As of February 25, 2004 the Fast Ethernet Consortium Clause 25 Physical Medium Dependent Conformance Test Suite version 2.5 has been superseded by the release of the Clause 25 Physical Medium Dependent Conformance Test Suite version 3.2. This document along with earlier versions, are available on the Fast Ethernet Consortium test suite archive page.

Please refer to the following site for both current and superseded test suites:

http://www.iol.unh.edu/testsuites/ethernet/archive.html

© 2003 University of New Hampshire InterOperability Laboratory
MODIFICATION RECORD

- February 13, 2003 Version 2.5
  Jon Beckwith: changed format.
- September 9, 1999 Initial Version
Test #25.1.1 – Differential Output Voltage

**Purpose:** To verify that the differential output voltage of the device under test (DUT) is within the conformance limits.

**References:**


**Resource Requirements:**

- Digital storage oscilloscope (DSO)
- Differential probe

**Last Modification:** February 15, 1999 (Version 2.4)

**Discussion:**

The operation of the 100BASE-TX physical medium dependent (PMD) sublayer is defined in clause 25 of IEEE Std 802.3u-1995. This clause incorporates ANSI X3.263-1995, by reference, with the exceptions listed in 25.4. Sections 9.1.1 and 9.1.2 of the ANSI standard define the differential output voltage at the Active Output Interface (AOI) for operation over shielded twisted pair (STP) and unshielded twisted pair (UTP) respectively.

The differential output voltage, $V_{\text{out}}$, is defined to be the intersection of the straight line best fit for amplitude with the vertical line indicating the start of the transition from 0V to $V_{\text{out}}$. The reference for this measurement is defined to be an output waveform consisting of 14 bit times of no transition preceded by a transition from 0V to $V_{\text{out}}$.

The definition of the reference waveform was made with the assumption that the DUT would be sending scrambled, MLT-3 encoded /H/ code-groups. While this is normal for an FDDI device, it is not straightforward to get a 100BASE-TX device to generate this sequence. A 100BASE-TX device normally generates scrambled, MLT-3 encoded /I/ code-groups in which one may find 12 bit times of no transition preceded by a transition from 0V to $V_{\text{out}}$. This waveform is adopted as the reference.

The term "straight line best fit" in the definition of $V_{\text{out}}$ is ambiguous. First, the region over which the fit is to be made is not defined. For this measurement, the range has been chosen to be from 8ns past the point where the signal rise crosses 50% of $V_{\text{out}}$ to 8ns before the signal fall crosses 50% of $V_{\text{out}}$. These points were chosen to minimize the effect that the transient response has on the "fit". Second, it is not clear from figure 12 that the fit is allowed to have non-zero slope. A comparable measurement made in informative annex J takes $V_{\text{out}}$ to be the mean voltage at the center of the eye. For this measurement, $V_{\text{out}}$ is taken to be mean voltage in the aforementioned range.

Note that by taking the mean voltage, the intersection of the best fit straight line with the vertical line indicating the start of the transition from 0V to $V_{\text{out}}$ is irrelevant. This is good because depending on the waveform properties, the start of the transition may be difficult to accurately determine.

Figure 25.1.1-1 summarizes the differential output voltage measurement considerations.
For STP support, the magnitude of $V_{out}$ shall be between 1165mV and 1285mV. For UTP support, the magnitude of $V_{out}$ shall be between 950mV and 1050mV. The signal amplitude symmetry, defined as the ratio of the magnitudes of $+V_{out}$ and $-V_{out}$ shall be within the limits:

$$98\% \leq \frac{+V_{out}}{-V_{out}} \leq 102\%$$

Test Setup:

Use the probe to connect the transmit pins of the DUT to the DSO. If the DUT is performing auto-negotiation, connect the receive pins to a device that is sending scrambled, MLT-3 encoded /I/ code-groups. This will force the parallel detection mechanism to configure the DUT for 100BASE-TX operation.

Procedure:

1. Configure the DUT for 100BASE-TX operation. Ensure that the DUT is sending scrambled, MLT-3 encoded /I/ code-groups.
2. Configure the DSO to capture the waveform depicted in figure 25.1.1-1. Measure $+V_{out}$.
3. Configure the DSO to capture the waveform depicted in figure 25.1.1-1 but with opposite polarity. Measure $-V_{out}$.
4. Compute the signal amplitude symmetry.

Observable Results:

a. For STP support, the magnitude of $V_{out}$ shall be between 1165mV and 1285mV. For UTP support, the magnitude of $V_{out}$ shall be between 950mV and 1050mV.

   b. The signal amplitude symmetry shall be between 98% and 102%.

Possible Problems: None.
Test #25.1.2 – Rise and Fall Times

**Purpose:** To verify that the response times of the device under test (DUT) are within the conformance limits.

**References:**


**Resource Requirements:**

- Digital Storage Oscilloscope (DSO)  
- Differential probe

**Last Modification:** March 12, 1998 (Version 2.4)

**Discussion:**

The operation of the 100BASE-TX physical medium dependent (PMD) sublayer is defined in clause 25 of IEEE Std 802.3u-1995. This clause incorporates ANSI X3.263-1995, by reference, with the exceptions listed in 25.4. Section 9.1.6 of the ANSI standard defines the rise and fall times at the Active Output Interface (AOI).

Signal rise is defined as a transition from the baseline voltage to either $+V_{out}$ or $-V_{out}$. Signal fall is defined as a transition from either $+V_{out}$ or $-V_{out}$ to the baseline voltage. The signal rise and fall times are defined to be the time difference between the points where the signal transition crosses 10% and 90% of $V_{out}$.

The standard does not define a reference waveform for rise and fall time measurements. The reference waveform is chosen to be the longest pulse that follows and is followed by at least two consecutive symbols at the baseline voltage. A waveform generated in the course of transmitting scrambled, MLT-3 encoded /I/ code-groups that meets these requirements is depicted in figure 25.1.2-1. This waveform will have amplitude $V_{out}$ as measured in test 25.1.1 and will have signal rise and fall that is minimally affected by inter-symbol interference.

![Figure 25.1.2-1: Rise and fall time reference waveform.](image)

All measured rise and fall times shall be between 3ns and 5ns. Furthermore, the differences between all measured rise and fall times, the rise and fall time symmetry, shall not exceed 0.5ns.
**Test Setup:**

Use the probe to connect the transmit pins of the DUT to the DSO. If the DUT is performing auto-negotiation, connect the receive pins to a device that is sending scrambled, MLT-3 encoded /I/ code-groups. This will cause the parallel detection mechanism to configure the DUT for 100BASE-TX operation.

**Procedure:**

1. Configure the DUT for 100BASE-TX operation. Ensure the DUT is transmitting scrambled, MLT-3 encoded /I/ code-groups.
2. Configure the DSO to capture the waveform depicted in figure 25.1.2-1. Measure the rise and fall times of the pulse.
3. Configure the DSO to capture the waveform depicted in figure 25.1.2-1 but with opposite polarity. Measure the rise and fall times of the pulse.
4. Compute the differences between all measured rise and fall times.

**Observable Results:**

- All measured rise and fall times shall be between 3ns and 5ns.
- The rise and fall time symmetry shall not exceed 0.5ns.

**Possible Problems:** None.
Test #25.1.3 – Duty Cycle Distortion

Purpose: To verify that the duty cycle distortion of the device under test (DUT) is below the conformance limit.

References:


Resource Requirements:

- Digital Storage Oscilloscope (DSO)
- Differential probe

Last Modification: March 12, 1998 (Version 2.4)

Discussion:

The operation of the 100BASE-TX physical medium dependent (PMD) sublayer is defined in clause 25 of IEEE Std 802.3u-1995. This clause incorporates ANSI X3.263-1995, by reference, with the exceptions listed in 25.4. Section 9.1.8 of the ANSI standard defines the duty cycle distortion (DCD) at the Active Output Interface (AOI).

The reference waveform for the DCD measurement is depicted in figure 25.1.3-1 (indicated pulse widths are nominal values). DCD shall be measured at the points where the four successive MLT-3 transitions generated by a 01010101 NRZ bit sequence cross 50% of $V_{out}$. While the 01010101 NRZ sequence occurs several times in a stream of scrambled /I/ code-groups, the MLT-3 sequence that follows and is followed by at least two consecutive symbols at the baseline voltage is chosen as the reference. This minimizes any inter-symbol interference that would affect signal rise and fall.

![Figure 25.1.3-1: DCD reference waveform](image)

The deviations of the 50% crossing times from a best fit grid of 16ns spacing shall not exceed ±0.25ns. This requirement is easily verified in terms of a peak-to-peak specification. Given the 50% crossing times $t_n$ (refer to figure 25.1.3-1), compute $e_{in}$. 
\[
e_1 = t_2 - t_1 - 16\text{ns} \\
e_2 = t_3 - t_2 - 16\text{ns} \\
e_3 = t_4 - t_3 - 16\text{ns} \\
e_4 = t_3 - t_1 - 32\text{ns} \\
e_5 = t_4 - t_2 - 32\text{ns} \\
e_6 = t_4 - t_1 - 48\text{ns}
\]

The peak magnitude of \(e_m\) is the peak-to-peak DCD. The peak-to-peak DCD shall not exceed 0.5\text{ns}.

**Test Setup:**

Use the probe to connect the transmit pins of the DUT to the DSO. If the DUT is performing auto-negotiation, connect the receive pins to a device that is sending scrambled, MLT-3 encoded \(/l/\) code-groups. This will cause the parallel detection mechanism to configure the DUT for 100BASE-TX operation.

**Procedure:**

1. Configure the DUT for 100BASE-TX operation. Ensure the DUT is transmitting scrambled, MLT-3 encoded \(/l/\) code-groups.
2. Configure the DSO to capture the waveform depicted in figure 25.1.3-1. Measure the times at which the signal transitions cross 50\% of \(V_{out}\).
3. Compute the peak-to-peak DCD.

**Observable Results:**

a. The peak-to-peak DCD shall not exceed 0.5\text{ns}.

**Possible Problems:** None.
Test #25.1.4 – Transmit Jitter

Purpose: To verify that the total transmit jitter of the device under test (DUT) is below the conformance limit.

References:


Resource Requirements:

- Digital storage oscilloscope (DSO)
- Differential probe

Last Modification: March 12, 1998 (Version 2.4)

Discussion:

The operation of the 100BASE-TX physical medium dependent (PMD) sublayer is defined in clause 25 of IEEE Std 802.3u-1995. This clause incorporates ANSI X3.263-1995, by reference, with the exceptions listed in 25.4. Section 9.1.9 of the ANSI standard defines the transmit jitter at the Active Output Interface (AOI).

