOP(AB) for successive packets is the start of packet propagation delay variability.

Observable results:

a. Verify that SOP(AB) does not vary by more than 7BT for successive packets.

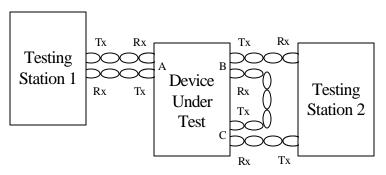
Existing Problems: The accuracy of the measured start of packet propagation delay variability is dependent on the accuracy of the measured SOP(AB).

Test #6.27 ³⁄₄ Collision-Jam Propagation Delay

Test Label: soj.repeater.100base-tx

Purpose: To measure the collision-jam propagation delay for the repeater set.

References: P802.3u/D5 March 23, 1995: subclause 27.3.1.4.3, table 27-2, figures 27-2 and 27-4.


Resource Requirements:

• Two testing stations capable of encoding (decoding) data nibbles to (from) five-bit code groups as specified in clause 24 and sending (receiving) these code groups using the signaling method described in clause 25.

Last Modification: July 12, 1995

Test Setup:

Connect testing station 1 to port A. Connect the transmitter of the testing station 2 to the receiver of port C and the transmitter of port B to the receiver of the testing station 2. Connect the transmitter of port C to the receiver of port B to ensure that link_status(B)=OK. All connections are made with category 5 UTP wire.

Procedure:

1. Command testing station 1 to send a properly encapsulated, 64-byte, valid MAC frame. The loopback connection between ports B and C will cause the repeater under test to set command(ALL)=collision. Testing station 2 will monitor transmit activity from port B. Let t = t_0 represent the 50% point of the mid-cell transition corresponding to the leading bit of the /J/ code group arriving at port B (appearing on port C). Let t = t_1 represent the 50% point of the first bit of Jam sourced by port B. The time difference $t_1 - t_0$ is SOJ(AB).

Observable results:

a. Verify that Jam message (JamX or any other well formed arbitrary data pattern) is sourced on all ports SOJ(AB) bit times after the appearance of the first bit of the /J/ code group on ports B and C.

b. Verify that SOJ(AB), in conjunction with the results from test #4.27, meets the constraint shown below.

Repeater Class	Ι	II (all ports FX/TX)
SOP+SOJ Constraint	$SOP + SOJ \le 140BT$	$SOP \le 46BT$
		$SOJ \le 46 BT$

Existing Problems: If SOP(AB) does not equal SOP(AC), the measured value of SOJ(AB) will be inaccurate. Also, all cable propagation delays are assumed to be zero. These inaccuracies can be minimized if any difference between SOP(AB) and SOP(AC) is known (and consistent) and all cable lengths are kept short.

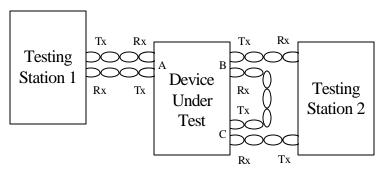
Note that, depending on the contents of the Jam message (and the bit sequence preceding Jam), SOJ(AB) may be difficult to determine.

Test #7.27 ³⁄₄ Cessation of Jam Propagation Delay

Test Label: eoj.repeater.100base-tx

Purpose: To measure the cessation of collision jam propagation delay for the repeater set.

References: P802.3u/D5 March 23, 1995: subclause 27.3.1.4.4, figures 27-2 and 27-4, annex 27A


Resource Requirements:

• Two testing stations capable of encoding (decoding) data nibbles to (from) five-bit code groups as specified in clause 24 and sending (receiving) these code groups using the signaling method described in clause 25.

Last Modification: November 20, 1997

Test Setup:

Connect testing station 1 to port A. Connect the transmitter of the testing station 2 to the receiver of port C and the transmitter of port B to the receiver of the testing station 2. Connect the transmitter of port C to the receiver of port B to ensure that link_status(B)=OK. All connections are made with category 5 UTP wire.

Procedure:

1. Command the testing station to send a properly encapsulated, 64-byte, valid MAC frame. The loopback connection between ports B and C will cause the repeater under test to set command(ALL)=collision. Let L_1 be the number of bit times from the first bit of the /J/ code group to the first bit of idle pattern arriving at port A. Let L_2 be the number of bit times from the first bit of the /J/ code group to last bit of Jam appearing on port B. $EOJ(AB) = SOP(AB) + L_2 - L_1$.

