

PCS Test Suite V1.3b
Technical Document

Last Updated: March 16, 2009 2:30pm

 10 Gigabit Ethernet Consortium 121 Technology Drive, Suite 2
 Durham, NH 03824
 University of New Hampshire Phone: +1-603- 862-0205
 InterOperability Laboratory Fax: +1-603-862-4181
 http://www.iol.unh.edu/consortiums/10gec

10GEC THE 10 GIGABIT ETHERNET CONSORTIUM

© 2004 University of New Hampshire InterOperability Laboratory

http://www.iol.unh.edu/consortiums/10gec

MODIFICATION RECORD

• March 16, 2009 Version 1.3b Released

- Modified test 48.3.1 to include special code-groups from Table 36-2

• September 20, 2005 Version 1.3 Released

- Modified the procedures for several test cases

• August 1, 2004 Version 1.2 Released
- Changed some tests
- Modified Annex for check_end
- Editorial cleanup
- Removed Group 5 tests to eventually add to new test suite

• August 13, 2003 Version 1.1 Released
- Reformatted document with new style
- Significant changes to check_end test (48.4.2)
- Additional test cases for loss of alignment test (48.2.2)
- Added test cases for acquire alignment (48.2.1)
- Added Annexes on idle spacing and check_end interpretation

• February 28, 2003 Version 1.0 Released
- Update of all tests with more generic procedures
- Added Groups 3 and 4

• August 26, 2002 Version 0.1 Released
- Synchronization and alignment tests

10GEC TEST SUITE ii 10GBASE-X PCS Test Suite Version 1.2

The University of New Hampshire
InterOperability Laboratory

ACKNOWLEDGMENTS

The University of New Hampshire would like to acknowledge the efforts of the following
individuals in the development of this test suite.

Eric Ackerson University of New Hampshire
Jon Carrier University of New Hampshire
David Estes University of New Hampshire
Eric Lynskey University of New Hampshire
Bob Noseworthy University of New Hampshire
Vinod Venkatavaradan University of New Hampshire

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

iii

The University of New Hampshire
InterOperability Laboratory

INTRODUCTION

Overview
The University of New Hampshire’s InterOperability Laboratory (IOL) is an institution designed
to improve the interoperability of standards based products by providing an environment where a
product can be tested against other implementations of a standard. This suite of tests has been
developed to help implementers evaluate the functioning of their 10GBASE-X based products.
The tests do not determine if a product fully conforms to the IEEE Std. 802.3ae–2002 standard.
Additionally, successful completion of all tests contained in this suite does not guarantee that the
tested device will operate with other 10GBASE-X capable devices. However, combined with
satisfactory operation in the IOL’s interoperability test bed, these tests provide a reasonable level
of confidence that the Device Under Test (DUT) will function well in many 10Gb/s
environments.

Organization of Tests
The tests contained in this document are organized to simplify the identification of information
related to a test and to facilitate in the actual testing process. Each test contains an identification
section that describes the test and provides cross-reference information. The discussion section
covers background information and specifies why the test is to be performed. Tests are grouped
by similar functions and further organized by technology. Each test contains the following
information:

Test Number
The Test Number associated with each test follows a simple grouping structure. Listed
first is the Test Group Number followed by the test's number within the group. This
allows for the addition of future tests to the appropriate groups of the test suite without
requiring the renumbering of the subsequent tests.

Purpose
The purpose is a brief statement outlining what the test attempts to achieve. The test is
written at the functional level.

References
The references section lists cross-references to the IEEE 802.3 standards and other
documentation that might be helpful in understanding and evaluating the test and results.

Resource Requirements
The requirements section specifies the hardware, and test equipment that will be needed
to perform the test. The items contained in this section are special test devices or other
facilities, which may not be available on all devices.

Last Modification
This specifies the date of the last modification to this test.

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

iv

The University of New Hampshire
InterOperability Laboratory

Discussion
The discussion covers the assumptions made in the design or implementation of the test
as well as known limitations. Other items specific to the test are covered here.

Test Setup
The setup section describes the configuration of the test environment. Small changes in
the configuration should be included in the test procedure.

Procedure
The procedure section of the test description contains the step-by-step instructions for
carrying out the test. It provides a cookbook approach to testing, and may be interspersed
with observable results.

Observable Results
The observable results section lists specific items that can be examined by the tester to
verify that the DUT is operating properly. When multiple values are possible for an
observable result, this section provides a short discussion on how to interpret them. The
determination of a pass or fail for a certain test is often based on the successful (or
unsuccessful) detection of a certain observable result.

Possible Problems
This section contains a description of known issues with the test procedure, which may
affect test results in certain situations.

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

v

The University of New Hampshire
InterOperability Laboratory

TABLE OF CONTENTS

MODIFICATION RECORD __ ii
ACKNOWLEDGMENTS __ iii
INTRODUCTION __ iv
TABLE OF CONTENTS ___ vi
GROUP 1: Synchronization ___ 8

Test 48.1.1 – COMMA code count__ 9
Test 48.1.2 – Reception of INVALID codes _____________________________________ 11
Test 48.1.3 – Acquire synchronization __ 13
Test 48.1.4 – INVALID code count __ 18
Test 48.1.5 – good_cgs code count___ 20
Test 48.1.6 – Loss of synchronization __ 22
Test 48.1.7 – Maintain Synchronization___ 29
Test 48.1.8 – Reacquire synchronization __ 38

GROUP 2: Alignment___ 39
Test 48.2.1 – Determination of align_count ______________________________________ 40
Test 48.2.2 – Acquire alignment___ 42
Test 48.2.3 – Loss of alignment count __ 45
Test 48.2.4 – Deskew error identification__ 46
Test 48.2.5 – Loss of alignment ___ 47
Test 48.2.6 – Maintain alignment __ 50
Test 48.2.7 – Reacquire alignment ___ 54
Test 48.2.8 – Skew tolerance ___ 55

GROUP 3: Transmit Related ___ 57
Test 48.3.1 – 8B/10B Encoding ___ 58
Test 48.3.2 – Idle Sequencing___ 60
Test 48.3.3 – cvtx_terminate__ 62
Test 48.3.4 – Fault Transmission __ 63

GROUP 4: Receive Related __ 64
Test 48.4.1 – Fault Reception ___ 65
Test 48.4.2 – check_end ___ 66
Test 48.4.3 – Tolerance to ||A|| spacing ___ 68

Appendix A: A_CNT Simulation __ 70
Appendix B: check_end interpretation __ 74

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

vi

The University of New Hampshire
InterOperability Laboratory

GROUP 1: Synchronization

Overview: These tests are designed to verify that the device under test properly synchronizes
with the received bit stream. The PCS functions explored are defined in Clause 48 of IEEE Std.
802.3ae-2002, primarily in Figure 48-7.

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

8

The University of New Hampshire
InterOperability Laboratory

Test 48.1.1 – COMMA code count

Purpose: To verify how many /COMMA/ codes that the device under test (DUT) needs to
receive before it can acquire synchronization.

References:

[1] IEEE Std. 802.3ae-2002 subclauses 48.2.4.2.1, 48.2.5, Figure 48-7
[2] IEEE Std. 802.3-2002 subclause 36.2.4.9

Resource Requirements:

• A testing station capable of encoding (decoding) 8 bit octets to (from) 10-bit code groups
as specified in clause 48 and sending (receiving) these code groups using the signaling
method described in clause 47, 53, or 54.

Last Modification: September 20, 2005

Discussion: The synchronization process determines whether the underlying receive channel is
ready for operation. The PCS synchronization process continuously monitors the code-groups
conveyed through the PMA_UNITDATA.indicate primitive and conveys these code-groups to
the PCS Deskew process via the SYNC_UNITDATA.indicate primitive. Four independent
processes are run within the PCS, one for each lane. When in the LOSS_OF_SYNC state, the
PCS attempts to realign its current code-group boundary to the boundary defined by a comma.
This process is called code-group alignment. In order for the DUT to acquire synchronization,
all four lanes must individually acquire synchronization. Thus, if three lanes have received 4 /K/
and one lane has not received 4 /K/, then the DUT has not fully acquired synchronization.
Additionally, as long as the DUT has not acquired synchronization, it is not capable of receiving
frames.

Test Setup: Connect the device under test (DUT) to the testing station (transmit to receive,
receive to transmit) with the appropriate medium (i.e. multi-mode fiber, single mode fiber, SMA
cables, or backplane).

Procedure:

Part A (determine how many consecutive ||K|| cause DUT to gain synchronization)
1. Instruct the testing station to transmit a long stream of /Invalid/ code-groups to cause the

DUT to enter the LOSS_OF_SYNC state.
2. Instruct the testing station to transmit a stream of valid non /K/ code-groups to the DUT.
3. Instruct the testing station to transmit 1 ||K|| to the DUT.
4. Instruct the testing station to transmit a combination of ||A|| and ||R|| to the DUT such that

the DUT will be able to set align_status <= OK. This would include sending at least 4
columns of ||A|| spaced 16-31 columns apart and transmitting ||R|| in the gaps between the
||A||, but not sending any ||K|| code-groups.

5. Instruct the testing station to send a valid frame to the DUT.
6. Repeat steps 1 through 5, increasing the number of ||K|| in step 3 until the DUT receives

the frame sent in step 5. Set this number to comma_count.

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

9

The University of New Hampshire
InterOperability Laboratory

Part B (verify that DUT properly receives COMMA characters other than /K/)
1. Repeat Part A, but instead of using /K/ code-groups, use the following code-groups, each

of which contains a comma: K28.1, K28.7. Each code-group should be sent
comma_count times in step 3.

Observable results:

a. The DUT should exit the fault state and receive the frame when comma_count is 4 or
higher.

b. The DUT should exit the fault state and receive the frame when comma_count is 4 or
higher.

Possible Problems: When in the LOSS_OF_SYNC state, it is possible that the DUT may need
to see several COMMA characters before it has properly aligned to the correct 10-bit boundary.
Since the amount of time necessary to properly align is unbounded, it may be difficult to
determine the exact number of COMMA characters necessary for the DUT to acquire
synchronization. If this happens, then the procedure may be modified such that only a rough
time estimate can be provided instead of an exact value for comma_count.