The ANSI standard states that the transmit jitter measurement shall be performed on scrambled, MLT-3 encoded /H/ code-groups. The transmit jitter measured, including contributions from duty cycle distortion and baseline wander, shall not exceed 1.4ns peak-to-peak. Note the subclause 25.4.5 states that the transmit jitter measurement may also be performed on scrambled, MLT-3 encoded /I/ code-groups.

Even though a reference pattern and a peak-to-peak value are defined, the transmit jitter specification is not complete. Jitter is a statistical phenomenon and a peak-to-peak value is meaningless unless it is related to some probability, usually the bit error rate (BER). Since neither the ANSI standard or clause 25 specify a target BER for 100BASE-TX, a BER of $10^{-8}$ is assumed.

Also, it is not clear whether the transmit clock or a recovered clock is to be used as the timing reference. The principal difference between the two is the amount of the low frequency jitter that appears in the measurement. The recovered clock is typically generated by a phase-locked loop (PLL) which tracks jitter below its bandwidth. This is equivalent to measuring the jitter at the output of a high-pass filter. As the bandwidth of the PLL decreases, the difference between the transmit clock and the recovered clock also decreases. It is assumed that the reference for this measurement is the transmit clock. If the transmit clock is not available, a very narrow bandwidth PLL shall be used to generate the timing reference.

There are a variety of instruments and techniques that can be used to measure jitter. A DSO-based approach that does not require access to the transmit clock is presented in appendix 25.B.

Test Setup:

Use the probe to connect the transmit pins of the DUT to the DSO. If the DUT is performing auto-negotiation, connect the receive pins to a device that is sending scrambled, MLT-3 encoded /I/ code-groups. This will force the parallel detection mechanism to configure the DUT for 100BASE-TX operation.
Procedure:

1. Configure the DUT for 100BASE-TX operation. Ensure that the DUT is sending scrambled, MLT-3 encoded /l/ code-groups.
2. Measure the peak-to-peak transmit jitter at a BER of $10^{-8}$ using the method presented in appendix 25.B.

Observable Results:

a. The peak-to-peak transmit jitter shall not exceed 1.4ns at a BER of $10^{-8}$.

Possible Problems: None.
Test #25.1.5 – Waveform Overshoot

Purpose: To verify that the waveform overshoot of the device under test (DUT) is below the conformance limit.

References:


Resource Requirements:

- Digital storage oscilloscope (DSO)
- Differential probe

Last Modification: March 12, 1998 (Version 2.4)

Discussion:

The operation of the 100BASE-TX physical medium dependent (PMD) sublayer is defined in clause 25 of IEEE Std 802.3u-1995. This clause incorporates ANSI X3.263-1995, by reference, with the exceptions listed in 25.4. Section 9.1.3 of the ANSI standard defines the waveform overshoot at the Active Output Interface (AOI).

The waveform overshoot is defined as the percentage excursion of the differential signal transition beyond its final adjusted value, \( V_{out} \), during the symbol interval (8ns) following the signal transition. While no reference waveform is defined for the measurement, the same waveform used to measure \( V_{out} \) (refer to test 25.1.1) is assumed.

Note that the end of the signal transition may be difficult to accurately determine. A more straightforward approach is adopted which measures the peak excursion in the symbol interval following the point where the signal rise crosses 50% of \( V_{out} \). The peak excursion is called \( V_{peak} \).

The waveform overshoot shall not exceed 5%. In terms of \( V_{peak} \), the following inequality shall be satisfied.

\[
5\% \geq \frac{V_{peak} - V_{out}}{V_{out}} \times 100\%
\]

Figure 25.1.5-1: Waveform overshoot reference waveform
Test Setup:

Use the probe to connect the transmit pins of the DUT to the DSO. If the DUT is performing auto-negotiation, connect the receive pins to a device that is sending scrambled, MLT-3 encoded /l/ code-groups. This will force the parallel detection mechanism to configure the DUT for 100BASE-TX operation.

Procedure:

1. Configure the DUT for 100BASE-TX operation. Ensure that the DUT is sending scrambled, MLT-3 encoded /l/ code-groups.
2. Configure the DSO to capture the waveform depicted in figure 25.1.5-1. Measure $+V_{peak}$. Compute the waveform overshoot.
3. Configure the DSO to capture the waveform depicted in figure 25.1.5-1 but with opposite polarity. Measure $-V_{peak}$. Compute the waveform overshoot.

Observable Results:

a. The waveform overshoot shall not exceed 5%.

Possible Problems: None.
Test #25.1.6 – Transmitter Return Loss

Purpose: To verify that the return loss at the transmitter of the device under test (DUT) is above the conformance limit.

References:


Resource Requirements:

- Impedance analyzer
- Connecting hardware

Last Modification: June 4, 1998 (Version 2.4)

Discussion:

The operation of the 100BASE-TX physical medium dependent (PMD) sublayer is defined in clause 25 of IEEE Std 802.3u-1995. This clause incorporates ANSI X3.263-1995, by reference, with the exceptions listed in 25.4. Section 9.1.5 of the ANSI standard defines the return loss at the Active Output Interface (AOI).

The ANSI standard states that the return loss at the AOI shall be above the limit line depicted in figure 25.1.6-1. Return loss, as defined in test 25.2.1, is the magnitude of the reflection coefficient expressed in decibels. The reflection coefficient, $\Gamma$, is the ratio of the voltage in the reflected wave to the voltage in the incident wave. In this case, the observed reflection is the sum of the actual reflection and the voltage generated by the transmitter of the DUT. This additional voltage introduces an error into the measured reflection coefficient, $\Gamma_e$:

$$\Gamma_e = \frac{V_R + V_T}{V_I} = \Gamma + \frac{V_T}{V_I}$$

Note that $V_R$ is the voltage in the reflected wave and $V_T$ is the voltage transmitted by the DUT. $V_I$ is the voltage in the incident wave. The ratio of $V_T$ to $V_I$ is the error in the reflection coefficient measurement. It can be shown that the resulting error in the return loss calculation is:

$$e(\text{dB}) = -20 \cdot \log_{10} \left( 1 + \frac{V_T}{V_I} \cdot \frac{1}{\Gamma} \right) = -20 \cdot \log_{10} (1 + r)$$

Table 25.1.6-1 shows $e$ as a function of $r$. Figure 25.1.6-1 shows that the minimum conformant return loss is 10dB, which corresponds to a reflection coefficient of 0.32. In order to assure the error in the return loss measurement does not exceed 0.5dB for any conformant return loss, the ratio of $V_T$ to $V_I$ must be less than $\Gamma \cdot r = 0.32 \cdot 0.05 = 0.016$. This is easily achieved for $V_I$ greater than 100mV.

<table>
<thead>
<tr>
<th>$r$</th>
<th>0.05</th>
<th>0.06</th>
<th>0.07</th>
<th>0.08</th>
<th>0.09</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e$ dB</td>
<td>-0.42</td>
<td>-0.51</td>
<td>-0.59</td>
<td>-0.67</td>
<td>-0.75</td>
<td>-0.83</td>
<td>-1.58</td>
<td>-2.28</td>
<td>-2.92</td>
</tr>
</tbody>
</table>
As mentioned in test 25.2.1, return loss cannot be computed without a specified source impedance $Z_S$. $Z_S$ is defined to be $100\Omega \pm 15\Omega$. $Z_S$ is primarily resistive with a phase angle magnitude less than $3^\circ$ in the frequency range of $2$MHz to $80$MHz.

**Test Setup:**

Use the connecting hardware to connect the transmit pins of the DUT to the impedance analyzer. If the DUT is performing auto-negotiation, connect the receive pins to a device that is sending scrambled, MLT-3 encoded /l/ code-groups. This will force the parallel detection mechanism to configure the DUT for 100BASE-TX operation.

**Procedure:**

1. Configure the DUT for 100BASE-TX operation. Ensure that the DUT is sending scrambled, MLT-3 encoded /l/ code-groups.
2. Measure the reflection coefficient at the transmitter in the frequency range of $2$MHz to $80$MHz.
3. Compute the return loss for $Z_S$ of $85\Omega$ and $Z_S$ of $115\Omega$. Assume $Z_S$ to be completely resistive.

**Observable Results:**

a. The return loss at the AOI shall not fall below the limit line depicted in figure 25.1.6-1.

**Possible Problems:** None.
Test #25.1.7 – Transmitter Open Circuit Inductance

Purpose: To verify that the open circuit inductance at the transmitter of the device under test (DUT) is above the conformance limit.

References:


Resource Requirements:

- Inductance meter
- DC current source
- DC current meter
- Connecting hardware

Last Modification: January 28, 1999 (Version 1.0)

Discussion:

The operation of the 100BASE-TX physical medium dependent (PMD) sublayer is defined in clause 25 of IEEE Std 802.3u-1995. This clause incorporates ANSI X3.263-1995, by reference, with the exceptions listed in 25.4. Section 9.1.7 of the ANSI standard defines the open circuit inductance (OCL) at the Active Output Interface (AOI).

The ability of the 100BASE-TX receiver to track baseline wander is dependent on the worst-case droop of the transmitter. The droop is dependent on the OCL of the transmitter which is a function of DC bias current, temperature, and manufacturing tolerance. The DC bias current varies as a function of the data pattern and the transmitter magnetics must maintain a minimum OCL in order to limit the change in the droop. The OCL is specified to be at least 350\(\mu\)H for any DC bias current between 0 and 8mA.

Figure 13 of the ANSI standard depicts a setup for the transmitter OCL measurement. This setup employs a variable current source and an impedance analyzer. While a lower bound on the OCL is defined for DC bias currents in the range of 0 to 8mA, the OCL decreases with increasing bias current. Therefore, the test can be reduced to a single OCL measurement at a DC bias current of 8mA.

The excitation generated by the impedance analyzer is defined to be a 100mV (rms) sinusoid at 100kHz. It is assumed that any excitation below the cut-off frequency of the magnetics is acceptable. The higher the excitation frequency, the more the impedance measurement reflects the termination on the other side of the magnetics.

Note that in figure 13, a DC blocking capacitor is placed between the current source and the impedance analyzer. It is assumed that this capacitance is not necessary if the resistance of the inductance meter is much larger the resistance of the transformer coil. It is preferable to not have this capacitor since it can affect the inductance measurement.

Test Setup:

Connect the inductance meter to the transmit pins of the DUT. Connect the TX+ pin of the DUT to the output of the DC current source. Connect the DC current meter between the TX− pin of the DUT and the reference of the DC current source. If the DUT is performing auto-negotiation, connect the receive pins to a device that is sending scrambled, MLT-3 encoded /I/ code-groups. This will force the parallel detection mechanism to configure the DUT for 100BASE-TX operation.
Procedure:

1. Configure the DUT for 100BASE-TX operation. Ensure that the DUT is sending scrambled, MLT-3 encoded /l/ code-groups.
2. Adjust the current source until the current meter reads 8mA of DC current.
3. Read the transmitter open circuit inductance from the inductance meter.