Observable results:

- a. Verify that the Jam message (JamX or any other well formed arbitrary data pattern) is sourced on all ports SOJ(AB) bit times after the appearance of the first bit of the /J/ code group on ports B and C.
- b. Verify that $SOP(AB) \ge EOJ(AB)$ and that $EOJ(AB) \ge SOJ(AB) 4BT$.

Existing Problems: The accuracy of the measured EOJ(AB) is dependent on the accuracy of the measured SOP(AB).

Test Group 3

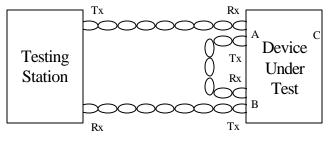
Receive Jabber Function

Test #8.27 ³⁄₄ jabber_timer

Test Label: jab_tmr.repeater.100base-tx

Purpose: To measure the value of jabber_timer for the repeater port.

References: P802.3u/D5 March 23, 1995: subclause 27.3.1.7, 27.3.2.1.4, figure 27-7.


Resource Requirements:

• A testing station capable of encoding (decoding) data nibbles to (from) five-bit code groups as specified in clause 24 and sending (receiving) these code groups using the signaling method described in clause 25. The testing station must be capable of generating arbitrarily long bit streams.

Last Modification: July 12, 1995

Test Setup:

Connect the transmitter of the testing station to the receiver of port A and the transmitter of port B to the receiver of the testing station. Connect the transmitter of port A to the receiver of port B to ensure that link_status(B)=OK. All connections are made with category 5 UTP wire.

Procedure:

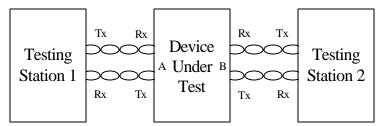
Observable results:

- a. Verify that the output of the DUT transitions from repeated data to idle pattern (the end of shell delimiter is optional) once jabber_timer expires.
- b. Verify that jabber_timer is in the range of 40,000BT to 75,000BT.

Test #9.27 ³⁄₄ Receive Jabber Function

Test Label: jabber.repeater.100base-tx

- **Purpose:** To verify the conditions for a jabber(X)=false to jabber(X)=true transition, to observe the effects of jabber(X)=true, and to verify the conditions for a jabber(X)=false to jabber(X)=true transition.
- **References:** P802.3u/D5 March 23, 1995: subclauses 27.3.1.7, 27.3.2.1.2, 27.3.2.1.4, figure 27-7.


Resource Requirements:

• Two testing stations capable of encoding (decoding) data nibbles to (from) five-bit code groups as specified in clause 24 and sending (receiving) these code groups using the signaling method described in clause 25. At least one testing station must be capable of generating arbitrarily long bit streams.

Last Modification: July 12, 1995

Test Setup:

Using category 5 UTP cable, connect testing station 1 to port A and testing station 2 to port C of the repeater under test.

Procedure:

- 2. Command testing station 1 to transition from continuous data generation to idle pattern generation. This will reset and hold jabber(A)=false. Command testing station 2 to send a properly encapsulated, 64-byte, valid MAC frame. Testing station 1 will monitor transmit activity from port A.

Observable results:

- a. Verify that packets are not forwarded to port A when link_status(A)=OK and jabber(A)=true.
- b. Verify that packets are forwarded to port A when link_status(A)=OK and jabber(A)=false.

Test Group 4

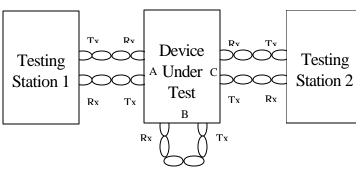
Partition Function

Test #10.27 3/4 CCLimit

Test Label: cclimit.repeater.100base-tx

Purpose: To measure the value of CCLimit for the repeater set.

References: P802.3u/D5 March 23, 1995: subclause 27.3.1.6, subclause 27.3.2.1.1, figure 27-8.


Resource Requirements:

• A testing station capable of encoding (decoding) data nibbles to (from) five-bit code groups as specified in clause 24 and sending (receiving) these code groups using the signaling method described in clause 25.