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

10

The University of New Hampshire
InterOperability Laboratory

Test 48.1.2 – Reception of INVALID codes

Purpose: To verify that the DUT properly reacts to the reception of various invalid code-groups
during the synchronization process.

References:

[1] IEEE Std. 802.3ae-2002 subclauses 48.2.4.2.1, 48.2.5, Figure 48-7
[2] IEEE Std. 802.3-2002 subclause 36.2.4.6

Resource Requirements:

• A testing station capable of encoding (decoding) 8 bit octets to (from) 10-bit code groups
as specified in clause 48 and sending (receiving) these code groups using the signaling
method described in clause 47, 53, or 54.

Last Modification: September 20, 2005

Discussion: The synchronization process determines whether the underlying receive channel is
ready for operation. In order for the DUT to acquire synchronization, all four lanes must
individually acquire synchronization. During the synchronization process, if the DUT receives
invalid code-groups, then it will return to the LOSS_OF_SYNC state.

Test Setup: Connect the device under test (DUT) to the testing station (transmit to receive,
receive to transmit) with the appropriate medium (i.e. multi-mode fiber, single mode fiber, SMA
cables, or backplane).

Procedure:

Part A (verify that the DUT reacts properly to invalid codes when in COMMA_DETECT)
1. Instruct the testing station to transmit a long stream of /Invalid/ code-groups to cause the

DUT to enter the LOSS_OF_SYNC state.
2. Instruct the testing station to transmit a stream of valid non /K/ code-groups to the DUT.
3. Instruct the testing station to transmit 1 ||K|| to the DUT.
4. Instruct the testing station to transmit a single column, containing one of the patterns

from the table below to the DUT:

1111111111 0000000000
code with RD error Idle code with single bit error
other invalid codes

5. Instruct the testing station to transmit comma_count-1 ||K|| to the DUT.
6. Instruct the testing station to transmit a combination of ||A|| and ||R|| to the DUT such that

the DUT will be able to set align_status <= OK. This would include sending at least 4
columns of ||A|| spaced 16-31 columns apart and transmitting ||R|| in the gaps between the
||A||, but not sending any ||K|| code-groups.

7. Instruct the testing station to send valid frames separated by at least minimum IPG to the
DUT.

8. Repeat steps 1 through 7, sending comma_count ||K|| in step 5.

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

11

The University of New Hampshire
InterOperability Laboratory

9. Repeat steps 1 through 8, selecting a different pattern in step 4.

Part B (verify that the DUT reacts properly to invalid codes when in SYNC_ACQUIRED)
1. Send multiple (invalid_count and invalid_count–1) columns of the previous invalid code-

groups, beginning each test case in the SYNC_ACQUIRED_1 state.

Observable results:
a. The DUT should properly transition to the LOSS_OF_SYNC state on each invalid code-

group and then regain synchronization and receive the frames when comma_count ||K||
have been received.

b. The DUT should properly lose synchronization upon reception of invalid_count invalid
code-groups. The value of invalid_count should be 4.

Possible Problems: The DUT may react differently to the different invalid code-groups. Also,
when the DUT returns to the LOSS_OF_SYNC state, it may need to see more than
comma_count ||K|| before it will acquire synchronization.

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

12

The University of New Hampshire
InterOperability Laboratory

Test 48.1.3 – Acquire synchronization

Purpose: To verify that the device under test (DUT) acquires synchronization upon the reception
of four columns of four identical Idle Sync code-groups corresponding to the Idle Sync function.

References:

[1] IEEE Std. 802.3ae-2002 subclauses 48.2.4.2.1, 48.2.5, Figure 48-7
[2] IEEE Std. 802.3-2002 subclause 36.2.4.9

Resource Requirements:

• A testing station capable of encoding (decoding) 8 bit octets to (from) 10-bit code groups
as specified in clause 48 and sending (receiving) these code groups using the signaling
method described in clause 47, 53, or 54.

Last Modification: September 20, 2005

Discussion: The synchronization process determines whether the underlying receive channel is
ready for operation. The PCS synchronization process continuously monitors the code-groups
conveyed through the PMA_UNITDATA.indicate primitive and conveys these code-groups to
the PCS Deskew process via the SYNC_UNITDATA.indicate primitive. Four independent
processes are run within the PCS, one for each lane. When in the LOSS_OF_SYNC state, the
PCS attempts to realign its current code-group boundary to the boundary defined by a comma.
This process is called code-group alignment. In order for the DUT to acquire synchronization,
all four lanes must individually acquire synchronization. Thus, if three lanes have received 4 /K/
and one lane has not received 4 /K/, then the DUT has not fully acquired synchronization.
Additionally, as long as the DUT has not acquired synchronization, it is not capable of receiving
frames.

Test Setup: Connect the device under test (DUT) to the testing station (transmit to receive,
receive to transmit) with the appropriate medium (i.e. multi-mode fiber, single mode fiber, SMA
cables, or backplane).

Procedure:

Part A (transition through COMMA_DETECT_1 with valid codes)
1. Instruct the testing station to transmit a long stream of /Invalid/ code-groups to cause the

DUT to enter the LOSS_OF_SYNC state.
2. Instruct the testing station to transmit a stream of valid non /K/ code-groups to the DUT.
3. Using the value of comma_count obtained in Part A of test 48.1.1, instruct the testing

station to send ||K||, ||R||, and then n columns of ||K|| to the DUT, where n is
comma_count–2. For example, if comma_count is found to be 4, then initially set the
number to 2, and transmit the pattern shown in the following table.

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

13

The University of New Hampshire
InterOperability Laboratory
Lane 0 Lane 1 Lane 2 Lane 3
/K/ /K/ /K/ /K/
/R/ /R/ /R/ /R/
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /K/

4. Instruct the testing station to transmit a combination of ||A|| and ||R|| to the DUT such that

the DUT will be able to set align_status <= OK. This would include sending at least 4
columns of ||A|| spaced 16-31 columns apart and transmitting ||R|| in the gaps between the
||A||, but not sending any ||K|| code-groups.

5. Instruct the testing station to send valid frames to the DUT.
6. Repeat steps 1 through 5, increasing the value of n in step 3 to comma_count–1.
7. Repeat steps 1 through 6, substituting the following for the pattern in step 3, thus testing

each lane’s ability to acquire synchronization individually:

Lane 0 Lane 1 Lane 2 Lane 3
/K/ /K/ /K/ /K/
/R/ /K/ /K/ /K/
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /K/

Lane 0 Lane 1 Lane 2 Lane 3
/K/ /K/ /K/ /K/
/K/ /R/ /K/ /K/
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /K/

Lane 0 Lane 1 Lane 2 Lane 3
/K/ /K/ /K/ /K/
/K/ /K/ /R/ /K/
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /K/

Lane 0 Lane 1 Lane 2 Lane 3
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /R/
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /K/

Part B (transition through COMMA_DETECT_1 with invalid codes)
1. Repeat Part A substituting the following patterns for step 3 setting the initial value of n to

comma_count–1, and then to comma_count.

Lane 0 Lane 1 Lane 2 Lane 3
/K/ /K/ /K/ /K/
/Invalid/ /Invalid/ /Invalid/ /Invalid/
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /K/

Lane 0 Lane 1 Lane 2 Lane 3
/K/ /K/ /K/ /K/
/Invalid/ /K/ /K/ /K/
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /K/

Lane 0 Lane 1 Lane 2 Lane 3
/K/ /K/ /K/ /K/
/K/ /Invalid/ /K/ /K/
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /K/

Lane 0 Lane 1 Lane 2 Lane 3
/K/ /K/ /K/ /K/
/K/ /K/ /Invalid/ /K/
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /K/

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

14

The University of New Hampshire
InterOperability Laboratory

Lane 0 Lane 1 Lane 2 Lane 3
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /Invalid/
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /K/

Part C (transition through COMMA_DETECT_2 with valid codes)
1. Repeat Part A substituting the following patterns for step 3 setting the initial value of n to

comma_count–3 and then to comma_count–2.

Lane 0 Lane 1 Lane 2 Lane 3
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /K/
/R/ /R/ /R/ /R/
/K/ /K/ /K/ /K/

Lane 0 Lane 1 Lane 2 Lane 3
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /K/
/R/ /K/ /K/ /K/
/K/ /K/ /K/ /K/

Lane 0 Lane 1 Lane 2 Lane 3
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /K/
/K/ /R/ /K/ /K/
/K/ /K/ /K/ /K/

Lane 0 Lane 1 Lane 2 Lane 3
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /K/
/K/ /K/ /R/ /K/
/K/ /K/ /K/ /K/

Lane 0 Lane 1 Lane 2 Lane 3
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /R/
/K/ /K/ /K/ /K/

Part D (transition through COMMA_DETECT_2 with invalid codes)
1. Repeat Part A substituting the following patterns for step 3 setting the initial value of n to

comma_count–3, and then to comma_count.

Lane 0 Lane 1 Lane 2 Lane 3
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /K/
/Invalid/ /Invalid/ /Invalid/ /Invalid/
/K/ /K/ /K/ /K/

Lane 0 Lane 1 Lane 2 Lane 3
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /K/
/Invalid/ /K/ /K/ /K/
/K/ /K/ /K/ /K/

Lane 0 Lane 1 Lane 2 Lane 3
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /K/
/K/ /Invalid/ /K/ /K/
/K/ /K/ /K/ /K/

Lane 0 Lane 1 Lane 2 Lane 3
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /K/
/K/ /K/ /Invalid/ /K/
/K/ /K/ /K/ /K/

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

15

The University of New Hampshire
InterOperability Laboratory

Lane 0 Lane 1 Lane 2 Lane 3
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /Invalid/
/K/ /K/ /K/ /K/

Part E (transition through COMMA_DETECT_3 with valid codes)
1. Repeat Part A substituting the following patterns for step 3 setting the initial value of n

comma_count–4, and then to comma_count–3.