Observable Results:

a. The transmitter open circuit inductance shall be at least 350µH for any bias current between 0 and 8mA.

Possible Problems:

• The DUT should be allowed to warm up for a brief period in order to minimize the impact of temperature dependence on measurement consistency.
Test #25.2.1 – Differential Input Impedance

**Purpose:** To verify that the return loss at the receiver of the device under test (DUT) is above the conformance limit.

**References:**

1. IEEE Std 802.3u-1995, clause 25
2. ANSI X3.263-1995, sections 9.2.2, 11.1.1
3. EIA/TIA TSB-36, section 4.2

**Resource Requirements:**

- Impedance analyzer
- Connecting hardware

**Last Modification:** April 9, 1998 (Version 2.4)

**Discussion:**

The operation of the 100BASE-TX physical medium dependent (PMD) sublayer is defined in clause 25 of IEEE Std 802.3u-1995. This clause incorporates ANSI X3.263-1995, by reference, with the exceptions listed in 25.4. Section 9.2.2 of the ANSI standard defines the differential input impedance at the Active Input Interface (AII).

The differential input impedance is specified in terms of return loss which is a function of $\Gamma$, the reflection coefficient. The reflection coefficient is the ratio of the voltage in a wave reflected by a load, $Z_L$, to the voltage in the wave incident on that load. If the source of the incident wave has an impedance $Z_S$, $\Gamma$ is:

$$\Gamma = \frac{Z_L - Z_S}{Z_L + Z_S}$$

Since both $Z_L$ and $Z_S$ are complex numbers, $\Gamma$ is complex. The return loss (RL) is the magnitude of $\Gamma$ expressed in decibels:

$$RL(\text{dB}) = 20 \cdot \log_{10} \left| \frac{1}{\Gamma} \right|$$

Note that $\Gamma$ is inverted to make the return loss greater than or equal to zero.

![Return loss limit as a function of frequency.](image)
The ANSI standard states that the differential input impedance shall be such that the return loss is above the limit line depicted in figure 1. The source impedance, $Z_S$, for the return loss measurement is defined to be the characteristic impedance of a twisted pair as specified in section 11.1.1. Section 11.1.1 refers to EIA/TIA TSB-36 for the definition of category 5 unshielded twisted pair (UTP). Section 4.2 of EIA/TIA TSB-36 states that the characteristic impedance shall be $100\Omega \pm 15\%$. Therefore, the return loss measurement is performed for both a $Z_S$ of $85\Omega$ and a $Z_S$ of $115\Omega$. $Z_S$ is assumed to be completely resistive.

**Test Setup:**

Connect the receive pins of the DUT to the impedance analyzer.

**Procedure:**

1. Configure the DUT for 100BASE-TX operation.
2. Measure the impedance, $Z_L$, at the receiver in the frequency range of 2MHz to 80MHz.
3. Compute the return loss for a $Z_S$ of $85\Omega$ and a $Z_S$ of $115\Omega$. Assume $Z_S$ to be completely resistive.

**Observable Results:**

a. The return loss at the AII shall not fall below the limit line depicted in figure 25.2.1-1.

**Possible Problems:** None.
Test #25.2.2 – Adaptive Equalization

**Purpose:** To verify that, under worst-case operating conditions, the device under test (DUT) correctly compensates for the wide range of attenuation and phase distortion introduced by cable.

**References:**

[1] IEEE Std. 802.3u-1995, clause 25 – Physical medium dependent (PMD) sublayer and baseband medium, type 100BASE-TX.

**Resource Requirements:**

- Link simulator
- Monitor
- Connecting hardware

**Last Modification:** January 26, 1999 (Version 1.0)

**Discussion:**

The operation of the 100BASE-TX PMD sublayer is defined in clause 25 of IEEE Std. 802.3u-1995. Clause 25 incorporates ANSI X3.263 by reference with the exceptions listed in subclause 25.4. Section 9.2.1 of the ANSI standard defines a set of differential input signals that must be accepted by the Active Input Interface (AII).

The differential input signals are defined to be the outputs of the test channels defined in Annex A. Each test channel is driven by a differential transmitter that meets or exceeds the specifications of the section 9.1 (Active Output Interface). Five test channels are defined that represent 5, 25, 50, 75, and 100% of the maximum attenuation expected in the application environment. The NEXT loss of each test channel is defined to keep the attenuation-to-crosstalk ratio consistent among the channels.

The intention of the five test channels is to ensure that the AII correctly compensates for the wide range of attenuation and phase distortion introduced by cable. This test expands upon the differential input signals concept and addresses the problems with the specified test channels and methodology.

The first problem lies in the test channel definitions. The application environment for 100BASE-TX is expected to be category 5 cable installed according to TIA/EIA-568-A. However, a compliant TIA installation could have higher attenuation than what is represented in the worst-case test channel. The difference is due to the following factors:

a. The worst-case test channel assumes 3 category 5 connectors while TIA/EIA-568-A allows up to 4. It is interesting to note that section 11.1.8 of ANSI X3.263 also states that the channel may contain up to 4 connectors which conflicts with the worst-case channel definition given in the same standard.

b. The worst-case test channel assumes a 0.3% increase in attenuation per degree Celsius above room temperature (20°C). TIA/EIA-568-A allows up to 0.4% per degree Celsius.

This test steps the attenuation from 5% to 100% of the worst-case TIA/EIA-568-A attenuation in 5% increments. Note that this test does not attempt to maintain a consistent attenuation-to-crosstalk ratio. The NEXT loss of each channel is set to the worst-case NEXT loss allowed by TIA.
The second problem is that the target bit error rate for the AII is not specified. The intention of this test is to find what levels of attenuation, if any, result in severe under- or over-equalization. Since such failures are expected to result in high error rates, this test will attempt to prove that the BER is greater than $10^{-8}$ for each iteration. Based on the analysis given in appendix 25.D, if more than 7 errors are observed in $3 \times 10^8$ bits (about 470,000 64-byte packets), it can be concluded that the error rate is greater than $10^{-8}$ with less than a 5% chance of error. Note that if no errors are observed, it can be concluded that the BER is no more than $10^{-8}$ with less than a 5% chance of error.

This test is repeated for transmitter response times of 3 and 5ns. A response time of 3ns maximizes the signal bandwidth while a response time of 5ns results in the worst-case quantization error for digital implementations.

Table 25.2.2-1 summarizes the model parameters used in this test in the context of the link model defined in appendix 25.C.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J_{pp}$</td>
<td>Peak-peak jitter</td>
<td>1.4</td>
<td>ns</td>
</tr>
<tr>
<td>$t_r$</td>
<td>Response time</td>
<td>3</td>
<td>(5) ns</td>
</tr>
<tr>
<td>%OS</td>
<td>Waveform overshoot</td>
<td>5</td>
<td>%</td>
</tr>
<tr>
<td>$R_S$</td>
<td>Transmitter source impedance</td>
<td>100</td>
<td>Ω</td>
</tr>
<tr>
<td>$R_L$</td>
<td>Receiver load impedance</td>
<td>100</td>
<td>Ω</td>
</tr>
<tr>
<td>$L_{1}$</td>
<td>Transmitter open circuit inductance</td>
<td>350</td>
<td>µH</td>
</tr>
<tr>
<td>$L_{2}$</td>
<td>Receiver open circuit inductance</td>
<td>350</td>
<td>µH</td>
</tr>
<tr>
<td>$R_{WG}$</td>
<td>Waveform generator source impedance</td>
<td>100</td>
<td>Ω</td>
</tr>
<tr>
<td>$R_{DUT}$</td>
<td>DUT load impedance</td>
<td>100</td>
<td>Ω</td>
</tr>
<tr>
<td>$L_{DUT}$</td>
<td>DUT open circuit inductance</td>
<td>measured in test #25.1.7</td>
<td>µH</td>
</tr>
<tr>
<td>$l$</td>
<td>Cable length</td>
<td>5 to 100 in increments of 5</td>
<td>m</td>
</tr>
<tr>
<td>$T$</td>
<td>Temperature</td>
<td>60</td>
<td>°C</td>
</tr>
<tr>
<td>$V_{out}$</td>
<td>Differential output voltage</td>
<td>950</td>
<td>mV</td>
</tr>
<tr>
<td>$C$</td>
<td>Number of connectors in the channel</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>$M$</td>
<td>Flat loss margin</td>
<td>0.3</td>
<td>dB</td>
</tr>
<tr>
<td>$N_B$</td>
<td>Reference NEXT loss (at 16MHz)</td>
<td>40.5</td>
<td>dB</td>
</tr>
<tr>
<td>$N_M$</td>
<td>NEXT loss scale</td>
<td>16.6</td>
<td>µm/decade</td>
</tr>
</tbody>
</table>

Test Setup:

Using the connecting hardware, connect the device under test to the link simulator and the monitor. Refer to appendix 25.A for a sample configuration.

Procedure:

1. Configure the link simulator to use the model parameters in table 25.2.2-1 with a response time of 3ns and cable length of 5m. The link simulator will send 470,000 64-byte packets and the monitor will count the number of packet errors.

2. Repeat step 1, incrementing the cable length by 5m with each iteration, until the cable length exceeds 100m.

3. Repeats steps 1 and 2 for a response time of 5ns.

Observable Results:

a. There shall be no more than 7 errors for any iteration.
Possible Problems:

- The rate at which the device under test can process incoming packets may make the test duration prohibitive. In such cases, fewer packets may be sent resulting in a lower confidence that a bit error rate of $10^{-8}$ is being met.
Test #25.2.3 – Baseline Wander Correction

Purpose: To verify that the device under test (DUT) can correct worst-case baseline wander events.

References:

[1] IEEE Std. 802.3u-1995, clause 25 – Physical medium dependent (PMD) sublayer and baseband medium, type 100BASE-TX.

Resource Requirements:

- Link simulator
- Monitor
- Connecting hardware

Last Modification: January 26, 1999 (Version 1.0)

Discussion:

The operation of the 100BASE-TX PMD sublayer is defined in clause 25 of IEEE Std. 802.3u-1995. Clause 25 incorporates ANSI X3.263 by reference with the exceptions listed in subclause 25.4. Section 9.2.1 of the ANSI standard defines a set of differential input signals that must be accepted by the Active Input Interface (AII).

The differential input signals specification is intended to ensure that the AII correctly compensates for the wide range of attenuation and phase distortion introduced by cable. The test expands upon the differential input signals concept by verifying that the AII also corrects worst-case baseline wander events.

As the baseline wander model in appendix 25.C shows, the order of the channel’s low frequency response is a function of cable length. The channel response is first-order highpass for a cable length of zero and second-order highpass for cable lengths greater than zero. This test applies the extreme cases of 0m and 100m cable lengths.