Last Modification: July 5, 1995

Test Setup:

Using category 5 UTP cable, connect the testing station to port A of the repeater under test. Insert a loopback plug into port B of the repeater under test.

Procedure:

- 1. Power-cycle reset the repeater under test.
- 3. The repeater shall enforce the collision by sourcing the Jam message (JamX or any other well formed arbitrary data pattern) on all ports. Verify that the testing station has detected the Jam message.
- 4. Repeat steps 1 and 2 until the testing station no longer detects the Jam message. This is an indication that the carrier activity from port A is not reaching the repeater unit or that the carrier activity is not being propagated to port B. The former is a result of the partition condition being detected on port A and latter is a result of the partition being detected on port B (a conformant repeater will partition both ports). The number of collisions required to reach this state is CCLimit.

Observable results:

- a. Verify that the partition condition is detected on port A and port B after a number of consecutive collisions equaling CCLimit.
- b. Verify that CCLimit is greater than 60.

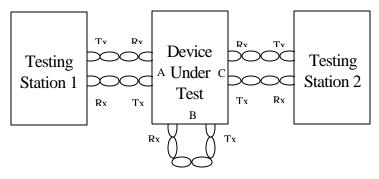
Existing Problems: The testing station will fail to detect the Jam message following the generation of a carrier event when port A, port B, or both port A and port B are partitioned. Since the testing station cannot determine which of three events actually happened, extra steps must be taken to ensure that partition condition was detected on both ports.

Test #11.27 3/4 Effects of Partition

Test Label: part_fx.repeater.100base-tx

Purpose: To verify that the repeater port under test disables its receive path upon detection of the partition condition.

References: P802.3u/D5 March 23, 1995: subclause 27.3.1.6, figure 27-8.


Resource Requirements:

• Two testing stations capable of encoding (decoding) data nibbles to (from) five-bit code groups as specified in clause 24 and sending (receiving) these code groups using the signaling method described in clause 25.

Last Modification: July 11, 1995

Test Setup:

Using category 5 UTP cable, connect testing station 1 to port A and testing station 2 to port C of the repeater under test. Insert a loopback plug into port B of the repeater under test.

Procedure:

- 1. Power-cycle reset the repeater under test.
- Command testing station 1 to send a valid preamble (defined as the physical layer stream /J/K/A/A/A/A/A/A/A/A/A/A/A/A/A/B/) followed by four bytes of data and the end of shell delimiter (/T/R/). The loopback connection on port B will guarantee that this transmission will suffer a collision.
- 3. Repeat step 1 until CCLimit collisions have been generated (refer to test #10.27). Both port A and port B of the repeater under test should be partitioned.
- 4. Command testing station 1 to send two properly encapsulated, 64-byte, valid MAC frames separated by the minimum inter-frame gap (96BT). Testing station 2 will monitor transmit activity from port C.
- 5. Command testing station 2 to send a valid preamble followed by four bytes of data and the end of shell delimiter. Testing station 1 will monitor transmit activity from port A.

Observable results:

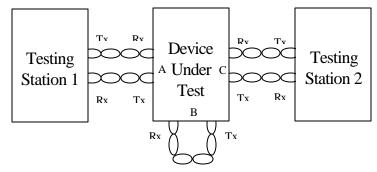
- a. Verify that the Partition condition is detected on port A and port B after a number of consecutive collisions equaling CCLimit.
- b. Verify that the packets generated by testing station 1 were not repeated to port C of the repeater under test.
- c. Verify that the fragment generated by testing station 2 was repeated to port A of the repeater under test.
- d. Verify that port A and port B do not reset the partition function as a result of the transmitted packets/fragments.

Test #12.27 3/4 no_collision_timer

Test Label: nc_tmr.repeater.100base-tx

Purpose: To measure the value of no_collision_timer for the repeater port.

References: P802.3u/D5 March 23, 1995: subclause 27.3.1.6, subclause 27.3.2.1.4, figure 27-8.


Resource Requirements:

• Two testing stations capable of encoding (decoding) data nibbles to (from) five-bit code groups as specified in clause 24 and sending (receiving) these code groups using the signaling method described in clause 25.