Lane 0 Lane 1 Lane 2 Lane 3
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /K/
/R/ /R/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /K/
/R/ /K/ /K/ /K/

Lane 0 Lane 1 Lane 2 Lane 3
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /K/
/K/ /R/ /K/ /K/

Lane 0 Lane 1 Lane 2 Lane 3
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /K/
/K/ /K/ /R/ /K/

Lane 0 Lane 1 Lane 2 Lane 3
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /R/

Part F (transition through COMMA_DETECT_3 with invalid codes)
1. Repeat Part A substituting the following patterns for step 3 setting the initial value of n to

comma_count– 4, and then to comma_count.
Lane 0 Lane 1 Lane 2 Lane 3
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /K/
/Invalid/ /Invalid/ /Invalid/ /Invalid/

Lane 0 Lane 1 Lane 2 Lane 3
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /K/
/Invalid/ /K/ /K/ /K/

Lane 0 Lane 1 Lane 2 Lane 3
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /K/
/K/ /Invalid/ /K/ /K/

Lane 0 Lane 1 Lane 2 Lane 3
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /K/
/K/ /K/ /Invalid/ /K/

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

16

The University of New Hampshire
InterOperability Laboratory

Lane 0 Lane 1 Lane 2 Lane 3
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /K/
/K/ /K/ /K/ /Invalid/

Observable results:

a. The DUT should receive frames after receiving a total of comma_count /K/ on each lane.
b. The DUT should receive frames only after each lane receives comma_count /K/ code-

groups without any intervening invalid code-groups.
c. The DUT should receive frames after receiving a total of comma_count /K/ on each lane.
d. The DUT should receive frames only after each lane receives comma_count /K/ code-

groups without any intervening invalid code-groups.
e. The DUT should receive frames after receiving a total of comma_count /K/ on each lane.
f. The DUT should receive frames only after each lane receives comma_count /K/ code-

groups without any intervening invalid code-groups.

Possible Problems: The DUT may respond differently to different /Invalid/ code-groups.

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

17

The University of New Hampshire
InterOperability Laboratory

Test 48.1.4 – INVALID code count

Purpose: To verify the number of consecutive /Invalid/ codes that will cause the DUT to lose
synchronization once it has arrived in the SYNC_ACQUIRED_1 state.

References:

[1] IEEE Std. 802.3ae-2002 subclauses 48.2.5, 48.2.5.2.2, Figure 48-7

Resource Requirements: A testing station capable of encoding (decoding) 8 bit octets to (from)
10-bit code groups as specified in clause 48 and sending (receiving) these code groups using the
signaling method described in clause 47, 53, or 54.

Last Modification: September 20, 2005

Discussion: The synchronization process determines whether the underlying receive channel is
ready for operation. The PCS synchronization process continuously monitors the code-groups
conveyed through the PMA_UNITDATA.indicate primitive and conveys these code-groups to
the PCS Deskew process via the SYNC_UNITDATA.indicate primitive. Four independent
processes are run within the PCS, one for each lane. After acquiring synchronization, the DUT
tests received code-groups and uses multiple sub-states, effecting hysteresis, to move between
the SYNC_ACQUIRED_1 and LOSS_OF_SYNC states. After receiving multiple invalid code-
groups, the DUT may be forced into the LOSS_OF_SYNC state and will be unable to properly
respond to frames while in this state.

Test Setup: Connect the device under test (DUT) to the testing station (transmit to receive,
receive to transmit) with the appropriate medium (i.e. multi-mode fiber, single mode fiber, SMA
cables, or backplane).

Procedure:

Part A (determine how many consecutive invalid codes cause DUT to lose synchronization)
1. Bring the DUT to a state in which the DUT is able to receive and transmit data frames.
2. Instruct the testing station to transmit a valid frame to the DUT.
3. Instruct the testing station to transmit the following test pattern to the DUT:

Lane 0 Lane 1 Lane 2 Lane 3
/Invalid/ /Invalid/ /Invalid/ /Invalid/

4. Instruct the testing station to transmit at least one valid non-||K|| column of idle.
5. Instruct the testing station to send a valid frame to the DUT.
6. Repeat steps 1 through 5, increasing the number of ||Invalid|| in step 3 until the DUT no

longer receives the frame in step 5, and set this to invalid_count.
7. Repeat steps 1 through 6, using each of the following test patterns in step 3, and

incrementing the number of invalid code-groups as necessary (at a minimum, use
invalid_count-1 and invalid_count /Invalid/ codes).

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

18

The University of New Hampshire
InterOperability Laboratory

Lane 0 Lane 1 Lane 2 Lane 3
/Invalid/ /R/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /Invalid/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /Invalid/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /R/ /Invalid/

Observable results:

a. The DUT should discard the middle frame in the sequence when invalid_count is set to
the value of 4 or higher.

Possible Problems: None

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

19

The University of New Hampshire
InterOperability Laboratory

Test 48.1.5 – good_cgs code count

Purpose: To verify the number of valid code groups that are necessary to move the DUT from
one of the SYNC_ACQUIRED_xA states to the SYNC_ACQUIRED_(x-1) states.

References:

[1] IEEE Std. 802.3ae-2002 subclauses 48.2.5, 48.2.5.2.2, Figure 48-7

Resource Requirements: A testing station capable of encoding (decoding) 8 bit octets to (from)
10-bit code groups as specified in clause 48 and sending (receiving) these code groups using the
signaling method described in clause 47, 53, or 54.

Last Modification: September 20, 2005

Discussion: The synchronization process determines whether the underlying receive channel is
ready for operation. The PCS synchronization process continuously monitors the code-groups
conveyed through the PMA_UNITDATA.indicate primitive and conveys these code-groups to
the PCS Deskew process via the SYNC_UNITDATA.indicate primitive. Four independent
processes are run within the PCS, one for each lane. After acquiring synchronization, the DUT
tests received code-groups and uses multiple sub-states, effecting hysteresis, to move between
the SYNC_ACQUIRED_1 and LOSS_OF_SYNC states. After receiving multiple invalid code-
groups, the DUT may be forced into the LOSS_OF_SYNC state and will be unable to properly
respond to frames while in this state.

Test Setup: Connect the device under test (DUT) to the testing station (transmit to receive,
receive to transmit) with the appropriate medium (i.e. multi-mode fiber, single mode fiber, SMA
cables, or backplane).

Procedure:

Part A
1. Bring the DUT to a state in which the DUT is able to receive and transmit data frames.
2. Instruct the testing station to transmit the following test pattern to the DUT, where the

total number of /Invalid/ columns is invalid_count:

Lane 0 Lane 1 Lane 2 Lane 3
/Invalid/ /Invalid/ /Invalid/ /Invalid/
/R/ /R/ /R/ /R/
/Invalid/ /Invalid/ /Invalid/ /Invalid/
/Invalid/ /Invalid/ /Invalid/ /Invalid/
/Invalid/ /Invalid/ /Invalid/ /Invalid/

3. Instruct the testing station to transmit a combination of ||A|| and ||R|| to the DUT such that

the DUT will be able to set align_status <= OK. This would include sending at least 4
columns of ||A|| spaced 16-31 columns apart and transmitting ||R|| in the gaps between the
||A||, but not sending any ||K|| code-groups.

4. Instruct the testing station to send a valid frame to the DUT.

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

20

The University of New Hampshire
InterOperability Laboratory

5. Repeat steps 1 through 4, increasing the number of ||R|| in step 3 until the DUT receives
the frame, and set this to good_cgs_count.

6. Repeat steps 1 through 5, using each of the following test patterns in step 3, and
incrementing the number of invalid code-groups as necessary (at a minimum, use
good_cgs_count-1 and good_cgs_count ||R||).

Lane 0 Lane 1 Lane 2 Lane 3
/Invalid/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/Invalid/ /R/ /R/ /R/
/Invalid/ /R/ /R/ /R/
/Invalid/ /R/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /Invalid/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /Invalid/ /R/ /R/
/R/ /Invalid/ /R/ /R/
/R/ /Invalid/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /Invalid/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /Invalid/ /R/
/R/ /R/ /Invalid/ /R/
/R/ /R/ /Invalid/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /Invalid/

7. Repeat steps 1 through 6, adding additional columns containing /Invalid/ codes so that the

good_cgs count is tested in SYNC_ACQUIRED_3A and SYNC_ACQUIRED_4A.

Observable results:
a. The DUT should receive the frame when good_cgs_count is set to the value of 4 or

higher.

Possible Problems: None

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

21

The University of New Hampshire
InterOperability Laboratory

Test 48.1.6 – Loss of synchronization

Purpose: To verify that a DUT will lose synchronization after the reception of code-group
sequences which should cause it to return to the LOSS_OF_SYNC state.

References:

[1] IEEE Std. 802.3ae-2002 subclauses 48.2.5, 48.2.5.2.2, Figure 48-7

Resource Requirements: A testing station capable of encoding (decoding) 8 bit octets to (from)
10-bit code groups as specified in clause 48 and sending (receiving) these code groups using the
signaling method described in clause 47, 53, or 54.

Last Modification: July 28, 2004

Discussion: The synchronization process determines whether the underlying receive channel is
ready for operation. The PCS synchronization process continuously monitors the code-groups
conveyed through the PMA_UNITDATA.indicate primitive and conveys these code-groups to
the PCS Deskew process via the SYNC_UNITDATA.indicate primitive. Four independent
processes are run within the PCS, one for each lane. After acquiring synchronization, the DUT
tests received code-groups and uses multiple sub-states, effecting hysteresis, to move between
the SYNC_ACQUIRED_1 and LOSS_OF_SYNC states. After receiving multiple invalid code-
groups, the DUT may be forced into the LOSS_OF_SYNC state and will be unable to properly
respond to frames while in this state.

Test Setup: Connect the device under test (DUT) to the testing station (transmit to receive,
receive to transmit) with the appropriate medium (i.e. multi-mode fiber, single mode fiber, SMA
cables, or backplane).