For each cable length, two baseline wander patterns are applied to the AII. Note that these patterns will generate the worst-case baseline wander event if, at the first bit of the pattern, the scrambler seed is 390 and the MLT-3 output symbol is 0.

Test Pattern #1: This pattern is given in annex A, section A.2 of ANSI X3.263 but has been truncated to fit in a 1,518-byte packet. It creates a worst-case unidirectional baseline wander event.

Test Pattern #2: This is a modified version of test pattern 1 which has been altered to flip the polarity of the baseline wander at one-quarter and three-quarters of the pattern length. This creates the worst-case bi-directional baseline wander event.

There is no specification for the bit error rate that the AII is expected to maintain in the presence of worst-case baseline wander events. It is expected that incorrect compensation will result in a high error rate and that a rigorous BER measurement is not required. This test will attempt to prove that the BER is greater than $10^{-8}$ for each iteration. Based on the analysis given in appendix 25.D, if more than 7 errors are observed in $3\times10^8$ bits (about 20,000 1518-byte packets), it can be concluded that the error rate is greater
than $10^{-8}$ with less than a 5% chance of error. Note that if no errors are observed, it can be concluded that the BER is no more than $10^{-8}$ with less than a 5% chance of error.

Each test is repeated for transmitter response times of 3 and 5ns. A response time of 3ns maximizes the signal bandwidth while a response time of 5ns results in the worst-case quantization error for digital implementations.

Table 25.2.3-1 summarizes the model parameters used in this test in the context of the link model defined in appendix 25.C.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>1st Order</th>
<th>2nd Order</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>J_{pp}</td>
<td>Peak-peak jitter</td>
<td>1.4</td>
<td>1.4</td>
<td>ns</td>
</tr>
<tr>
<td>t_{r}</td>
<td>Response time</td>
<td>3 (5)</td>
<td>3 (5)</td>
<td>ns</td>
</tr>
<tr>
<td>%OS</td>
<td>Waveform overshoot</td>
<td>5</td>
<td>5</td>
<td>%</td>
</tr>
<tr>
<td>R_{S}</td>
<td>Transmitter source impedance</td>
<td>100</td>
<td>100</td>
<td>Ω</td>
</tr>
<tr>
<td>R_{L}</td>
<td>Receiver load impedance</td>
<td>100</td>
<td>100</td>
<td>Ω</td>
</tr>
<tr>
<td>L_{1}</td>
<td>Transmitter open circuit inductance</td>
<td>350</td>
<td>350</td>
<td>μH</td>
</tr>
<tr>
<td>L_{2}</td>
<td>Receiver open circuit inductance</td>
<td>350</td>
<td>350</td>
<td>μH</td>
</tr>
<tr>
<td>R_{WG}</td>
<td>Waveform generator source impedance</td>
<td>100</td>
<td>100</td>
<td>Ω</td>
</tr>
<tr>
<td>R_{DUT}</td>
<td>DUT load impedance</td>
<td>100</td>
<td>100</td>
<td>Ω</td>
</tr>
<tr>
<td>L_{OUT}</td>
<td>DUT open circuit inductance</td>
<td>measured in test #25.1.7</td>
<td>μH</td>
<td></td>
</tr>
<tr>
<td>l</td>
<td>Cable length</td>
<td>0</td>
<td>100</td>
<td>m</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
<td>60</td>
<td>60</td>
<td>°C</td>
</tr>
<tr>
<td>V_{out}</td>
<td>Differential output voltage</td>
<td>950</td>
<td>950</td>
<td>mV</td>
</tr>
<tr>
<td>C</td>
<td>Number of connectors in the channel</td>
<td>0</td>
<td>4</td>
<td>—</td>
</tr>
<tr>
<td>M</td>
<td>Flat loss margin</td>
<td>0.3</td>
<td>0.3</td>
<td>dB</td>
</tr>
<tr>
<td>N_{B}</td>
<td>Reference NEXT loss (at 16MHz)</td>
<td>40.5</td>
<td>40.5</td>
<td>dB</td>
</tr>
<tr>
<td>N_{M}</td>
<td>NEXT loss scale</td>
<td>16.6</td>
<td>16.6</td>
<td>dB/decade</td>
</tr>
</tbody>
</table>

Test Setup:

Using the connecting hardware, connect the device under test to the link simulator and the monitor. Refer to appendix 25.A for a sample configuration.

Procedure:

1. Configure the link simulator to use the model parameters given in table 25.2.3-1 (1st order column) with a response time of 3ns.
2. The link simulator will send 20,000 1,518-byte packets containing test pattern #1. The monitor will count the number of packet errors.
3. The link simulator will send 20,000 1,518-byte packets containing test pattern #2. The monitor will count the number of packet errors.
4. Repeat steps 1 through 3 after configuring the link simulator to use the model parameters given in table 25.2.3-1 (2nd order column) with a response time of 3ns.
5. Repeat steps 1 through 4 with a response time of 5ns.

Observable Results:

a. There shall be no more than 7 errors for any iteration.

Possible Problems:
The rate at which the device under test can process incoming packets may make the test duration prohibitive. In such cases, fewer packets may be sent resulting in a lower confidence that a bit error rate of $10^{-8}$ is being met.
Test #25.2.4 – Bit Error Rate Verification

Purpose: The verify that the device under test (DUT) can maintain low bit error rate even in the presence of the worst-case input signal-to-noise ratio.

References:

[1] IEEE Std. 802.3u-1995, clause 25 – Physical medium dependent (PMD) sublayer and baseband medium, type 100BASE-TX.

Resource Requirements:

- Link simulator
- Monitor
- Connecting hardware

Last Modification: January 26, 1999 (Version 1.0)

Discussion:

The operation of the 100BASE-TX PMD sublayer is defined in clause 25 of IEEE Std. 802.3u-1995. Clause 25 incorporates ANSI X3.263 by reference with the exceptions listed subclause 25.4. Section 9.2.1 of the ANSI standard defines a set of differential input signals that must be accepted by the Active Input Interface (AII).

The differential input signals specification is intended to ensure that the AII correctly compensates for the wide range of attenuation and phase distortion introduced by cable. While test 25.2.2 performs a thorough evaluation of the adaptive equalizer circuit, it only verifies a relatively high bit error rate. This test attempts to verify a much lower bit error rate in the presence of poor signal-to-noise ratio. Specifically, the bit error rate is verified for cable lengths of 75 and 100m.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>( J_{pp} )</td>
<td>Peak-peak jitter</td>
<td>1.4</td>
<td>ns</td>
</tr>
<tr>
<td>( t_r )</td>
<td>Response time</td>
<td>3 (5)</td>
<td>ns</td>
</tr>
<tr>
<td>%OS</td>
<td>Waveform overshoot</td>
<td>5</td>
<td>%</td>
</tr>
<tr>
<td>( R_s )</td>
<td>Transmitter source impedance</td>
<td>100</td>
<td>Ω</td>
</tr>
<tr>
<td>( R_L )</td>
<td>Receiver load impedance</td>
<td>100</td>
<td>Ω</td>
</tr>
<tr>
<td>( L_1 )</td>
<td>Transmitter open circuit inductance</td>
<td>350</td>
<td>μH</td>
</tr>
<tr>
<td>( L_2 )</td>
<td>Receiver open circuit inductance</td>
<td>350</td>
<td>μH</td>
</tr>
<tr>
<td>( R_{WG} )</td>
<td>Waveform generator source impedance</td>
<td>100</td>
<td>Ω</td>
</tr>
<tr>
<td>( R_{DUT} )</td>
<td>DUT load impedance</td>
<td>100</td>
<td>Ω</td>
</tr>
<tr>
<td>( L_{DUT} )</td>
<td>DUT open circuit inductance</td>
<td>measured in test #25.1.7</td>
<td>μH</td>
</tr>
<tr>
<td>l</td>
<td>Cable length</td>
<td>75 and 100</td>
<td>m</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
<td>60</td>
<td>°C</td>
</tr>
<tr>
<td>( V_{out} )</td>
<td>Differential output voltage</td>
<td>950</td>
<td>mV</td>
</tr>
<tr>
<td>C</td>
<td>Number of connectors in the channel</td>
<td>4</td>
<td>—</td>
</tr>
<tr>
<td>M</td>
<td>Flat loss margin</td>
<td>0.3</td>
<td>dB</td>
</tr>
<tr>
<td>( N_R )</td>
<td>Reference NEXT loss (at 16MHz)</td>
<td>40.5</td>
<td>dB</td>
</tr>
<tr>
<td>( N_M )</td>
<td>NEXT loss scale</td>
<td>16.6</td>
<td>( \frac{dB}{\text{decade}} )</td>
</tr>
</tbody>
</table>
Note that the bit error rate target for 100BASE-TX is not specified in either IEEE Std. 802.3u or ANSI X3.263. This test will attempt to prove that the BER is greater than $10^{-11}$ for each iteration. Based on the analysis given in appendix 25.D, if more than 7 errors are observed in $3 \times 10^{11}$ bits (about 19,770,000 1,518-byte packets), it can be concluded that the error rate is greater than $10^{-11}$ with less than a 5% chance of error. Note that if no errors are observed, it can be concluded that the BER is no more than $10^{-11}$ with less than a 5% chance of error.

This test is repeated for transmitter response times of 3 and 5ns. A response time of 3ns maximizes the signal bandwidth while a response time of 5ns results in the worst-case quantization error for digital implementations.

Table 25.2.4-1 summarizes the model parameters used in this test in the context of the link model defined in appendix 25.C.

**Test Setup:**

Using the connecting hardware, connect the device under test to the link simulator and the monitor. Refer to appendix 25.A for a sample configuration.

**Procedure:**

1. Configure the link simulator to use the model parameters defined in table 25.2.4-1 with a response time of 3ns and a cable length of 75m.
2. The link simulator shall send 19,770,000 1,518-byte packets and the monitor will count the number of packet errors.
3. Repeat steps 1 and 2 for a cable length of 100m.
4. Repeat steps 1 through 3 for a response time of 5ns.

**Observable Results:**

a. There shall be no more than 7 errors for any iteration.

**Possible Problems:**

- The rate at which the device under test can process incoming packets may make the test duration prohibitive. In such cases, fewer packets may be sent resulting in a lower confidence that a bit error rate of $10^{-11}$ is being met.
Appendix 25.A – Test Setup Implementation Examples

Purpose: To present an example of the test setups and connecting hardware that may be used to implement the 100BASE-TX PMD test suite.

Last Modification: February 16, 1999 (Version 1.0)

Discussion:

25.A.1 – Introduction

This appendix describes of the implementation of the 100BASE-TX PMD test suite used by the University of New Hampshire. This description is intended to be an example for those that wish to implement the test suite in their own lab.