Last Modification: July 11, 1995

Test Setup:

Using category 5 UTP cable, connect testing station 1 to port A and testing station 2 to port C of the repeater under test. Insert a loopback plug into port B of the repeater under test.

Procedure:

- 1. Command testing station 1 to send a valid preamble (defined as the physical layer stream /J/K/A/A/A/A/A/A/A/A/A/A/A/A/A/B/) followed by four bytes of data and the end of shell delimiter (/T/R/). The loopback connection on port B will guarantee that this transmission will suffer a collision.
- 2. Repeat step 1 until CCLimit collisions have been generated (refer to test #10.27). Both port A and port B of the repeater under test should be partitioned.
- 3. Command testing station 2 to send a valid preamble, eight nibbles of data, and end of shell delimiter. Command testing station 1 to send a properly encapsulated, 64-byte, valid MAC frame. Testing station 2 will monitor transmit activity from port C.
- Testing station 2 will fail to capture the carrier event generated by testing station 1 as long as port A is partitioned. Repeat step 3, incrementing the number of nibbles sent by testing station 2 with each iteration, until testing station 2 captures the frame sent by testing station 1. The terminal length (in bit times) of the fragment sent by testing station 2 is no_collision timer.

Observable results:

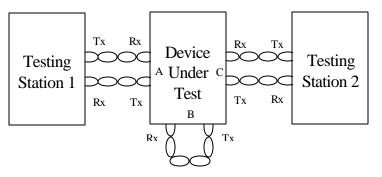
- a. Verify that the partition condition is detected on port A and port B after a number of consecutive collisions equaling CCLimit.
- b. Verify that the port resets the partition function when there is transmit activity on the port for more than the number of bits specified by no_collision_timer.
- c. Verify that no_collision_timer is in the range of 450 to 560 bit times.

Test #13.27 3/4 Partition Function Reset

Test Label: partexit.repeater.100base-tx

Purpose: To verify the conditions under which a repeater port will reset the partition function.

References: P802.3u/D5 March 23, 1995: subclause 27.3.1.6, figure 27-8.


Resource Requirements:

• Two testing stations capable of encoding (decoding) data nibbles to (from) five-bit code groups as specified in clause 24 and sending (receiving) these code groups using the signaling method described in clause 25.

Last Modification: July 14, 1995

Test Setup:

Using category 5 UTP cable, connect testing station 1 to port A and testing station 2 to port C of the repeater under test. Insert a loopback plug into port B of the repeater under test.

Procedure:

- 1. Power-cycle reset the repeater under test.
- 2. Command testing station 1 to send a valid preamble (defined as the physical layer stream /J/K/A/A/A/A/A/A/A/A/A/A/A/A/A/B/) followed by four bytes of data and the end of shell delimiter (/T/R/). The loopback connection on port B will guarantee that this transmission will suffer a collision.
- 3. Repeat step 1 until CCLimit collisions have been generated (refer to test #10.27). Both port A and port B of the repeater under test should be partitioned.
- Disconnect testing station 1 from port A of the repeater under test. This will force link_status(A)≠OK. Reconnect testing station 1 to port A of the repeater under test. Verify that the partition function was not reset on port A.
- 5. If the partition function was reset as a result of step 3, repeat steps 1 and 2 to ensure that both port A and port B of the repeater under test are partitioned. Command testing station 2 to send a valid preamble followed by a sufficient number of data nibbles to make the overall fragment length exceed no_collision_timer (refer to test #12.27). Verify that the partition function is reset on port A of the repeater under test.

6. Repeat steps 1 and 2 to ensure that both port A and port B of the repeater under test are partitioned. Power-cycle reset the repeater under test. Verify that the partition condition is reset on both port A and port B of the repeater under test.

Observable results:

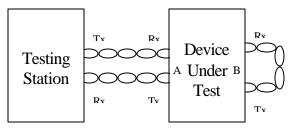
- a. Verify that the partition condition is detected on port A and port B after a number of consecutive collisions equaling CCLimit.
- b. Verify the transition to link_status(A)≠OK does not reset the partition function on port A of the repeater under test.
- c. Verify that port A resets the partition function when there is transmit activity on the port for more than the number of bits specified by no_collision_timer.
- d. Verify that a power-cycle reset will reset the partition function on both port A and port B of the repeater under test.
- e. Verify that the DUT will not reset the partition function on a port for a transmitted event exceeding no_collision_timer if there is still receive activity at the port.