Procedure:

Part A1 (transition through SYNC_ACQUIRED_2A to SYNC_ACQUIRED_3)
1. Bring the DUT to a state in which the DUT is able to receive and transmit data frames.
2. Instruct the testing station to transmit comma_count ||K|| followed by this test pattern to

the DUT, where the number of full ||R|| columns is good_cgs_count–1. For example, if
the value for good_cgs_count is found to be 4, then use 3 ||R||, as shown below. The
number of consecutive /Invalid/ columns at the end of the sequence should be
invalid_count–1, as determined in test 48.1.2. For example, if invalid_count is found to
be 4 in, then use 3 /Invalid/ columns, as shown below:

Lane 0 Lane 1 Lane 2 Lane 3
/Invalid/ /Invalid/ /Invalid/ /Invalid/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/Invalid/ /Invalid/ /Invalid/ /Invalid/
/Invalid/ /Invalid/ /Invalid/ /Invalid/
/Invalid/ /Invalid/ /Invalid/ /Invalid/

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

22

The University of New Hampshire
InterOperability Laboratory

3. Instruct the testing station to transmit a combination of ||A|| and ||R|| to the DUT such that

the DUT will be able to set align_status <= OK. This would include sending at least 4
columns of ||A|| spaced 16-31 columns apart and transmitting ||R|| in the gaps between the
||A||, but not sending any ||K|| code-groups.

4. Instruct the testing station to send a valid frame to the DUT.
5. Repeat steps 1 through 4, substituting the following patterns for step 2, where the number

of full ||R|| columns is good_cgs_count–1. The number of consecutive /Invalid/ columns
at the end of the sequence should be invalid_count–1, as determined in test 48.1.2.

Lane 0 Lane 1 Lane 2 Lane 3
/Invalid/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/Invalid/ /R/ /R/ /R/
/Invalid/ /R/ /R/ /R/
/Invalid/ /R/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /Invalid/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /Invalid/ /R/ /R/
/R/ /Invalid/ /R/ /R/
/R/ /Invalid/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /Invalid/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /Invalid/ /R/
/R/ /R/ /Invalid/ /R/
/R/ /R/ /Invalid/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /Invalid/

Part A2 (transition through SYNC_ACQUIRED_2A to SYNC_ACQUIRED_1)
1. Repeat Part A1, substituting the following patterns for step 2, where the number of full

||R|| columns is good_cgs_count. The number of consecutive /Invalid/ columns at the end
of the test sequence should be invalid_count.

Lane 0 Lane 1 Lane 2 Lane 3
/Invalid/ /Invalid/ /Invalid/ /Invalid/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/Invalid/ /Invalid/ /Invalid/ /Invalid/
/Invalid/ /Invalid/ /Invalid/ /Invalid/
/Invalid/ /Invalid/ /Invalid/ /Invalid/
/Invalid/ /Invalid/ /Invalid/ /Invalid/

Lane 0 Lane 1 Lane 2 Lane 3
/Invalid/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/Invalid/ /R/ /R/ /R/
/Invalid/ /R/ /R/ /R/
/Invalid/ /R/ /R/ /R/
/Invalid/ /R/ /R/ /R/

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

23

The University of New Hampshire
InterOperability Laboratory

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /Invalid/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /Invalid/ /R/ /R/
/R/ /Invalid/ /R/ /R/
/R/ /Invalid/ /R/ /R/
/R/ /Invalid/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /Invalid/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /Invalid/ /R/
/R/ /R/ /Invalid/ /R/
/R/ /R/ /Invalid/ /R/
/R/ /R/ /Invalid/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /Invalid/

Part B1 (transition through SYNC_ACQUIRED_3A to SYNC_ACQUIRED_4)
1. Repeat Part A1, substituting the following patterns for step 2, where the number of full

||R|| columns is good_cgs_count–1. The number of consecutive /Invalid/ columns at the
end of the test sequence should be invalid_count–2.

Lane 0 Lane 1 Lane 2 Lane 3
/Invalid/ /Invalid/ /Invalid/ /Invalid/
/Invalid/ /Invalid/ /Invalid/ /Invalid/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/Invalid/ /Invalid/ /Invalid/ /Invalid/
/Invalid/ /Invalid/ /Invalid/ /Invalid/

Lane 0 Lane 1 Lane 2 Lane 3
/Invalid/ /R/ /R/ /R/
/Invalid/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/Invalid/ /R/ /R/ /R/
/Invalid/ /R/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /Invalid/ /R/ /R/
/R/ /Invalid/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /Invalid/ /R/ /R/
/R/ /Invalid/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /Invalid/ /R/
/R/ /R/ /Invalid/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /Invalid/ /R/
/R/ /R/ /Invalid/ /R/

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

24

The University of New Hampshire
InterOperability Laboratory

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /Invalid/

Part B2 (transition through SYNC_ACQUIRED_3A to SYNC_ACQUIRED_2)
1. Repeat Part A1, substituting the following patterns for step 2, where the number of full

||R|| columns is good_cgs_count. The number of consecutive /Invalid/ columns at the end
of the test sequence should be invalid_count–1.

Lane 0 Lane 1 Lane 2 Lane 3
/Invalid/ /Invalid/ /Invalid/ /Invalid/
/Invalid/ /Invalid/ /Invalid/ /Invalid/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/Invalid/ /Invalid/ /Invalid/ /Invalid/
/Invalid/ /Invalid/ /Invalid/ /Invalid/
/Invalid/ /Invalid/ /Invalid/ /Invalid/

Lane 0 Lane 1 Lane 2 Lane 3
/Invalid/ /R/ /R/ /R/
/Invalid/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/Invalid/ /R/ /R/ /R/
/Invalid/ /R/ /R/ /R/
/Invalid/ /R/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /Invalid/ /R/ /R/
/R/ /Invalid/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /Invalid/ /R/ /R/
/R/ /Invalid/ /R/ /R/
/R/ /Invalid/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /Invalid/ /R/
/R/ /R/ /Invalid/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /Invalid/ /R/
/R/ /R/ /Invalid/ /R/
/R/ /R/ /Invalid/ /R/

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

25

The University of New Hampshire
InterOperability Laboratory

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /Invalid/

Part C1 (transition through SYNC_ACQUIRED_4A to LOSS_OF_SYNC)
1. Repeat Part A1, substituting the following patterns for step 2, where the number of full

||R|| columns is good_cgs_count–1. The number of consecutive /Invalid/ columns at the
end of the test sequence should be invalid_count–3.

Lane 0 Lane 1 Lane 2 Lane 3
/Invalid/ /Invalid/ /Invalid/ /Invalid/
/Invalid/ /Invalid/ /Invalid/ /Invalid/
/Invalid/ /Invalid/ /Invalid/ /Invalid/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/Invalid/ /Invalid/ /Invalid/ /Invalid/

Lane 0 Lane 1 Lane 2 Lane 3
/Invalid/ /R/ /R/ /R/
/Invalid/ /R/ /R/ /R/
/Invalid/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/Invalid/ /R/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /Invalid/ /R/ /R/
/R/ /Invalid/ /R/ /R/
/R/ /Invalid/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /Invalid/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /Invalid/ /R/
/R/ /R/ /Invalid/ /R/
/R/ /R/ /Invalid/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /Invalid/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /Invalid/

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

26

The University of New Hampshire
InterOperability Laboratory

Part C2 (transition through SYNC_ACQUIRED_4A to SYNC_ACQUIRED_3)
1. Repeat Part A1, substituting the following patterns for step 2, where the number of full

||R|| columns is good_cgs_count. The number of consecutive /Invalid/ columns at the end
of the test sequence should be invalid_count–2.

Lane 0 Lane 1 Lane 2 Lane 3
/Invalid/ /Invalid/ /Invalid/ /Invalid/
/Invalid/ /Invalid/ /Invalid/ /Invalid/
/Invalid/ /Invalid/ /Invalid/ /Invalid/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/Invalid/ /Invalid/ /Invalid/ /Invalid/
/Invalid/ /Invalid/ /Invalid/ /Invalid/

Lane 0 Lane 1 Lane 2 Lane 3
/Invalid/ /R/ /R/ /R/
/Invalid/ /R/ /R/ /R/
/Invalid/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/Invalid/ /R/ /R/ /R/
/Invalid/ /R/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /Invalid/ /R/ /R/
/R/ /Invalid/ /R/ /R/
/R/ /Invalid/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /Invalid/ /R/ /R/
/R/ /Invalid/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /Invalid/ /R/
/R/ /R/ /Invalid/ /R/
/R/ /R/ /Invalid/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /Invalid/ /R/
/R/ /R/ /Invalid/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /Invalid/

Part D1 (transition through all states)
1. Repeat Part A1 substituting the following patterns for step 2. The DUT should not

respond to the middle frame for these test cases, as it should lose synchronization. The
total number of /Invalid/ columns should be invalid_count.

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

27

The University of New Hampshire
InterOperability Laboratory

Lane 0 Lane 1 Lane 2 Lane 3
/Invalid/ /Invalid/ /Invalid/ /Invalid/

/R/ /R/ /R/ /R/
/Invalid/ /Invalid/ /Invalid/ /Invalid/

/R/ /R/ /R/ /R/
/Invalid/ /Invalid/ /Invalid/ /Invalid/

/R/ /R/ /R/ /R/
/Invalid/ /Invalid/ /Invalid/ /Invalid/

Lane 0 Lane 1 Lane 2 Lane 3
/Invalid/ /R/ /R/ /R/

/R/ /R/ /R/ /R/
/Invalid/ /R/ /R/ /R/

/R/ /R/ /R/ /R/
/Invalid/ /R/ /R/ /R/

/R/ /R/ /R/ /R/
/Invalid/ /R/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3

/R/ /Invalid/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /Invalid/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /Invalid/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /Invalid/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /Invalid/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /Invalid/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /Invalid/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /Invalid/ /R/

Lane 0 Lane 1 Lane 2 Lane 3

/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /Invalid/

Observable results:
a. The DUT should never receive the frame in the sequence.
b. The DUT should never receive the frame in the sequence.
c. The DUT should never receive the frame in the sequence.
d. The DUT should never receive the frame in the sequence.

Possible Problems: None

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

28

The University of New Hampshire
InterOperability Laboratory

Test 48.1.7 – Maintain Synchronization

Purpose: To verify that the DUT is able to maintain synchronization for a specific set of invalid
code-group sequences.