Note that in the cases where specific equipment models are specified, any piece of equipment with similar capabilities may be substituted. Also note that the length of the unshielded twisted pair (UTP) cable used to connect the device under test (DUT) to the test jig should be kept as short as possible (less than a foot). If longer lengths are necessary, the impact of the cable on the measurement must be evaluated and steps taken to remove its effect.

25.A-2 – Test Setup Examples

Figure 25.A-1: Example test setup for tests 25.1.1 through 25.1.5 (pulse parameters and transmit jitter).

Figure 25.A-2: Example test setup for tests 25.1.6 and 25.2.1 (return loss).
Figure 25.A-3: Example test setup for test 25.1.7 (transmitter open circuit inductance).

Figure 25.A-4: Example test setup for tests 25.2.2 through 25.2.4 (Active Input Interface tests, DUT is an MII transceiver).
Figure 25.A-5: Example test setup for tests 25.2.2 through 25.2.4 (Active Input Interface tests, DUT is a repeater, switch, router or other packet forwarding device).

Figure 25.A-6: Example test setup for tests 25.2.2 through 25.2.4 (Active Input Interface tests, DUT is a workstation or other single port device).
25.A.3 – Example connecting hardware for test setups (test jigs)

Figure 25.A-7: Test jig #1

Figure 25.A-8: Test jig #2
Figure 25.A-9: Test jig #3
Appendix 25.B – Transmit Jitter Measurement

Purpose: To present a method of jitter measurement that does not require access to the transmit clock.

References:

[1] IEEE Std. 802.3u-1995, subclause 24.2.3.4 – Physical Coding Sublayer (PCS) and Physical Medium Attachment (PMA) Sublayer, type 100BASE-X, Timers.
[2] IEEE Std. 802.3u-1995, clause 25 – Physical Medium Dependent (PMD) sublayer and baseband medium, type 100BASE-TX.

Last Modification: February 15, 1999 (Version 1.0)

Discussion:

25.B.1 – Introduction

Jitter is the difference between the time that an event was expected to occur and the time that the event actually occurred. In the context of a digital communications link, jitter is the offset between the expected position of a signal transition and the actual position of the transition. The magnitude of these offsets must be limited in order to limit the chances of an error on the link.

To measure jitter, the expected position of the signal transition must be known. The reference clock provides an indication of where a transition is supposed to occur. In a typical jitter measurement, the clock input to the transceiver under test is used as the reference clock. However, this signal is not always available. This appendix presents a reliable method of jitter measurement that derives the reference clock directly from the MLT-3 symbol sequence.

25.B.2 – Transmit Jitter Model

Jitter can be thought of as phase modulation of the MLT-3 symbol sequence. The modulation function has independent deterministic and random components. Deterministic jitter is attributed to inter-symbol interference (ISI), duty cycle distortion, and sinusoidal frequency modulation. ISI describes the pulse distortions caused by the bandwidth limitations of the system. The distortion is a function of the pulses that precede and follow pulse of interest and thus is often referred to as data-dependent jitter (DDJ).

Duty cycle distortion (DCD), as measured in test 25.1.3, is peak-to-peak deviation of the measured symbol interval from its expected value. While all jitter components alter the measured symbol interval, DCD is a static deviation that is a function of difference between the propagation of signal rise and fall. The distribution of DDJ is influenced by DCD.

Further modulation of the baseband signal is caused by the coupling of sinusoidal signals into the phase-locked loop circuit. Usually this modulation is from low frequency signals that sneak in through the power supply. Since there is no clear relationship between this form of jitter and the MLT-3 symbol sequence, it is typically referred to as uncorrelated deterministic jitter (UDJ).

Random jitter is modeled as white noise. An offset whose amplitude is picked from a zero-mean normal distribution is applied to each signal transition. The offsets are assumed to be independent, that is, the amplitude of the current offset is not influenced by the amplitudes of the preceding or following offsets. Random jitter is typically characterized by the standard deviation of the distribution from which the amplitudes are drawn. Note that a peak-to-peak value for the random jitter cannot be computed without first setting the probability that the given value will be exceeded. Given that probability, the peak-to-peak random jitter is a function of the standard deviation.
Given the probabilistic nature of random jitter, it is useful to also model deterministic jitter with a distribution function. The total jitter distribution then becomes the convolution of the deterministic and random distributions. This concept is illustrated in figure 25.B-1.

Figure 25.B-1: The total jitter distribution is the convolution of the deterministic and random distributions.

The measurement technique presented in this appendix assumes that the dominant contributions to the deterministic jitter are data-dependent jitter and duty cycle distortion. This implies that for a repeating sequence of \( N \) MLT-3 symbols, there can be no more than \( N \) distinct values for the deterministic jitter. Since the random jitter distribution is assumed to be zero-mean, the deterministic jitter value for a given signal transition is the mean jitter observed in that transition. The deterministic jitter distribution is simply a histogram of the \( N \) deterministic jitter values.

### 25.B.3 – Derivation of Reference Clock

The reference clock indicates where a signal transition is supposed to occur. The period of the reference clock is referred to as the unit interval (UI) and it is the duration of one MLT-3 symbol. This measurement technique derives the unit interval directly from the symbol sequence. The derivation assumes that the UI is constant over the interval of estimation.

Refer to figure 25.B-2. Let \( t_n \) be the time a signal transition crosses 50% of the differential output voltage, \( V_{out} \). If \( t_1 \) is the position of the first signal transition, then the subscript \( n \) can be computed using equation 25.B-1.

\[
    n = \text{round} \left( \frac{t_n - t_1}{8\text{ns}} \right)
\]

(Equation 25.B-1)

Note that 8ns is the nominal unit interval. Equation 25.B-1 is incorrect if \( (t_n-t_1)/(n-1) \) differs from the nominal unit interval by more than 4ns. Such a difference is caused by deviation of the actual unit interval from the nominal value and the difference between the jitter in the first and \( n^{th} \) transitions. The actual UI of a conformant device will not deviate from the nominal value by more than 0.005%. Assuming that the
difference between the jitter in the first and \( n \)th transitions is less than 1.4ns, the worst-case UI will make equation 25.B-1 value for \( n \) less than 6,500.

![Figure 25.B-2: MLT-3 symbol sequence and corresponding reference clock.](image)

Let \( N \) be the last signal transition in the record. Assuming that \( N \) is less than 6,500, the difference between the positions of the first and \( N \)th transitions is given as equation 25.B-2.

\[
t_N - t_1 = (N - 1)UI + e_N - e_1
\]  
(Equation 25.B-2)

Divide equation 25.B-2 by \((N-1)\) to produce equation 25.B-3.

\[
\frac{t_N - t_1}{N - 1} = UI + \frac{e_N - e_1}{N - 1}
\]  
(Equation 25.B-3)

Thus, we have produced an estimate of the unit interval whose error is proportional to the difference between the jitter in the first and \( N \)th transitions. The estimate is formally stated in equation 25.B-4.

\[
UI_{est} = \frac{t_N - t_1}{N - 1} = UI + \frac{e_N - e_1}{N - 1}
\]  
(Equation 25.B-4)

25.B.4 – Computation of the Timing Error

An estimate of the time offset at each signal transition, \( e_{n,est} \), is given in equation 25.B-5.

\[
e_{n,est} = t_n - (n - 1)UI_{est}
\]  
(Equation 25.B-5)


\[
e_{n,est} = t_n - (n - 1)UI - (n - 1)\frac{e_N - e_1}{N - 1}
\]  
(Equation 25.B-6)

Manipulating equation 25.B-3 and making is applicable to all \( n \), we produce equation 25.B-7.
\[ t_n - (n-1)UI = t_1 + e_n - e_1 \]  
(Equation 25.B-7)


\[ e_{n,est} = t_1 + e_n - e_1 - (n-1) \frac{e_N - e_1}{N-1} \]  
(Equation 25.B-8)

Thus, the estimate of the jitter in the \( n^{th} \) signal transition contains an error term that is a linear function of \( n \). Figure 25.B-3 shows \( e_{n,est} \) as a function of \( n \). In the figure, the error slope \((e_N-e_1)/(N-1)\) is labeled \( m \) and the error intercept \((t_1-e_1)\) is labeled \( b \).

![Figure 25.B-3: Estimated jitter as a function of \( n \).](image)

The slope and intercept of the error term are functions of the unknowns \( e_1 \) and \( e_N \). Assuming that the total jitter distribution has a mean value of zero, \( m \) and \( b \) may be found by performing a least squares line fit to the estimated jitter. Given \( m \) and \( b \), the actual jitter in the \( n^{th} \) transition can be computed using equation 25.B-9.

\[ e_n = e_{n,est} - b + (n-1)m \]  
(Equation 25.B-9)

25.B.4 – Jitter Statistics

For each value of \( n \), the mean and standard deviation of the jitter are estimated. The mean is the value of the deterministic jitter for that signal transition. The standard deviation completely characterizes the random jitter for that transition. If \( K \) samples of \( e_n \) are taken, the mean value of \( e_n \) can be estimated using equation 25.B-10.

\[ m_n = \frac{1}{K} \sum_{k=1}^{K} e_{n,k} \]  
(Equation 25.B-10)

The variance, which is the standard deviation squared, can be estimated using equation 25.B-11.

\[ s_n^2 = \frac{1}{(K-1)} \sum_{k=1}^{K} (e_{n,k} - m_n)^2 \]  
(Equation 25.B-11)
25.B.5 – Computation of Total Transmit Jitter

The reference pattern for the transmit jitter measurement is scrambled, MLT-3 encoded, /I/ code-groups. This pattern repeats once every 8,188 symbols and it contains 4,092 signal transitions. This implies that there are no more than 4,092 distinct values for data-dependent jitter. It has been assumed that data-dependent jitter and duty cycle distortion are the dominant contributors to deterministic jitter. If this is the case, then there are no more than 4,092 distinct values for deterministic jitter.

Thus, a deterministic jitter distribution can be constructed by measuring the mean at each of the MLT-3 transitions in the pattern and building a histogram. The total jitter distribution is the convolution of this histogram and a zero-mean normal distribution function. The standard deviation of the normal distribution is the value estimated from one of the signal transitions.

Since the jitter has a random component, a peak-to-peak total jitter value cannot be computed without specifying the probability that the value will be exceeded. Referring to figure 25.B-4, the probability that a given peak-to-peak value will be exceeded is the area under the tails of the distribution (the shaded regions).

![Figure 25.B-4: Peak-to-peak total jitter.](image-url)
Appendix 25.C – Link Model

Purpose: To define comprehensive models of the TP-PMD transmitter and channel.