Test #14.27 3/4 Consecutive Collision Count

Test Label: cc.repeater.100base-tx

Purpose: To verify that the repeater port consecutive collision count increments and clears under the appropriate conditions.

References: P802.3u/D5 March 23, 1995: subclause 27.3.1.6, 27.3.2.1.1, figure 27-8.


Resource Requirements:

• Two testing stations capable of encoding (decoding) data nibbles to (from) five-bit code groups as specified in clause 24 and sending (receiving) these code groups using the signaling method described in clause 25.

Last Modification: July 14, 1995

Test Setup:

Using category 5 UTP cable, connect testing station 1 to port A of the repeater under test. Insert a loopback plug into port B of the repeater under test.

Procedure:

- 1. Power-cycle reset the repeater under test.
- 3. Repeat step 2 until CCLimit/2 (refer to test #10.27) collisions have been generated. Remove the loopback plug and command the testing station to send a valid preamble followed by a sufficient number of data nibbles to make the overall fragment length greater than no_collision_timer (refer to test #12.27).
- 4. Re-insert the loopback plug and repeat step 2 until the testing station fails to detect the Jam message from port A of the repeater under test. Verify that exactly CCLimit collisions were required to reach this state.
- 5. Power-cycle reset the repeater under test and repeat step 2 until CCLimit/2 collisions have been generated. Remove the loopback plug and command the testing station to send a valid preamble and any number of data nibbles that make the overall fragment length less than no_collision_timer.

6. Re-insert the loopback plug and repeat step 2 until the testing station fails to detect the Jam message from port A of the repeater under test. Verify that exactly CCLimit/2 collisions were required to reach this state.

Observable results:

- a. Verify that the Partition condition is detected on port A and port B after a number of consecutive collisions equaling CCLimit.
- b. Verify that the port clears the consecutive collision count when there is transmit activity on the port for more than the number of bits specified by no_collision_timer without incurring a collision.
- c. Verify that the port does not increment or clear the consecutive collision count when there is transmit activity on the port for a number of bits less than no_collision timer without incurring a collision.

Test Group 5

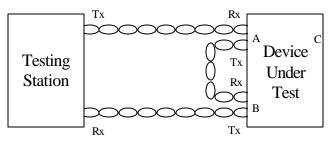
Carrier Integrity Monitor

Test #15.27 ³⁄₄ False Carrier Detect

Test Label: fcdetect.repeater.tx.fe

Purpose: To verify that the repeater set can detect false carrier events.

References: P802.3u/D5 March 23, 1995: subclause 24.3.4.3, subclause 27.3.1.5.1, figures 24-14 and 27-9.


Resource Requirements:

• A testing station capable of encoding (decoding) data nibbles to (from) five-bit code groups as specified in clause 24 and sending (receiving) these code groups using the signaling method described in clause 25. The testing station should be capable of transmitting invalid code groups.

Last Modification: July 20, 1995

Test Setup:

Connect the transmitter of the testing station to the receiver of port A and the transmitter of port B to the receiver of the testing station. Connect the transmitter of port A to the receiver of port B to ensure that link_status(B)=OK. All connections are made with category 5 UTP wire.

Procedure:

- 1. Let bad_ssd be a vector of 10 code-bits and let bad_ssd[0] be fixed at ZERO. Initialize bad_ssd[9:2] to the code-bit pattern "1111110". Command the testing station to send bad_ssd (most significant bit first) followed by four bytes of data. The testing station will monitor transmit activity from port B of the repeater under test.
- 2. Shift bad_ssd[9:2] left one code-bit, discarding the carry bit and setting bad_ssd[2] to ONE. Command the testing station to send bad_ssd followed by four bytes of data. The testing station will monitor transmit activity from port B of the repeater under test.
- 3. Repeat step 2 until bad_ssd[9:2] contains the pattern "11111111".
- 4. Set bad_ssd[9:5] to the /J/ code group and set bad_ssd[4:0] to the code-bit pattern "00000". Command the testing station to send bad_ssd followed by four bytes of data. The testing station will monitor transmit activity from port B of the repeater under test.
- 5. Increment bad_ssd[4:0]. Command the testing station to send bad_ssd followed by four bytes of data. The testing station will monitor transmit activity from port B of the repeater under test.