References:

[1] IEEE Std. 802.3ae-2002 subclauses 48.2.5.2.2, Figure 48-7

Resource Requirements: A testing station capable of encoding (decoding) 8 bit octets to (from)
10-bit code groups as specified in clause 48 and sending (receiving) these code groups using the
signaling method described in clause 47, 53, or 54.

Last Modification: September 20, 2005

Discussion: The synchronization process determines whether the underlying receive channel is
ready for operation. The PCS synchronization process continuously monitors the code-groups
conveyed through the PMA_UNITDATA.indicate primitive and conveys these code-groups to
the PCS Deskew process via the SYNC_UNITDATA.indicate primitive. Four independent
processes are run within the PCS, one for each lane. After acquiring synchronization, the DUT
tests received code-groups and uses multiple sub-states, effecting hysteresis, to move between
the SYNC_ACQUIRED_1 and LOSS_OF_SYNC states. After receiving multiple invalid code-
groups, the DUT may be forced into the LOSS_OF_SYNC state and will be unable to properly
respond to frames while in this state. However, while going through the hysteresis, the DUT will
be in one of the SYNC_ACQUIRED_X or SYNC_ACQUIRED_XA states. While in one of
these states, the DUT should maintain synchronization and be able to reply to frames.

Test Setup: Connect the device under test (DUT) to the testing station (transmit to receive,
receive to transmit) with the appropriate medium (i.e. multi-mode fiber, single mode fiber, SMA
cables, or backplane).

Procedure:

Part A1 (transition through SYNC_ACQUIRED_2)
1. Bring the DUT to a state in which the DUT is able to receive and transmit data frames.
2. Instruct the testing station to transmit the following test pattern to the DUT:

Lane 0 Lane 1 Lane 2 Lane 3
/Invalid/ /Invalid/ /Invalid/ /Invalid/

3. Instruct the testing station to transmit a combination of ||A|| and ||R|| to the DUT such that

the DUT will be able to set align_status <= OK. This would include sending at least 4
columns of ||A|| spaced 16-31 columns apart and transmitting ||R|| in the gaps between the
||A||, but not sending any ||K|| code-groups.

4. Instruct the testing station to send a valid frame to the DUT.
5. Repeat steps 1 through 4 with the following patterns in step 3:

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

29

The University of New Hampshire
InterOperability Laboratory

Lane 0 Lane 1 Lane 2 Lane 3
/Invalid/ /R/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /Invalid/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /Invalid/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /R/ /Invalid/

Part A2 (transition through SYNC_ACQUIRED_2 and 2A)
1. Repeat Part A1, substituting the following patterns for step 2, where the number of full

||R|| columns is good_cgs_count-1. The number of consecutive /Invalid/ columns at the
end of the test sequence should be invalid_count–2, such that the total number of
/Invalid/ columns is invalid_count–1.

Lane 0 Lane 1 Lane 2 Lane 3
/Invalid/ /Invalid/ /Invalid/ /Invalid/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/Invalid/ /Invalid/ /Invalid/ /Invalid/
/Invalid/ /Invalid/ /Invalid/ /Invalid/

Lane 0 Lane 1 Lane 2 Lane 3
/Invalid/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/Invalid/ /R/ /R/ /R/
/Invalid/ /R/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /Invalid/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /Invalid/ /R/ /R/
/R/ /Invalid/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /Invalid/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /Invalid/ /R/
/R/ /R/ /Invalid/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /Invalid/

Part A3 (transition through SYNC_ACQUIRED_2A back to SYNC_ACQUIRED_1)
1. Repeat Part A1, substituting the following patterns for step 3, where the number of full

||R|| columns is good_cgs_count. The number of consecutive /Invalid/ columns at the end
of the test sequence should be invalid_count–1, such that the total number of /Invalid/
columns is invalid_count.

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

30

The University of New Hampshire
InterOperability Laboratory

Lane 0 Lane 1 Lane 2 Lane 3
/Invalid/ /Invalid/ /Invalid/ /Invalid/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/Invalid/ /Invalid/ /Invalid/ /Invalid/
/Invalid/ /Invalid/ /Invalid/ /Invalid/
/Invalid/ /Invalid/ /Invalid/ /Invalid/

Lane 0 Lane 1 Lane 2 Lane 3
/Invalid/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/Invalid/ /R/ /R/ /R/
/Invalid/ /R/ /R/ /R/
/Invalid/ /R/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /Invalid/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /Invalid/ /R/ /R/
/R/ /Invalid/ /R/ /R/
/R/ /Invalid/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /Invalid/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /Invalid/ /R/
/R/ /R/ /Invalid/ /R/
/R/ /R/ /Invalid/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /Invalid/

Part B1 (transition through SYNC_ACQUIRED_3)
1. Repeat Part A1 substituting the following patterns for step 2. The number of /Invalid/

codes should be invalid_count-2.

Lane 0 Lane 1 Lane 2 Lane 3
/Invalid/ /Invalid/ /Invalid/ /Invalid/
/Invalid/ /Invalid/ /Invalid/ /Invalid/

Lane 0 Lane 1 Lane 2 Lane 3
/Invalid/ /R/ /R/ /R/
/Invalid/ /R/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /Invalid/ /R/ /R/
/R/ /Invalid/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /Invalid/ /R/
/R/ /R/ /Invalid/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /Invalid/

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

31

The University of New Hampshire
InterOperability Laboratory

Part B2 (transition through SYNC_ACQUIRED_3 and 3A)
1. Repeat Part A1, substituting the following patterns for step 2, where the number of full

||R|| columns is good_cgs_count-1. The number of consecutive /Invalid/ columns at the
end of the test sequence should be invalid_count–3, such that the total number of
/Invalid/ columns is invalid_count–1.

Lane 0 Lane 1 Lane 2 Lane 3
/Invalid/ /Invalid/ /Invalid/ /Invalid/
/Invalid/ /Invalid/ /Invalid/ /Invalid/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/Invalid/ /Invalid/ /Invalid/ /Invalid/

Lane 0 Lane 1 Lane 2 Lane 3
/Invalid/ /R/ /R/ /R/
/Invalid/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/Invalid/ /R/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /Invalid/ /R/ /R/
/R/ /Invalid/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /Invalid/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /Invalid/ /R/
/R/ /R/ /Invalid/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /Invalid/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /Invalid/

Part B3 (transition through SYNC_ACQUIRED_3A back to SYNC_ACQUIRED_2)
1. Repeat Part A1, substituting the following patterns for step 2, where the number of full

||R|| columns is good_cgs_count. The number of consecutive /Invalid/ columns at the end
of the test sequence should be invalid_count–2, such that the total number of /Invalid/
columns is invalid_count.

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

32

The University of New Hampshire
InterOperability Laboratory

Lane 0 Lane 1 Lane 2 Lane 3
/Invalid/ /Invalid/ /Invalid/ /Invalid/
/Invalid/ /Invalid/ /Invalid/ /Invalid/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/Invalid/ /Invalid/ /Invalid/ /Invalid/
/Invalid/ /Invalid/ /Invalid/ /Invalid/

Lane 0 Lane 1 Lane 2 Lane 3
/Invalid/ /R/ /R/ /R/
/Invalid/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/Invalid/ /R/ /R/ /R/
/Invalid/ /R/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /Invalid/ /R/ /R/
/R/ /Invalid/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /Invalid/ /R/ /R/
/R/ /Invalid/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /Invalid/ /R/
/R/ /R/ /Invalid/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /Invalid/ /R/
/R/ /R/ /Invalid/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /Invalid/

Part C1 (transition through SYNC_ACQUIRED_4 and 4A)
1. Repeat Part A1 substituting the following patterns for step 2. The number of /Invalid/

codes should be invalid_count-1.

Lane 0 Lane 1 Lane 2 Lane 3
/Invalid/ /Invalid/ /Invalid/ /Invalid/
/Invalid/ /Invalid/ /Invalid/ /Invalid/
/Invalid/ /Invalid/ /Invalid/ /Invalid/

Lane 0 Lane 1 Lane 2 Lane 3
/Invalid/ /R/ /R/ /R/
/Invalid/ /R/ /R/ /R/
/Invalid/ /R/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /Invalid/ /R/ /R/
/R/ /Invalid/ /R/ /R/
/R/ /Invalid/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /Invalid/ /R/
/R/ /R/ /Invalid/ /R/
/R/ /R/ /Invalid/ /R/

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

33

The University of New Hampshire
InterOperability Laboratory

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /Invalid/

Part C2 (transition through SYNC_ACQUIRED_4A back to SYNC_ACQUIRED_3)
1. Repeat Part A1, substituting the following patterns for step 2, where the number of full

||R|| columns is good_cgs_count. The number of consecutive /Invalid/ columns at the end
of the test sequence should be invalid_count–1, such that the total number of /Invalid/
columns is invalid_count.

Lane 0 Lane 1 Lane 2 Lane 3
/Invalid/ /Invalid/ /Invalid/ /Invalid/
/Invalid/ /Invalid/ /Invalid/ /Invalid/
/Invalid/ /Invalid/ /Invalid/ /Invalid/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/Invalid/ /Invalid/ /Invalid/ /Invalid/

Lane 0 Lane 1 Lane 2 Lane 3
/Invalid/ /R/ /R/ /R/
/Invalid/ /R/ /R/ /R/
/Invalid/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/Invalid/ /R/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /Invalid/ /R/ /R/
/R/ /Invalid/ /R/ /R/
/R/ /Invalid/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /Invalid/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /Invalid/ /R/
/R/ /R/ /Invalid/ /R/
/R/ /R/ /Invalid/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /Invalid/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /Invalid/

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

34

The University of New Hampshire
InterOperability Laboratory

Part D1 (transition through all states)
1. Repeat Part A1 substituting the following patterns for step 2. The total number of

/Invalid/ columns should be invalid_count-1.