References:

[6] Ibid., Annex A.1 (normative) – Test channel requirements (twisted pair model)
[8] Ibid., section 10.2.4.6 – Attenuation (Horizontal UTP Cable).
[9] Ibid., section 10.2.4.7 – Near End Crosstalk (NEXT) Loss (Horizontal UTP Cable).
[10] Ibid., section 10.4.4.1 – Attenuation (Connecting Hardware for UTP Cable).
[11] Ibid., section 10.4.4.2 – NEXT Loss (Connection Hardware for UTP Cable).
[12] Ibid., section 10.5.4.1 – Attenuation (UTP Patch Cords and Cross-Connect Jumpers).

Last Modification: January 28, 1999 (Version 1.0)

Discussion:

25.C.1 – Introduction

Figure 25.C-1 shows a block diagram of the link model used in test #25.2.2 – Adaptive Equalization, test #25.2.3 – Baseline Wander Compensation, and test #25.2.4 – Bit Error Rate Verification. Each component of the block diagram is described below.

![Link model block diagram](image)

Figure 25.C-1: Link model block diagram

25.C.2 – Transmit Jitter

The transmit jitter model applies a random timing offset to each MLT-3 transition. The amplitude of the offset is chosen from zero-mean uniform probability distribution function. While jitter is typically modeled with a normal distribution function, this model uses a uniform distribution so that larger amplitudes are chosen more frequently.

A sequence of numbers, \( x \), produced by a uniform random number generator can be converted to a sequence of suitable timing offsets, \( e \), using equation 25.C-1.

\[
e = J_{pp} \frac{x - \text{mean}(x)}{\max(x) - \min(x)}
\]

(Equation 25.C-1)
Equation 25.C-1 guarantees that the transmit jitter will have zero mean and a peak-peak value of $J_{pp}$. Note that $J_{pp}$ is specified to be less than 1.4ns [2].

25.C.3 – Transmitter Step Response

The step response of an MLT-3 line driver is modeled as a second-order lowpass filter. The transfer function of this filter is given in equation 25.C-2.

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \quad \text{(Equation 25.C-2)}$$

Note that $s$ is shorthand for $j2\pi f$ where $j$ is the square-root of $-1$ and $f$ is frequency in Hertz. The parameter $\zeta$ is referred to as the damping ratio and is related to the percent overshoot of the step response. The relationship is given in equation 25.C-3.

$$\%OS = \exp\left(-\pi \frac{\zeta}{\sqrt{1-\zeta^2}}\right) \quad \text{(Equation 25.C-3)}$$

There is no precise analytical relationship between $\zeta$ and the response time, $t_r$. However, for a given $\zeta$, there is a relationship between $t_r$ and $\omega_n$. To understand this relationship, consider the filter’s step response (underdamped case) given in equation 25.C-4.

$$h_{lp}(t) = 1 - Ce^{-\zeta \omega_n t} \cos\left(\frac{\omega_n t + \varphi}{C}\right) \quad \text{(Equation 25.C-4)}$$

$$C = \frac{1}{\sqrt{1-\zeta^2}}$$

$$\varphi = \tan^{-1}(C \zeta)$$

Recall that the response time is the time difference between the points where the step crosses 10% and 90% of its steady state voltage. Given $\zeta$, iterative methods can be used to solve $h_{lp}(t) = 0.1$ and $h_{lp}(t) = 0.9$ for $\omega_n t$. The difference between these two solutions is $\omega_n t_r$ from which $\omega_n$ can be easily derived for a given $t_r$.

Note that the waveform overshoot is specified to be less than 5% and the response time is specified to be between 3 and 5ns [2].

25.C.4 – Baseline Wander

The baseline wander model is intended to duplicate the DC rejection properties of the channel. The low frequency response is determined by the magnetics at the transmitter, the cable, and the magnetics at the receiver. This model assumes that the frequencies being considered are low enough to model the cable as a lumped resistance. This model also assumes that the magnetics at the transmitter and receiver are both ideal transformers with ideal coupling and a 1:1 turns ratio. The equivalent circuit of the channel is given in figure 25.C-2.
The transfer function $V_o/V_s$ is given in equation 25.C-5.

$$H_{hp}(s) = \frac{V_o}{V_s} = \frac{b_2 s^2}{a_2 s^2 + a_1 s + a_0} \quad \text{(Equation 25.C-5)}$$

$$b_2 = L_1 L_2 R_L$$

$$a_2 = L_1 L_2 (R_S + 2 R_C R_L)$$

$$a_1 = R_S R_L (L_1 + L_2) + 2 R_C (R_S L_2 + L_1 R_L)$$

$$a_0 = 2 R_C R_S R_L$$

Note that the transfer function is a second-order highpass filter. The parameter $R_C$, which is the resistance of each conductor in the twisted pair wire, is a function of the cable length, $l$. $R_C$ is specified to be no more than $9.38 \Omega$ per conductor for 100m of cable at 20°C [7]. Assuming a linear increase in $R_C$ per unit length, $R_C$ is given in equation 25.C-6.

$$R_C = 0.0938 \cdot l \quad \text{(Equation 25.C-6)}$$

It is also assumed that $R_C$ will increase 0.4% per degree Celsius above 20°C. Note that as the length of the cable approaches zero, $R_C$ also approaches zero. As $R_C$ approaches zero, the transfer function approaches a first-order highpass response. This transfer function is given in equation 25.C-7.

$$H_{hp}(s) \bigg|_{R_C=0} = \frac{s L_1 L_2 R_L}{s L_1 L_2 (R_S + R_L) + R_S R_L (L_1 + L_2)} \quad \text{(Equation 25.C-7)}$$

Note that the self inductance of the transformer coils, $L_1$ and $L_2$, is specified to be at least 350µH [1].

25.C.5 – DUT Magnetics Compensation

The baseline wander model includes the receive magnetics and line termination. However, these components are also embedded in the device under test (DUT). To eliminate this duplicity, a filter is constructed that compensates for the magnetics in the DUT and allows the baseline wander model to completely define the channel’s low frequency response.

Consider the typical test configuration in which a waveform generator is connected to the DUT. An equivalent circuit for this configuration is shown in figure 25.C-3.
The magnetics compensation filter is defined by the transfer function $V_s/V_o$ which is given in equation 25.C-8.

$$
H_{DUT}(s) = \frac{V_s}{V_o} = \frac{sL_{DUT}(R_{DUT} + R_{WG}) + R_{DUT}R_{WG}}{sL_{DUT}R_{DUT}}
$$

(Equation 25.C-8)

25.C.6 – Cable Attenuation

Cable attenuation is typically assumed to be a pure "skin effect" loss. The skin effect describes the tendency of AC currents to ride along the surface of a conductor. Higher frequencies correspond to a thinner skin and a higher loss. The transfer function of a pure skin effect loss is given in equation 25.C-9.

$$
H_{\text{skin}}(s) = \frac{V_o}{V_i} = e^{-k_1\sqrt{f}} e^{-\beta_1\sqrt{f}}
$$

(Equation 25.C-9)

In equation 25.C-9, $l$ denotes the length of the cable in meters, $f$ is the frequency in Hertz, and $k$ is a constant that will be derived from the standard for category 5 cable. The upper bound on attenuation in decibels for 100m of category 5 cable at 20°C is given in equation 25.C-10 [8].

$$
\text{Attenuation}(f) = 1.967 \times 10^{-3} \cdot \sqrt{f} + 2.3 \times 10^{-8} \cdot f + \frac{5 \times 10^3}{\sqrt{f}}
$$

(Equation 25.C-10)

Equation 25.C-10 is valid for frequencies in the range of 0.772 to 100MHz. Note that this expression is a skin effect loss, $f^{1/2}$, with two correction terms. The linear term is a high frequency correction that has a significant impact on the cable attenuation (i.e. greater than 2dB at 100MHz). The $f^{1/2}$ term is a low frequency correction that has little impact (i.e. less than 0.1dB) on the attenuation for frequencies greater than 0.772MHz and approaches an arbitrarily large value as $f$ approaches zero. The pure skin effect model is modified to incorporate the high frequency correction and the baseline wander model is left to define the low frequency response. The transfer function for the modified cable model is given in equation 25.C-11.

$$
H_{\text{cable}}(f) = e^{-k_1\sqrt{f} + k_2f} e^{-\beta_1\sqrt{f}}
$$

(Equation 25.C-11)

The values of $k_1$ and $k_2$ can be derived from equation 25.C-10 assuming a linear increase in loss per unit length. These values are given in table 25.C-1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k_1$</td>
<td>$2.265 \times 10^{-6}$</td>
</tr>
<tr>
<td>$k_2$</td>
<td>$2.648 \times 10^{-11}$</td>
</tr>
</tbody>
</table>
Note that $k_1$ and $k_2$ are also allowed to increase up to 0.4% per degree Celsius above room temperature ($20^\circ$C) [8].

**25.C.7 – Flat Loss**

Losses in transmission path that are not attributed to the skin effect are referred to as "flat". Flat losses can cause problems for equalizer strategies that assume a pure skin effect loss and use peak detection to determine the required equalization level. Four sources of flat loss are identified: transmit magnetics, PC card "dongles", connectors, and receive magnetics.

*Transmit Magnetics*

The insertion loss of the transmit magnetics affects the amplitude of the signal launched into the channel. While this loss is not known, the amplitude of the signal at the 8-pin modular jack, $V_{out}$, is specified to be between 950 and 1050mV [2]. This can be translated to a flat loss (gain) relative to a nominal 1000mV transmit amplitude.

*PC Card "Dongles"*

The thin PC card is not able to accommodate an 8-pin modular jack so a "dongle" is typically used to map the standard interface to a more compatible interface. The dongle typically consists of an 8-pin modular jack, a short length of cable, and the mate to the connector provided by the PC card. While the dongle does introduce some flat loss, the transmit amplitude at the 8-pin modular jack must still be between 950 and 1050mV. Therefore, the flat loss of the dongle is not included in this model.

*Connectors*

Each connector in the transmit path adds to the flat loss. The connector at the transmitter is accounted for in the transmit amplitude specification. The connector at the receiver is built into the device under test and does not need to be modeled. However, up to four connectors are allowed in the cable infrastructure [13]. While the insertion loss of a category 5 connector is specified as a function of frequency [10], a simple uniform loss model is adopted. This model assumes that each connector adds 0.2dB of loss at all frequencies.

*Receive Magnetics*

The magnetics at the receiver are built into the device under test and do not need to be modeled. However, the insertion loss of the magnetics will vary from package to package due to process variations and multiplicity of vendors. An additional flat loss margin of 0.4dB is introduced to account for this variation.