6. Repeat step 5 until bad_ssd[4:0] exceeds "11111". Skip the iteration in which bad_ssd[4:0] equals "10001" as this is the /K/ code-group (this makes bad_ssd[9:0] /J/K/, the valid start of shell delimiter).

Observable results:

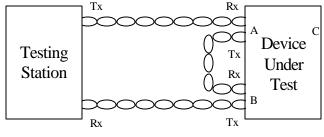
- a. Verify that, for each bad_ssd applied to port A, port B sources a valid start of shell delimiter followed by the Jam message (JamX or any other well formed arbitrary data pattern).
- b. Verify that the length of the Jam message sourced by port B does not exceed the length of the false carrier event applied to port A by more than 4 BT.

Test #16.27 3/4 FCCLimit

Test Label: fcclimit.repeater.100base-tx

Purpose: To measure the value of FCCLimit for the repeater set.

References: P802.3u/D5 March 23, 1995: subclause 24.3.4.3, subclause 27.3.1.5.1, subclause 27.3.2.1.1, figures 24-14, and figure 27-9.


Resource Requirements:

• A testing station capable of encoding (decoding) data nibbles to (from) five-bit code groups as specified in clause 24 and sending (receiving) these code groups using the signaling method described in clause 25.

Last Modification: July 17, 1995

Test Setup:

Connect the transmitter of the testing station to the receiver of port A and the transmitter of port B to the receiver of the testing station. Connect the transmitter of port A to the receiver of port B to ensure that link_status(B)=OK. All connections are made with category 5 UTP wire.

Procedure:

- 1. Power-cycle reset the repeater under test.
- 2. Command the testing station to generate three consecutive false carrier events 40 BT in length and spaced by the minimum inter-frame gap (96 BT). A false carrier event is defined as a stream of non-idle code groups that does not begin with a valid start of shell delimiter (/J/K/). The testing station will monitor transmit activity from port B.

Observable results:

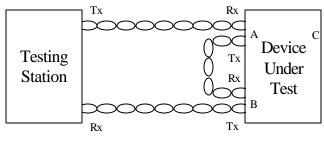
- a. Verify that, after FCCLimit consecutive false carrier events, the link unstable condition is detected on port A of the repeater under test. The port will disable its transmit and receive paths while in the link unstable state. This will prevent any remaining false carrier events from propagating to port B of the repeater under test.
- b. Verify that FCCLimit is 2.

Test #17.27 ³⁄₄ false_carrier_timer

Test Label: fc_tmr.repeater.100base-tx

Purpose: To measure the value of false_carrier_timer for the repeater set.

References: P802.3u/D5 March 13, 1995: subclause 24.3.4.3, subclause 27.3.1.5.1, subclause 27.3.2.1.4, figures 24-14, and figure 27-9.


Resource Requirements:

• A testing station capable of encoding (decoding) data nibbles to (from) five-bit code groups as specified in clause 24 and sending (receiving) these code groups using the signaling method described in clause 25.

Last Modification: July 18, 1995

Test Setup:

Connect the transmitter of the testing station to the receiver of port A and the transmitter of port B to the receiver of the testing station. Connect the transmitter of port A to the receiver of port B to ensure that link_status(B)=OK. All connections are made with category 5 UTP wire.

Procedure:

1. Command the testing station to send an invalid start of shell delimiter followed by 100 code group pairs. Let $t = t_0$ represent the 50% point of the mid-cell transition corresponding to the first bit of data (following the invalid start of shell delimiter) arriving on port A. Let $t = t_1$ represent the 50% point of the mid-cell transition corresponding to the last bit of Jam sourced by port B. The time difference $t_1 - t_0$ is false_carrier_timer.

Observable results:

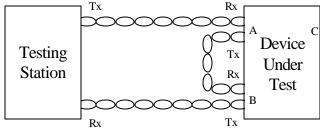
- a. Verify that a false carrier event with duration exceeding false_carrier_timer will cause the link unstable condition to be detected on port A of the repeater under test. The port will disable its transmit and receive paths while in the link unstable state. This will terminate the propagation of the false carrier event to port B of the repeater under test.
- b. Verify that false_carrier_timer is in the range of 450 to 500 BT.