Lane 0 Lane 1 Lane 2 Lane 3
/Invalid/ /Invalid/ /Invalid/ /Invalid/
/R/ /R/ /R/ /R/
/Invalid/ /Invalid/ /Invalid/ /Invalid/
/R/ /R/ /R/ /R/
/Invalid/ /Invalid/ /Invalid/ /Invalid/
/R/ /R/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/Invalid/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/Invalid/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/Invalid/ /R/ /R/ /R/
/R/ /R/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /Invalid/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /Invalid/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /Invalid/ /R/ /R/
/R/ /R/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /Invalid/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /Invalid/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /Invalid/ /R/
/R/ /R/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3

/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /R/

Part D2 (transition through all states)
1. Repeat Part A1, substituting the following patterns for step 2, where the number of

consecutive ||R|| columns is good_cgs_count –1 in the first two parts of the test vector and
good_cgs_count in the third. The total number of /Invalid/ columns should be
invalid_count.

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

35

The University of New Hampshire
InterOperability Laboratory

Lane 0 Lane 1 Lane 2 Lane 3 Lane 0 Lane 1 Lane 2 Lane 3
/Invalid/ /Invalid/ /Invalid/ /Invalid/

/R/ /R/ /R/ /R/
/Invalid/ /R/ /R/ /R/

/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/

/Invalid/ /Invalid/ /Invalid/ /Invalid/
/R/ /R/ /R/ /R/

/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/

/Invalid/ /R/ /R/ /R/
/R/ /R/ /R/ /R/

/R/ /R/ /R/ /R/ /R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/ /R/ /R/ /R/ /R/

/Invalid/ /Invalid/ /Invalid/ /Invalid/
/R/ /R/ /R/ /R/

/Invalid/ /R/ /R/ /R/
/R/ /R/ /R/ /R/

/R/ /R/ /R/ /R/ /R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/ /R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/ /R/ /R/ /R/ /R/

/Invalid/ /Invalid/ /Invalid/ /Invalid/ /Invalid/ /R/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /Invalid/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /Invalid/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /Invalid/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /Invalid/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /Invalid/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /Invalid/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /Invalid/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /Invalid/ /R/

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

36

The University of New Hampshire
InterOperability Laboratory

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /Invalid/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /Invalid/

Part E
1. Repeat Part A1, substituting the following patterns for step 2. The total number of /Invalid/

codes should be invalid_count.

Lane 0 Lane 1 Lane 2 Lane 3
/Invalid/ /R/ /R/ /R/
/R/ /Invalid/ /R/ /R/
/R/ /R/ /Invalid/ /R/
/R/ /R/ /R/ /Invalid/

Observable results:

a. The DUT should receive the frame.
b. The DUT should receive the frame.
c. The DUT should receive the frame.
d. The DUT should receive the frame.
e. The DUT should receive the frame.

Possible Problems: None

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

37

The University of New Hampshire
InterOperability Laboratory

Test 48.1.8 – Reacquire synchronization

Purpose: To verify that the DUT properly reacquires synchronization once it has established a
valid link.

References:

[1] IEEE Std. 802.3ae-2002 subclauses 48.2.4.2.1, 48.2.5, Figure 48-7
[2] IEEE Std. 802.3-2002 subclause 36.2.4.6

Resource Requirements:

• A testing station capable of encoding (decoding) 8 bit octets to (from) 10-bit code groups
as specified in clause 48 and sending (receiving) these code groups using the signaling
method described in clause 47, 53, or 54.

Last Modification: July 29, 2004

Discussion: Once the synchronization process is complete, if the entire received bit stream were
to be shifted by several UI, then the DUT would begin to see /Invalid/ code-groups and
misaligned commas. The DUT would lose synchronization and then attempt to align to the new
commas, and reacquire synchronization.

Test Setup: Connect the device under test (DUT) to the testing station (transmit to receive,
receive to transmit) with the appropriate medium (i.e. multi-mode fiber, single mode fiber, SMA
cables, or backplane).

Procedure:

1. Bring the DUT to a state such that it has established a link and can transmit frames.
2. Instruct the testing station to introduce several UI of skew on each lane.
3. Instruct the testing station to transmit valid idle and frames to the DUT (although the

entire stream is now skewed).
4. Observe all transmissions and indications from the DUT.

Observable results:

a. The DUT should properly lose synchronization on the misaligned stream and then
acquire synchronization on this new stream.

Possible Problems: If the DUT cannot lose and acquire synchronization and alignment on a
small number of columns, then this test may not be able to be performed due to limitations of the
testing station.

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

38

The University of New Hampshire
InterOperability Laboratory

GROUP 2: Alignment

Overview: These tests are designed to verify that the device under test properly achieves
alignment on the received bit stream. The PCS functions explored are defined in Clause 48 of
IEEE Std. 802.3ae-2002, primarily in Figure 48-8.

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

39

The University of New Hampshire
InterOperability Laboratory

Test 48.2.1 – Determination of align_count

Purpose: To determine the number of ||A|| the DUT needs to receive before it will acquire
alignment.

References:

[1] IEEE Std. 802.3ae-2002 subclauses 48.2.4.2.2, 48.2.5.2.3, Figure 48-8

Resource Requirements: A testing station capable of encoding (decoding) 8 bit octets to (from)
10-bit code groups as specified in clause 48 and sending (receiving) these code groups using the
signaling method described in clause 47, 53, or 54.

Last Modification: September 20, 2005

Discussion: The deskew process determines whether the underlying receive channel is ready to
send coherent data to the XGMII. The deskew process asserts the align_status flag when the
PCS has successfully deskewed and aligned all four lanes. Skew is introduced by both active
and passive elements of the link. The ||A|| ordered_set contains a special code-group known as
the Align, or /A/ code-group in all four lanes. ||A|| ordered_sets are sent in the idle stream, and
are transmitted 16-31 columns apart. The DUT uses the ||A|| ordered_sets to remove the skew
from and align the four lanes. After acquiring alignment, the DUT tests received ordered_sets
and uses multiple sub-states, effecting hysteresis, to move between the ALIGN_ACQUIRED_1
and LOSS_OF_ALIGNMENT states. After receiving multiple deskew errors, the DUT may be
forced into the LOSS_OF_ALIGNMENT state and will be unable to properly respond to frames
while in this state.

Test Setup: Connect the device under test (DUT) to the testing station (transmit to receive,
receive to transmit) with the appropriate medium (i.e. multi-mode fiber, single mode fiber, SMA
cables, or backplane).

Procedure:

Part A (determine number of ||A|| necessary to achieve alignment)
1. Bring the DUT to a state in which the DUT has achieved synchronization on all four

lanes and is in the SYNC_ACQUIRED_1 state and the LOSS_OF_ALIGNMENT state.
This can be accomplished by sending the DUT ||K|| and ||R|| but no ||A||.

2. Instruct the testing station to send zero columns of ||A|| to the DUT followed by 16-31
columns of ||K|| and ||R||.

3. Instruct the testing station to transmit a valid frame to the DUT.
4. Repeat steps 1 through 3 increasing the number of ||A|| columns being sent in step 2 until

the DUT receives the frame (each ||A|| will be separated by 16-31 non ||A|| columns). Set
this number to align_count.

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

40

The University of New Hampshire
InterOperability Laboratory

Observable results:

a. The DUT should receive the frame when the value of align_count is 4.

Possible Problems: The deskew process, initialized by the enable_deskew variable is
completely unbounded. This means that an arbitrary number of valid ||A|| columns can be
received in the LOSS_OF_ALIGNMENT state before the DUT transitions to the
ALIGN_DETECT_1 state. It is possible that the procedure may need to be modified to account
for these issues, and that the value of align_count may rise above 4.

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

41

The University of New Hampshire
InterOperability Laboratory

Test 48.2.2 – Acquire alignment

Purpose: To determine that a DUT will acquire alignment after the reception of 4 identical Idle
Align code-groups corresponding to the Idle Align function.

References:

[1] IEEE Std. 802.3ae-2002 subclauses 48.2.4.2.2, 48.2.5.2.3, Figure 48-8

Resource Requirements: A testing station capable of encoding (decoding) 8 bit octets to (from)
10-bit code groups as specified in clause 48 and sending (receiving) these code groups using the
signaling method described in clause 47, 53, or 54.

Last Modification: September 20, 2005

Discussion: The deskew process determines whether the underlying receive channel is ready to
send coherent data to the XGMII. The deskew process asserts the align_status flag when the
PCS has successfully deskewed and aligned all four lanes. Skew is introduced by both active
and passive elements of the link. The ||A|| ordered_set contains a special code-group known as
the Align, or /A/ code-group in all four lanes. ||A|| ordered_sets are sent in the idle stream, and
are transmitted 16-31 columns apart. The DUT uses the ||A|| ordered_sets to remove the skew
from and align the four lanes. After acquiring alignment, the DUT tests received ordered_sets
and uses multiple sub-states, effecting hysteresis, to move between the ALIGN_ACQUIRED_1
and LOSS_OF_ALIGNMENT states. After receiving multiple deskew errors, the DUT may be
forced into the LOSS_OF_ALIGNMENT state and will be unable to properly respond to frames
while in this state.

Test Setup: Connect the device under test (DUT) to the testing station (transmit to receive,
receive to transmit) with the appropriate medium (i.e. multi-mode fiber, single mode fiber, SMA
cables, or backplane).

Procedure:

Part A (acquire alignment through ALIGN_DETECT_1)
1. Bring the DUT to a state in which the DUT has achieved synchronization on all four

lanes and is both the SYNC_ACQUIRED_1 state and the LOSS_OF_ALIGNMENT
state.

2. Using the value of align_count obtained in test 48.2.1, instruct the testing station to send
||A||, deskew error(s), n columns of ||A|| to the DUT, where n is initially set to
align_count–1. For example, if 4 columns were needed in Part A, then initially set n to 3,
as shown in the following table. Following every column or partial column of ||A||, the
testing station will transmit an additional 16-31 columns of ||R|| and ||K||.