The transfer function for the total flat loss is given in equation 25.C-12. In equation 25.C-12, $C$ denotes the number connectors in the cable infrastructure and $M$ is the flat loss margin.

$$H_{flat}(f) = \frac{V_{out}}{IV} \cdot 10^{-0.2C \cdot 10^{\frac{-M}{20}}}$$

(Equation 25.C-12)

**25.C.8 – NEXT Loss**

Time varying currents in one wire tend to induce time varying currents in nearby wires. This coupling is referred to as crosstalk. When the currents generated by the local transmitter induce currents on the receive channel, the coupling is referred to as near-end crosstalk (NEXT). NEXT coupling increases the additive noise at the receiver and thereby degrades the signal-to-noise ratio. The specifications of NEXT performance are typically given in terms of the NEXT loss which is the inverse of the NEXT coupling.
The lower bound on the NEXT loss in decibels for 100m of category 5 cable is given in equation 25.C-13 [9].

\[ \text{NEXT}_{cable}(f) = 64\,\text{dB} - 15 \cdot \log_{10}\left( \frac{f}{0.772\,\text{MHz}} \right) \]  

(Equation 25.C-13)

Equation 25.C-13 is valid for frequencies in the range of 0.772 to 100MHz. The lower bound on the NEXT loss in decibels for a category 5 connector is given in equation 25.C-14 [11].

\[ \text{NEXT}_{c}(f) = 56\,\text{dB} - 20 \cdot \log_{10}\left( \frac{f}{16\,\text{MHz}} \right) \]  

(Equation 25.C-14)

Equation 25.C-14 is valid for frequencies in the range of 1 to 100MHz\(^1\). Assuming that all contributions to the total NEXT coupling have unit amplitude sources and that all the contributions add in phase, the total NEXT loss of the channel can be computed as a simple voltage sum. This sum is given in equation 25.C-15.

\[ \text{NEXT}_{\text{channel}}(f) = 20 \cdot \log_{10}\left( \sum_{i} 10^{-\text{NEXT}_{i}(f)/20} \right) \]  

(Equation 25.C-15)

In equation 25.C-15, \( \text{NEXT}_{i}(f) \) denotes the contribution of the \( i \)th component. It is assumed that the dominant contributions to the NEXT loss of the channel are the cable and nearest two connectors [13]. Therefore, the sum would have three terms.

A model is adopted that duplicates the NEXT loss of equation 25.C-15 but is more easily scaled. This model is given in equation 25.C-16.

\[ \text{NEXT}(f) = N_B - N_M \log_{10}\left( \frac{f}{16\,\text{MHz}} \right) \]  

(Equation 25.C-16)

The parameters \( N_B \) and \( N_M \) in equation 25.C-16 are derived from a least mean squares curve fit to the data derived from equation 25.C-15. The values of these parameters are given in table 25.C-2.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>( N_B )</td>
<td>40.5 dB</td>
</tr>
<tr>
<td>( N_M )</td>
<td>16.6 dB/decade</td>
</tr>
</tbody>
</table>

The NEXT loss values derived from this model do not deviate from the values derived from equation 25.C-15 by more than 0.5dB for frequencies in the range of 1 to 100MHz.

At this point, all that remains is a definition for the input to the NEXT loss model. Since the NEXT function is essentially a highpass filter, the coupled voltage is maximized by making the response time as fast as possible and the transmit amplitude as large as possible. To this end, the input is given a response time of 3ns, a differential output voltage of 1050mV, and a waveform overshoot of 5%. Furthermore, the input to the NEXT model is delay modulated so that the peak value of the NEXT function sweeps across the bit interval.

\(^1\) Note that the absolute minimum NEXT loss of a category 5 connector is specified to be 65dB [10]. However, this specification seems to be ignored in the computation of the total NEXT loss for the channel [13]. This model also ignores this absolute minimum limit because the NEXT coupling must approach 0 as \( f \) approaches 0, i.e. there is no NEXT coupling at DC.
### 25.C.9 – Summary of Model Parameters

#### Table 25.C-3: Summary of model parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>J&lt;sub&gt;pp&lt;/sub&gt;</td>
<td>Peak-peak jitter</td>
<td>0</td>
<td>1.4</td>
<td>ns</td>
</tr>
<tr>
<td>t&lt;sub&gt;r&lt;/sub&gt;</td>
<td>Response time</td>
<td>3</td>
<td>5</td>
<td>ns</td>
</tr>
<tr>
<td>%OS</td>
<td>Waveform overshoot</td>
<td>0</td>
<td>5</td>
<td>%</td>
</tr>
<tr>
<td>R&lt;sub&gt;s&lt;/sub&gt;</td>
<td>Transmitter source impedance</td>
<td></td>
<td>100</td>
<td>Ω</td>
</tr>
<tr>
<td>R&lt;sub&gt;L&lt;/sub&gt;</td>
<td>Receiver load impedance</td>
<td></td>
<td>100</td>
<td>Ω</td>
</tr>
<tr>
<td>L&lt;sub&gt;1&lt;/sub&gt;</td>
<td>Transmitter open circuit inductance</td>
<td></td>
<td>350</td>
<td>µH</td>
</tr>
<tr>
<td>L&lt;sub&gt;2&lt;/sub&gt;</td>
<td>Receiver open circuit inductance</td>
<td></td>
<td>350</td>
<td>µH</td>
</tr>
<tr>
<td>R&lt;sub&gt;WG&lt;/sub&gt;</td>
<td>Waveform generator source impedance</td>
<td></td>
<td>100</td>
<td>Ω</td>
</tr>
<tr>
<td>R&lt;sub&gt;DUT&lt;/sub&gt;</td>
<td>DUT load impedance</td>
<td></td>
<td>100</td>
<td>Ω</td>
</tr>
<tr>
<td>L&lt;sub&gt;DUT&lt;/sub&gt;</td>
<td>DUT open circuit inductance</td>
<td></td>
<td>measured in test #25.1.7</td>
<td>µH</td>
</tr>
<tr>
<td>l</td>
<td>Cable length</td>
<td>0</td>
<td>100</td>
<td>m</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
<td>20</td>
<td>60</td>
<td>°C</td>
</tr>
<tr>
<td>V&lt;sub&gt;out&lt;/sub&gt;</td>
<td>Differential output voltage</td>
<td>950</td>
<td>1050</td>
<td>mV</td>
</tr>
<tr>
<td>C</td>
<td>Number of connectors in the channel</td>
<td>0</td>
<td>4</td>
<td>—</td>
</tr>
<tr>
<td>M</td>
<td>Flat loss margin</td>
<td>0</td>
<td>0.4</td>
<td>dB</td>
</tr>
<tr>
<td>N&lt;sub&gt;B&lt;/sub&gt;</td>
<td>Reference NEXT loss (at 16MHz)</td>
<td>40.5</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td>N&lt;sub&gt;M&lt;/sub&gt;</td>
<td>NEXT loss scale</td>
<td>—</td>
<td>16.6</td>
<td>an/decade</td>
</tr>
</tbody>
</table>
Appendix 25.D – Bit Error Rate Measurement

**Purpose:** To develop a procedure for bit error rate measurement through the application of statistical methods.

**References:**


**Last Modification:** January 22, 1999 (Version 1.0)

**Discussion:**

25.D.1 – Introduction

One key performance parameter for all digital communication systems is the bit error rate (BER). The bit error rate is the probability that a given bit will be received in error. The BER may also be interpreted as the average number of errors that would occur in a sequence of n bits.

While the bit error rate concept is quite simple, the measurement of this parameter poses some significant challenges. The first challenge is deciding the number of bits, n, that must be sent in order to make a reliable measurement. For example, if 10 bits were sent and no errors were observed, it would be foolish to conclude that the bit error rate is zero. However, common sense tells us that the more bits that are sent without error, the more reasonable this conclusion becomes. In the interest of keeping the test duration as short as possible, we want to send the smallest number of bits that provides us with an acceptable margin of error.

This brings us to the second challenge of BER measurement. Given that we send n bits, what reasonable statements can be made about the bit error rate based on the number of errors observed? Returning to the previous example, if 10 bits are sent and no errors are observed, it is unreasonable to say that the BER is zero. However, it may be more reasonable to say that the BER is $10^{-1}$ or better. Furthermore, you are absolutely certain that the bit error rate is not 1.

In this appendix, two statistical methods, hypothesis testing and confidence intervals, are applied to help us answer the questions of how many bits we should be sent and what conclusions can be made from the test results.

25.D.2 – Statistical Model

A statistical model for the number of errors that will be observed in a sequence of n bits must be developed before we apply the aforementioned statistical methods. For this model, we will assume that every bit received is an independent Bernoulli trial. A Bernoulli trial is a test for which there are only two possible outcomes (i.e. a coin toss). Let us say that $p$ is the probability that a bit error will occur. This implies that the probability that a bit error will not occur is $(1-p)$.

The property of independence implies that the outcome of one Bernoulli trial has no effect on the outcomes of the other Bernoulli trials. While this assumption is not necessarily true for all digital communications systems, it is still used to simplify the analysis.

The number of successful outcomes, $k$, in $n$ independent Bernoulli trials is taken from a binomial distribution. The binomial distribution is defined in equation 25.D-1.

$$b(k; n, p) = C_{n,k} p^k (1-p)^{n-k}$$  \hspace{1cm} (Equation 25.D-1)
Note that in this case, a successful outcome is a bit error. The coefficient $C_{n,k}$ is referred to as the binomial coefficient or “n-choose-k”. It is the number of combinations of k successes in n trials. Returning to coin toss analogy, there are 3 ways to get 2 heads from 3 coin tosses: (tails, heads, heads), (heads, tails, heads), and (heads, heads, tails). Therefore, $C_{3,2}$ would be 3. A more precise mathematical definition is given in equation 25.D-2.

$$C_{n,k} = \frac{n!}{k!(n-k)!}$$  \hspace{1cm} \text{(Equation 25.D-2)}

This model reflects the fact that for a given probability, p, a test in which n bits are sent could yield many possible outcomes. However, some outcomes are more likely than others and this likelihood principle allows us to make conclusions about the BER for a given test result.

### 25.D.3 – Hypothesis Test

The statistical method of hypothesis testing will allow us to establish a value of n, the number of bits to be sent, for the BER measurement. Naturally, the test begins with a hypothesis. In this case, we will hypothesize that the probability of a bit error, p, for the system is less than some target BER, $P_0$. This hypothesis is stated formally in equation 25.D-3.

$$H_0 : p \leq P_0$$  \hspace{1cm} \text{(Equation 25.D-3)}

We now construct a test for this hypothesis. In this case, we will take the obvious approach of sending n bits and counting the number errors, k. We will interpret the test results as shown in table 25.D-1.

<table>
<thead>
<tr>
<th>Test Result</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>k = 0</td>
<td>$H_0$ is true</td>
</tr>
<tr>
<td>k &gt; 0</td>
<td>$H_0$ is false</td>
</tr>
</tbody>
</table>

We now acknowledge the possibility that our conclusion is in error. Statisticians define two different categories of error. A type I error is made when the hypothesis is rejected even though it is true. A type II error is made when the hypothesis is accepted even though it is false. The probability of a type I and a type II error are denoted as $\alpha$ and $\beta$ respectively. Table 25.D-2 defines type I and type II errors in the context of this test.