Test #18.27 **3**/4 ipg_timer

Test Label: ipg_tmr.repeater.100base-tx

Purpose: To measure the value of ipg_timer for the repeater set.

References: P802.3u/D5 March 13, 1995: subclause 24.3.4.3, subclause 27.3.1.5.1, subclause 27.3.2.1.4, figures 24-14, and figure 27-9.


Resource Requirements:

• A testing station capable of encoding (decoding) data nibbles to (from) five-bit code groups as specified in clause 24 and sending (receiving) these code groups using the signaling method described in clause 25.

Last Modification: July 19, 1995

Test Setup:

Connect the transmitter of the testing station to the receiver of port A and the transmitter of port B to the receiver of the testing station. Connect the transmitter of port A to the receiver of port B to ensure that link_status(B)=OK. All connections are made with category 5 UTP wire.

Procedure:

- 1. Power-cycle reset the repeater under test.
- 2. Let S be a sequence of carrier events. The sequence begins with FCCLimit (refer to test 16.27) false carrier events 40BT long and seperated by a 96BT inter-packet gap. Two properly encapsulated, 64-byte, valid MAC frames seperated by 96BT follow the false carrier events after an *n*BT delay. Set *n* to 48 and command the testing station to send S. The testing station will monitor transmit activity on port B.

Example for FCCLimit=2:

S = false carrier 96BT IPG false carrier <i>n</i> BT IPG valid carrier 96BT IPG valid carrier

- 3. A valid carrier event of duration greater than valid_carrier_timer preceeded by idle of duration greater than ipg_timer will cause the repeater port under test to reset the link unstable state. This will allow any subsequent carrier events received on port A to be propagated to the other ports of the repeater under test. Increment *n* by 4 and command the testing station to send S. The testing station will monitor transmit activity on port B.
- 4. Repeat step 3 until the second valid carrier event is detected by the station under test. The terminal value of *n* is ipg_timer.

Observable results:

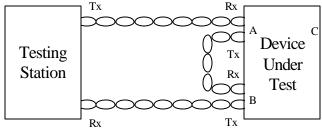
- a. Verify that a valid carrier event of duration greater than valid_carrier_timer preceeded by idle of duration greater than ipg_timer will cause the repeater port under test to reset the link unstable state.
- b. Verify that ipg_timer is in the range of 64 to 86 BT.

Test #19.27 3/4 valid_carrier_timer

Test Label: vc_tmr.repeater.100base-tx

Purpose: To measure the value of valid_carrier_timer for the repeater set.

References: P802.3u/D5 March 13, 1995: subclause 24.3.4.3, subclause 27.3.1.5.1, subclause 27.3.2.1.4, figures 24-14, and figure 27-9.


Resource Requirements:

• A testing station capable of encoding (decoding) data nibbles to (from) five-bit code groups as specified in clause 24 and sending (receiving) these code groups using the signaling method described in clause 25.

Last Modification: July 19, 1995

Test Setup:

Connect the transmitter of the testing station to the receiver of port A and the transmitter of port B to the receiver of the testing station. Connect the transmitter of port A to the receiver of port B to ensure that link_status(B)=OK. All connections are made with category 5 UTP wire.

Procedure:

- 1. Power-cycle reset the repeater under test.

Example for FCCLimit=2:

S =	false carrier 96BT	IPG false carrie	r ipg_timer	preamble	n data bits	96BT IPG	valid carrier	
------------	--------------------	------------------	-------------	----------	-------------	----------	---------------	--

- 3. A valid carrier event of duration greater than valid_carrier_timer preceeded by idle of duration greater than ipg_timer will cause the repeater port under test to reset the link unstable state. This will allow any subsequent carrier events received on port A to be propagated to the other ports of the repeater under test. Increment *n* by 4 and command the testing station to send S. The testing station will monitor transmit activity on port B.
- 4. Repeat step 3 until the second valid carrier event is detected by the station under test. The terminal value of *n* is valid_carrier_timer.

Observable results :

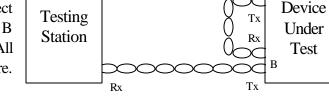
- a. Verify that a valid carrier event of duration greater than valid_carrier_timer preceeded by idle of duration greater than ipg_timer will cause the repeater port under test to reset the link unstable state.
- b. Verify that valid_carrier_timer is in the range of 450 to 500 BT.