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

42

The University of New Hampshire
InterOperability Laboratory
Lane 0 Lane 1 Lane 2 Lane 3
/A/ /A/ /A/ /A/
/R/ /A/ /A/ /A/
/A/ /A/ /A/ /A/
/A/ /A/ /A/ /A/
/A/ /A/ /A/ /A/

3. Instruct the testing station to transmit a valid frame to the DUT.
4. Repeat steps 1 through 3, increasing n in step 2 to align_count.
5. Repeat steps 1 through 4, substituting the following for the pattern in step 2:

Lane 0 Lane 1 Lane 2 Lane 3
/A/ /A/ /A/ /A/
/A/ /R/ /A/ /A/
/A/ /A/ /A/ /A/
/A/ /A/ /A/ /A/
/A/ /A/ /A/ /A/

Lane 0 Lane 1 Lane 2 Lane 3
/A/ /A/ /A/ /A/
/A/ /A/ /R/ /A/
/A/ /A/ /A/ /A/
/A/ /A/ /A/ /A/
/A/ /A/ /A/ /A/

Lane 0 Lane 1 Lane 2 Lane 3
/A/ /A/ /A/ /A/
/A/ /A/ /A/ /R/
/A/ /A/ /A/ /A/
/A/ /A/ /A/ /A/
/A/ /A/ /A/ /A/

Part B (acquire alignment through ALIGN_DETECT_2)
1. Repeat Part A substituting the following patterns for step 2. Instruct the testing station to

send ||A||, ||A||, deskew errors, n columns of /A/ to the DUT, where n is initially set to
align_count–1.

Lane 0 Lane 1 Lane 2 Lane 3
/A/ /A/ /A/ /A/
/A/ /A/ /A/ /A/
/R/ /A/ /A/ /A/
/A/ /A/ /A/ /A/
/A/ /A/ /A/ /A/

Lane 0 Lane 1 Lane 2 Lane 3
/A/ /A/ /A/ /A/
/A/ /A/ /A/ /A/
/A/ /R/ /A/ /A/
/A/ /A/ /A/ /A/
/A/ /A/ /A/ /A/

Lane 0 Lane 1 Lane 2 Lane 3
/A/ /A/ /A/ /A/
/A/ /A/ /A/ /A/
/A/ /A/ /R/ /A/
/A/ /A/ /A/ /A/
/A/ /A/ /A/ /A/

Lane 0 Lane 1 Lane 2 Lane 3
/A/ /A/ /A/ /A/
/A/ /A/ /A/ /A/
/A/ /A/ /A/ /R/
/A/ /A/ /A/ /A/
/A/ /A/ /A/ /A/

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

43

The University of New Hampshire
InterOperability Laboratory

Part C (acquire alignment through ALIGN_DETECT_3)
1. Repeat Part A substituting the following patterns for step 2. Instruct the testing station to

send ||A||, ||A||, ||A||, deskew errors, n columns of /A/ to the DUT, where n is initially set
to align_count–1.

Lane 0 Lane 1 Lane 2 Lane 3
/A/ /A/ /A/ /A/
/A/ /A/ /A/ /A/
/A/ /A/ /A/ /A/
/R/ /A/ /A/ /A/
/A/ /A/ /A/ /A/
/A/ /A/ /A/ /A/
/A/ /A/ /A/ /A/

Lane 0 Lane 1 Lane 2 Lane 3
/A/ /A/ /A/ /A/
/A/ /A/ /A/ /A/
/A/ /A/ /A/ /A/
/A/ /R/ /A/ /A/
/A/ /A/ /A/ /A/
/A/ /A/ /A/ /A/
/A/ /A/ /A/ /A/

Lane 0 Lane 1 Lane 2 Lane 3
/A/ /A/ /A/ /A/
/A/ /A/ /A/ /A/
/A/ /A/ /A/ /A/
/A/ /A/ /R/ /A/
/A/ /A/ /A/ /A/
/A/ /A/ /A/ /A/
/A/ /A/ /A/ /A/

Lane 0 Lane 1 Lane 2 Lane 3
/A/ /A/ /A/ /A/
/A/ /A/ /A/ /A/
/A/ /A/ /A/ /A/
/A/ /A/ /A/ /R/
/A/ /A/ /A/ /A/
/A/ /A/ /A/ /A/
/A/ /A/ /A/ /A/

Observable results:

a. The DUT should receive the frame after receiving 4 consecutive aligned ||A||.
b. The DUT should receive the frame after receiving 4 consecutive aligned ||A||.
c. The DUT should receive the frame after receiving 4 consecutive aligned ||A||.

Possible Problems: The deskew process, initialized by the enable_deskew variable is
completely unbounded. This means that an arbitrary number of valid ||A|| columns can be
received in the LOSS_OF_ALIGNMENT state before the DUT transitions to the
ALIGN_DETECT_1 state. It is possible that the procedure may need to be modified to account
for these issues.

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

44

The University of New Hampshire
InterOperability Laboratory

Test 48.2.3 – Loss of alignment count

Purpose: To determine the number of misaligned ||A|| code-group sequences which should cause
the DUT to return to the LOSS_OF_ALIGNMENT state.

References:

[1] IEEE Std. 802.3ae-2002 subclauses 48.2.4.2.2, 48.2.5.2.3, Figure 48-8

Resource Requirements: A testing station capable of encoding (decoding) 8 bit octets to (from)
10-bit code groups as specified in clause 48 and sending (receiving) these code groups using the
signaling method described in clause 47, 53, or 54.

Last Modification: July 28, 2004

Discussion: The deskew process determines whether the underlying receive channel is ready to
send coherent data to the XGMII. The deskew process asserts the align_status flag when the
PCS has successfully deskewed and aligned all four lanes. Skew is introduced by both active
and passive elements of the link. The ||A|| ordered_set contains a special code-group known as
the Align, or /A/ code-group in all four lanes. ||A|| ordered_sets are sent in the idle stream, and
are transmitted 16-31 columns apart. The DUT uses the ||A|| ordered_sets to remove the skew
from and align the four lanes. After receiving multiple deskew errors, the DUT may be forced
into the LOSS_OF_ALIGNMENT state and will be unable to properly respond to frames while
in this state.

Test Setup: Connect the device under test (DUT) to the testing station (transmit to receive,
receive to transmit) with the appropriate medium (i.e. multi-mode fiber, single mode fiber, SMA
cables, backplane).

Procedure:

Part A
1. Bring the DUT to a state in which the DUT is able to receive and transmit data frames.
2. Instruct the testing station to send a valid frame to the DUT followed by valid idle.
3. Instruct the testing station to send n columns (the initial value of n is 1) containing a

deskew error to the DUT, with each misaligned ||A|| being separated by 16-31 columns of
||K|| and ||R||, followed by a valid frame.

4. If the DUT does not lose alignment, then repeat steps 1 through 6, increasing the value of
n in step 3 until the DUT does lose alignment, and set this value to lose_align_count.

Observable results:

a. The value of lose_align_count should be 4.

Possible Problems: None

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

45

The University of New Hampshire
InterOperability Laboratory

Test 48.2.4 – Deskew error identification

Purpose: To determine what the DUT considers to be a deskew error.

References:

[1] IEEE Std. 802.3ae-2002 subclauses 48.2.4.2.2, 48.2.5.2.3, Figure 48-8

Resource Requirements: A testing station capable of encoding (decoding) 8 bit octets to (from)
10-bit code groups as specified in clause 48 and sending (receiving) these code groups using the
signaling method described in clause 47, 53, or 54.

Last Modification: September 20, 2005

Discussion: The deskew process determines whether the underlying receive channel is ready to
send coherent data to the XGMII. The deskew process asserts the align_status flag when the
PCS has successfully deskewed and aligned all four lanes. Skew is introduced by both active
and passive elements of the link. The DUT uses the ||A|| ordered_sets to remove the skew from
and align the four lanes. After receiving multiple deskew errors, the DUT may be forced into the
LOSS_OF_ALIGNMENT state and will be unable to properly respond to frames while in this
state.

Test Setup: Connect the device under test (DUT) to the testing station (transmit to receive,
receive to transmit) with the appropriate medium (i.e. multi-mode fiber, single mode fiber, SMA
cables, backplane).

Procedure:

1. Bring the DUT to a state in which the DUT is able to receive and transmit data frames.
2. Instruct the testing station to send a valid frame to the DUT followed by valid idle.
3. Instruct the testing station to send lose_align_count columns containing a deskew error to

the DUT, with each misaligned ||A|| being separated by 16-31 columns of ||K|| and ||R||,
followed by a valid frame. Choose the deskew error from the following table:

/A/A/R/R/ /R/A/A/R/ /A/R/A/A/ /R/R/A/A/ /A/R/R/A/ /A/R/A/R/ /R/A/R/A/
/A/A/A/R R/A/A/A/ /A/A/R/A/ /A/A/A/*/ /A/A/*/A/ /A/*/A/A/ /*/A/A/A/
/A/A/A/#/ /A/A/#/A/ /A/#/A/A/ /#/A/A/A/

Notes: * represents any code that is one bit different than /A/. # represents an otherwise valid /A/ that has the incorrect
running disparity.
4. Repeat steps 1-3 for each deskew error.
5. Repeat steps 1-4 for each deskew error, but with no columns of ||K|| and ||R|| separating

the errors.
Observable results:

a. The DUT should lose alignment on each deskew error and not receive the second frame.

Possible Problems: None

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

46

The University of New Hampshire
InterOperability Laboratory

Test 48.2.5 – Loss of alignment

Purpose: To verify that a DUT will lose alignment after the reception of code-group sequences
which should cause it to return to the LOSS_OF_ALIGNMENT state.

References:

[1] IEEE Std. 802.3ae-2002 subclauses 48.2.4.2.2, 48.2.5.2.3, Figure 48-8

Resource Requirements: A testing station capable of encoding (decoding) 8 bit octets to (from)
10-bit code groups as specified in clause 48 and sending (receiving) these code groups using the
signaling method described in clause 47, 53, or 54.