<table>
<thead>
<tr>
<th>Type I Error</th>
<th>k &gt; 0 even though $p \leq$ BER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type II Error</td>
<td>k = 0 even though $p &gt;$ BER</td>
</tr>
</tbody>
</table>

A type II error is arguably more serious and we will define n so that the probability of a type II error, $\beta$, is acceptable. The probability of a type II error is given in equation 25.D-4.

$$\beta = (1 - p)^n < (1 - P_0)^n$$  \hspace{1cm} \text{(Equation 25.D-4)}

Equation 25.D-4 illustrates that the upper bound on the probability of a type II error is a function of the target bit error rate and n. By solving this equation for n, we can determine the minimum number of bits that need to be sent in order to verify that p is less than a given $P_0$ for a given probability of type II error.

$$n > \frac{\ln(\beta)}{\ln(1 - P_0)}$$  \hspace{1cm} \text{(Equation 25.D-5)}
Let us now examine the probability of a type I error. The definition of $\alpha$ is given in equation 25.D-6.

$$\alpha = 1 - (1 - p)^n \leq 1 - (1 - P_o)^n$$  

(Equation 25.D-6)

Equation 25.D-6 shows that while we increase $n$ to make $\beta$ small, we simultaneously raise the upper bound on $\alpha$. This makes sense since the likelihood of observing a bit error increases with the number of bits that you send, no matter how small bit error rate is. Therefore, while the hypothesis test is very useful in determining a reasonable value for $n$, we must be very careful in interpreting the results. Specifically, if we send $n$ bits and observe no errors, we are confident that $p$ is less than our target bit error rate (our level of confidence depends on how small we made $\beta$). However, if we do observe bit errors, we cannot be quick to assume that the system did not meet the BER target since the probability of a type I error is so large. In the case of $k > 0$, a confidence interval can be used to help us interpret $k$.

25.D.4 – Confidence Interval

The statistical method of confidence intervals will be used to establish a lower bound on the bit error rate given that $k > 0$. A confidence interval is a range of values that is likely to contain the actual value of some parameter of interest. The interval is derived from the measured value of the parameter, referred to as the point estimate, and the confidence level, $(1-\alpha)$, the probability that the parameter’s actual value lies within the interval.

A confidence interval requires a statistical model of the parameter to be bounded. In this case, we use the statistical model for $k$ given in equation 25.D-1. If we were to compute the area under the binomial curve for some interval, we would be computing the probability that $k$ lies within that interval. This concept is shown in figure 25.D-1.

![Figure 25.D-1: Computing the probability that $z \geq -1.645$ (standard normal distribution).](image)

To compute the area under the binomial curve, we need a value for the parameter $p$. To compute a confidence interval for $k$, you assume that $k/n$, the point estimate for $p$, is the actual value of $p$. 
Note that figure 25.D-1 illustrates the computation of the lower tolerance bound for \( k \), a special case where the confidence interval is \([k_1, +\infty)\). A lower tolerance bound implies that in a percentage of future tests, the value of \( k \) will be greater than \( k_1 \). In other words, actual value of \( k \) is greater than \( k_1 \) with probability equal to the confidence level. Therefore, if \( k_1/n \) is greater than \( P_0 \), we can say that the system does not meet the target bit error rate with probability \((1-\alpha)\). By reducing \( \alpha \), we reduce the probability of making a type I error.

To determine the value of \( k_1 \), it is useful to assume that the binomial distribution can be approximated by a normal (Gaussian) distribution when \( n \) is large. The mean and variance of this equivalent distribution are the mean and variance of the corresponding binomial distribution (given in equations 25.D-7 and 25.D-8).

\[
\mu_k = np \tag{Equation 25.D-7}
\]
\[
\sigma_k^2 = np(1-p) \tag{Equation 25.D-8}
\]

Now, let \( \alpha \) be the probability that \( Z \leq z_\alpha \) where \( Z \) is a standard normal random variable. A standard random variable is one whose mean is zero and whose variance is one. The random variable \( K \) can be standardized as shown in equation 25.D-9.

\[
Z = \frac{K - \mu_k}{\sigma_k} \tag{Equation 25.D-9}
\]

Note that \( Z \) is greater than \( z_\alpha \) with probability \((1-\alpha)\), the confidence level. We apply this inequality to equation 25.D-9 and solve for \( K \) to get equation 25.D-10.

\[
K > \mu_k + z_\alpha \sigma_k \\
K > np + z_\alpha \sqrt{np(1-p)} \tag{Equation 25.D-10}
\]

As mentioned before, we assume that \( p \) is \( k/n \). We can now generate an expression for \( k_1 \), the value that \( K \) will exceed with probability \((1-\alpha)\). This expression is given in equation 25.D-11.

\[
k_1 = k + z_\alpha n \sqrt{\frac{(k/n)(1-k/n)}{n}} \tag{Equation 25.D-11}
\]

Finally, we argue that if \( K \) exceeds \( k_1 \), then the actual value of \( p \) must exceed \( k_1/n \). Therefore, we can generate an expression for \( p_1 \), the value that \( p \) will exceed with probability \((1-\alpha)\), and compare it to the target bit error rate. By applying this comparison (given in equation 25.D-12) the probability of a type I error can be greatly reduced. For example, by setting \( z_\alpha \) to –1.645, the probability of a type I error is reduced to 5%.

\[
P_0 \geq p_1 = \frac{k_1}{n} = \frac{k}{n} + z_\alpha \sqrt{\frac{(k/n)(1-k/n)}{n}} \tag{Equation 25.D-12}
\]

25.D.5 – Sample Test Construction

We now compress the theory presented in sections 25.D-2 through 25.D-4 into two inequalities that may be used to construct a bit error rate test. First, we take equation 25.D-5 and assume that \( \ln(1-P_0) \) is \(-P_0\) (valid for \( P_0 \) much less than one). The results is equation 25.D-13.

\[
n > \frac{-\ln(\beta)}{P_0} \tag{Equation 25.D-13}
\]
Second, we examine equation 25.D-12. Assuming that \((1-k/n)\) is very close to 1 and substituting \(-\ln(\beta)/P_0\) for \(n\), we get equation 25.D-14.

\[-\ln(\beta) \geq k + z_{\alpha} \sqrt{k}\]

(Equation 25.D-14)

The largest value of \(k\) that satisfies equation 25.D-14 is \(k_l\). The benefit of these two equations is that a bit error rate test is uniquely defined by \(\beta\) and \(\alpha\) and that the test scales with \(P_0\). Table 25.D-3 defines \(n\) and \(k_l\) in terms of \(\beta\) and \(\alpha\).

<table>
<thead>
<tr>
<th>(\beta)</th>
<th>(-\ln(\beta))</th>
<th>(n)</th>
<th>(\alpha)</th>
<th>(z_{\alpha})</th>
<th>(k_l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>2.30</td>
<td>2.30/P_0</td>
<td>0.10</td>
<td>-1.29</td>
<td>5</td>
</tr>
<tr>
<td>0.10</td>
<td>2.30</td>
<td>2.30/P_0</td>
<td>0.05</td>
<td>-1.65</td>
<td>6</td>
</tr>
<tr>
<td>0.05</td>
<td>3.00</td>
<td>3.00/P_0</td>
<td>0.05</td>
<td>-1.65</td>
<td>7</td>
</tr>
<tr>
<td>0.05</td>
<td>3.00</td>
<td>3.00/P_0</td>
<td>0.01</td>
<td>-2.33</td>
<td>10</td>
</tr>
<tr>
<td>0.01</td>
<td>4.60</td>
<td>4.60/P_0</td>
<td>0.05</td>
<td>-1.65</td>
<td>9</td>
</tr>
<tr>
<td>0.01</td>
<td>4.60</td>
<td>4.60/P_0</td>
<td>0.01</td>
<td>-2.33</td>
<td>13</td>
</tr>
</tbody>
</table>

As an example, let us construct a test to determine if a given system is operating at a bit error rate of \(10^{-12}\) or better. Given that a 5% chance of a type I error is acceptable, the test would take the form of sending \(3 \times 10^{12}\) bits and counting the number of errors. If no errors are counted, we are confident that the BER was \(10^{-12}\) or better.

Given that a 5% chance of a type II error is acceptable, we find that \(k_l\) is 7. If more than 7 errors are counted, we are confident that the bit error rate is greater than \(10^{-12}\). However, what if between 1 and 7 errors are counted? These cases may be handled several different ways. One option is to make a statement about the bit error rate (whether it is less than or greater than \(10^{-12}\)) at a lower level of confidence. Another option would be to state that the test result is success since we cannot establish with an acceptable probability of error that the BER is greater than \(10^{-12}\). Such a statement implies that we failed to meet the burden of proof for the conjecture that the BER exceed \(10^{-12}\). Of course, the burden of proof could be shifted to the device under test which would imply that any outcome other than \(k = 0\) would correspond to failure (the device under test failed to prove to us that the BER no more than \(10^{-12}\)). If neither of these solutions are acceptable, it is always an option to perform a more vigorous bit error rate test in order to clarify the result.

25.D.6 – Packet Error Rate Measurement

It is often easier to measure packet errors than it is to measure bit errors. In these cases, it is helpful to have some linkage between the packet error rate and the bit error rate. To make this linkage, we assume that the bit error rate is low enough and the packet size is small enough so that each packet error contains exactly one bit error.

To complete the linkage, some care must be taken regarding how many packets to send. A bit error is only detectable in the region of the packet that is covered by the cyclic redundancy check (CRC). In the context of Ethernet, this region is the first bit of the destination address to the last bit of the CRC. There is no guarantee that errors in the preamble, start-of-frame delimiter, and inter-packet gap will be detected. Therefore, we must translate \(n\) from the number of bits are sent to the number of “observable” bits that are sent. This will increase the test duration since a portion of the time will be spent sending unobservable bits.

For packets of length \(x\) bits, at least \(n/x\) packets must be sent to perform the equivalent bit error rate test. If no packet errors are observed, the conclusion is that the bit error rate is less than \(P_0\). If more than \(k_l\) packet errors are observed, the conclusion is that the bit error rate is greater than \(P_0\).
Note that x is the length of the packet after encoding. In other words, in a 4B5B encoding environment, a 64-byte packet is 640 bits in length after encoding. Also note that to reinforce the assumption that there is only one bit error per packet error, a test should be run with the shortest possible packets. However, if extremely low bit error rates are to be verified, it may be favorable to use long packets to increase the percentage of observable bits and reduce the test duration.