Test #20.27 3/4 idle_timer

Test Label: idle_tmr.repeater.100base-tx

Purpose: To measure the value of idle_timer for the repeater set.

References: P802.3u/D5 March 13, 1995: subclause 24.3.4.3, subclause 27.3.1.5.1, subclause 27.3.2.1.4, figures 24-14, and figure 27-9.


Resource Requirements:

• A testing station capable of encoding (decoding) data nibbles to (from) five-bit code groups as specified in clause 24 and sending (receiving) these code groups using the signaling method described in clause 25.

Last Modification: July 20, 1995

Test Setup:

Connect the transmitter of the testing station to the receiver of port A and the transmitter of port B to the receiver of the testing station. Connect the transmitter of port A to the receiver of port B to ensure that link_status(B)=OK. All connections are made with category 5 UTP wire.

Tx

Procedure:

- 1. Power-cycle reset the repeater under test.
- 2. Let S be a sequence of carrier events. The sequence begins with FCCLimit consecutive false carrier events 40BT long and spaced by a 96BT inter-packet gap. A properly encapsulated, 64-byte, valid MAC frame follows after an *n*BT delay. Set n to ipg_timer (refer to test 18.27) and command the testing station to send S.

Example for FCCLimit=2:

\mathbf{S} = false carrier 96BT IPG false carrier <i>n</i> BT IPG valid carrier	valid carrier	nBTIPG	false carrier	96BT IPG	false carrier		S
---	---------------	--------	---------------	----------	---------------	--	---

3. When the false carrier count for port A exceeds FCCLimit, the port will enter the link unstable state and disable its transmit and receive paths. The link unstable state will be reset if no activity is detected on port A for more than ipg_timer plus idle_timer bit times. Repeat step 1, incrementing n by 4 with each interation, until the testing station detects the valid MAC frame applied to port A. The terminal value of n is ipg_timer plus idle_timer.

Observable results:

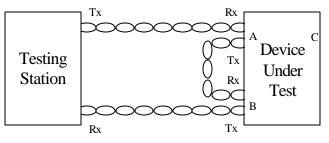
- a. Verify that the link unstable state is reset when no activity is detected on a port for more than ipg_timer plus idle_timer bit times.
- b. Verify that idle_timer is in the range of 24,750 to 41,250 BT.

Test #21.27 3/4 False Carrier Count

Test Label: fcc.repeater.100base-tx

Purpose: To verify consecutive false carrier count for the repeater port increments and clears under the appropriate conditions.

References: P802.3u/D5 March 23, 1995: subclauses 27.3.1.5.1, 27.3.2.1.5, figure 27-9.


Resource Requirements:

• Two testing stations capable of encoding (decoding) data nibbles to (from) five-bit code groups as specified in clause 24 and sending (receiving) these code groups using the signaling method described in clause 25.

Last Modification: July 20, 1995

Test Setup:

Connect the transmitter of the testing station to the receiver of port A and the transmitter of port B to the receiver of the testing station. Connect the transmitter of port A to the receiver of port B to ensure that link_status(B)=OK. All connections are made with category 5 UTP wire.

Procedure:

- 1. Power-cycle reset the repeater under test.
- 2. Command the testing station to send a false carrier event 40BT long (a false carrier event is defined to be a non-idle data stream that does not begin with a valid start of shell delimiter).
- 3. Command the testing station to send a properly encapsulated, 64-byte, valid MAC frame.
- 4. Command the testing station to send FCCLimit+1 (refer to test 16.27) false carrier events 40BT long and seperated by a 96BT inter-packet gap. The testing station will monitor transmit activity from port B. It should detect FCCLimit Jam messages from port B indicating that the valid MAC frame send in step 3 cleared the false carrier count.

Observable results:

a. Verify that the consecutive false carrier count is reset upon the reception of a valid carrier event.

b. Verify that, after FCCLimit consecutive false carrier events, the link unstable condition is detected on port A of the repeater under test. The port will disable it's transmit and receive paths while in the link unstable state. This will prevent any remaining false carrier events from propagating to port B of the repeater under test.