Last Modification: September 20, 2005

Discussion: The deskew process determines whether the underlying receive channel is ready to
send coherent data to the XGMII. The deskew process asserts the align_status flag when the
PCS has successfully deskewed and aligned all four lanes. Skew is introduced by both active
and passive elements of the link. The ||A|| ordered_set contains a special code-group known as
the Align, or /A/ code-group in all four lanes. ||A|| ordered_sets are sent in the idle stream, and
are transmitted 16-31 columns apart. The DUT uses the ||A|| ordered_sets to remove the skew
from and align the four lanes. After acquiring alignment, the DUT tests received ordered_sets
and uses multiple sub-states, effecting hysteresis, to move between the ALIGN_ACQUIRED_1
and LOSS_OF_ALIGNMENT states. After receiving multiple deskew errors, the DUT may be
forced into the LOSS_OF_ALIGNMENT state and will be unable to properly respond to frames
while in this state.

Test Setup: Connect the device under test (DUT) to the testing station (transmit to receive,
receive to transmit) with the appropriate medium (i.e. multi-mode fiber, single mode fiber, SMA
cables, backplane).

Procedure:

Part A (deskew errors on lane 0)
1. Bring the DUT to a state in which the DUT is able to receive and transmit data frames.
2. Instruct the testing station to send a valid frame to the DUT followed by valid idle.
3. Instruct the testing station to send the following pattern to the DUT, with each misaligned

||A|| being separated by 16-31 columns of ||K|| and ||R||, and the total number of deskew
errors is lose_align_count:

Lane 0 Lane 1 Lane 2 Lane 3

/A/ /R/ /R/ /R/
/A/ /R/ /R/ /R/
/A/ /R/ /R/ /R/
/A/ /R/ /R/ /R/

4. Instruct the testing station to send a valid frame to the DUT.

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

47

The University of New Hampshire
InterOperability Laboratory

5. Repeat steps 1 through 4 with the following patterns in step 3:

Lane 0 Lane 1 Lane 2 Lane 3
/A/ /R/ /R/ /R/
/A/ /A/ /A/ /A/
/A/ /R/ /R/ /R/
/A/ /R/ /R/ /R/
/A/ /R/ /R/ /R/
/A/ /R/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/A/ /R/ /R/ /R/
/A/ /R/ /R/ /R/
/A/ /A/ /A/ /A/
/A/ /R/ /R/ /R/
/A/ /R/ /R/ /R/
/A/ /R/ /R/ /R/

 Lane 0 Lane 1 Lane 2 Lane 3

/A/ /R/ /R/ /R/
/A/ /R/ /R/ /R/
/A/ /R/ /R/ /R/
/A/ /A/ /A/ /A/
/A/ /R/ /R/ /R/
/A/ /R/ /R/ /R/

1. Repeat Part A substituting the following patterns for step 2.

Part B (deskew errors on lane 1)

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /A/ /R/ /R/
/R/ /A/ /R/ /R/
/R/ /A/ /R/ /R/
/R/ /A/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /A/ /R/ /R/
/A/ /A/ /A/ /A/
/R/ /A/ /R/ /R/
/R/ /A/ /R/ /R/
/R/ /A/ /R/ /R/
/R/ /A/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /A/ /R/ /R/
/R/ /A/ /R/ /R/
/A/ /A/ /A/ /A/
/R/ /A/ /R/ /R/
/R/ /A/ /R/ /R/
/R/ /A/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /A/ /R/ /R/
/R/ /A/ /R/ /R/
/R/ /A/ /R/ /R/
/A/ /A/ /A/ /A/
/R/ /A/ /R/ /R/
/R/ /A/ /R/ /R/

Part C (deskew errors on lane 2)
1. Repeat Part A substituting the following patterns for step 2.

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

48

The University of New Hampshire
InterOperability Laboratory

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /A/ /R/
/R/ /R/ /A/ /R/
/R/ /R/ /A/ /R/
/R/ /R/ /A/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /A/ /R/
/A/ /A/ /A/ /A/
/R/ /R/ /A/ /R/
/R/ /R/ /A/ /R/
/R/ /R/ /A/ /R/
/R/ /R/ /A/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /A/ /R/
/R/ /R/ /A/ /R/
/A/ /A/ /A/ /A/
/R/ /R/ /A/ /R/
/R/ /R/ /A/ /R/
/R/ /R/ /A/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /A/ /R/
/R/ /R/ /A/ /R/
/R/ /R/ /A/ /R/
/A/ /A/ /A/ /A/
/R/ /R/ /A/ /R/
/R/ /R/ /A/ /R/

Part D deskew errors on lane 3)
1. Repeat Part A substituting the following patterns for step 2.

Lane 0

Lane 1 Lane 2 Lane 3
/R/ /R/ /R/ /A/
/R/ /R/ /R/ /A/
/R/ /R/ /R/ /A/
/R/ /R/ /R/ /A/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /R/ /A/
/A/ /A/ /A/ /A/
/R/ /R/ /R/ /A/
/R/ /R/ /R/ /A/
/R/ /R/ /R/ /A/
/R/ /R/ /R/ /A/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /R/ /A/
/R/ /R/ /R/ /A/
/A/ /A/ /A/ /A/
/R/ /R/ /R/ /A/
/R/ /R/ /R/ /A/
/R/ /R/ /R/ /A/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /R/ /A/
/R/ /R/ /R/ /A/
/R/ /R/ /R/ /A/
/A/ /A/ /A/ /A/
/R/ /R/ /R/ /A/
/R/ /R/ /R/ /A/

Observable results:

a. The DUT should not receive the second frame.
b. The DUT should not receive the second frame.
c. The DUT should not receive the second frame.
d. The DUT should not receive the second frame.

Possible Problems: If the patterns listed above do not cause a deskew error to be recognized by
the DUT, another pattern may be substituted.

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

49

The University of New Hampshire
InterOperability Laboratory

Test 48.2.6 – Maintain alignment

Purpose: To verify that the DUT is able to maintain alignment for receiving a specific set of
deskew errors.

References:

[1] IEEE Std. 802.3ae-2002 subclauses 48.2.4.2.2, 48.2.5.2.3, Figure 48-8

Resource Requirements: A testing station capable of encoding (decoding) 8 bit octets to (from)
10-bit code groups as specified in clause 48 and sending (receiving) these code groups using the
signaling method described in clause 47, 53, or 54.

Last Modification: July 28, 2004

Discussion: The deskew process determines whether the underlying receive channel is ready to
send coherent data to the XGMII. The deskew process asserts the align_status flag when the
PCS has successfully deskewed and aligned all four lanes. Skew is introduced by both active
and passive elements of the link. The ||A|| ordered_set contains a special code-group known as
the Align, or /A/ code-group in all four lanes. ||A|| ordered_sets are sent in the idle stream, and
are transmitted 16-31 columns apart. The DUT uses the ||A|| ordered_sets to remove the skew
from and align the four lanes. After acquiring alignment, the DUT tests received ordered_sets
and uses multiple sub-states, effecting hysteresis, to move between the ALIGN_ACQUIRED_1
and LOSS_OF_ALIGNMENT states. After receiving multiple deskew errors, the DUT may be
forced into the LOSS_OF_ALIGNMENT state and will be unable to properly respond to frames
while in this state.

Test Setup: Connect the device under test (DUT) to the testing station (transmit to receive,
receive to transmit) with the appropriate medium (i.e. multi-mode fiber, single mode fiber, SMA
cables, backplane).

Procedure:

Part A (maintain alignment on lane 0)
1. Bring the DUT to a state in which the DUT is able to receive and transmit data frames.
2. Instruct the Testing Station to send a valid frame followed by valid idle to the DUT.
3. Instruct the testing station to send the following pattern to the DUT, where each

alignment error is separated by 16-31 columns of ||R|| and ||K||:

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /R/ /R/
/A/ /R/ /R/ /R/
/R/ /R/ /R/ /R/

4. Instruct the testing station to transmit a valid frame to the DUT.

5. Repeat steps 1 through 4 with the following patterns in step 3, increasing the total number
of alignment errors from 1 to lose_align_count–1in the test cases that do not contain a
valid ||A||, and from 1 to lose_align_count in the test cases that do contain a valid ||A||:

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

50

The University of New Hampshire
InterOperability Laboratory

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /R/ /R/
/A/ /R/ /R/ /R/
/A/ /R/ /R/ /R/
/A/ /R/ /R/ /R/
/R/ /R/ /R/ /R/

/A/ /R/ /R/ /R/
/A/ /R/ /R/ /R/
/R/ /R/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /R/ /R/
/A/ /R/ /R/ /R/
/A/ /A/ /A/ /A/
/A/ /R/ /R/ /R/
/A/ /R/ /R/ /R/
/A/ /R/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /R/ /R/
/A/ /R/ /R/ /R/
/A/ /R/ /R/ /R/
/A/ /A/ /A/ /A/
/A/ /R/ /R/ /R/
/A/ /R/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /R/ /R/
/A/ /R/ /R/ /R/
/A/ /R/ /R/ /R/
/A/ /R/ /R/ /R/
/A/ /A/ /A/ /A/
/A/ /R/ /R/ /R/

Part B (maintain alignment on lane 1)
1. Repeat Part A, using the following patterns for step 3.

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /R/ /R/
/R/ /A/ /R/ /R/
/R/ /R/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /R/ /R/
/R/ /A/ /K/ /K/
/R/ /A/ /R/ /R/
/R/ /R/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /R/ /R/
/R/ /A/ /R/ /R/
/R/ /A/ /R/ /R/
/R/ /A/ /R/ /R/
/R/ /R/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /R/ /R/
/R/ /A/ /R/ /R/
/A/ /A/ /A/ /A/
/R/ /A/ /R/ /R/
/R/ /A/ /R/ /R/
/R/ /A/ /R/ /R/

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

51

The University of New Hampshire
InterOperability Laboratory

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /R/ /R/
/R/ /A/ /R/ /R/
/R/ /A/ /R/ /R/
/A/ /A/ /A/ /A/
/R/ /A/ /R/ /R/
/R/ /A/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /R/ /R/
/R/ /A/ /R/ /R/
/R/ /A/ /R/ /R/
/R/ /A/ /R/ /R/
/A/ /A/ /A/ /A/
/R/ /A/ /R/ /R/

Lane 1

Part C (maintain alignment on lane 2)
1. Repeat Part A, using the following patterns for step 3.

Lane 0 Lane 2 Lane 3
/R/ /R/ /R/ /R/
/R/ /R/ /A/ /R/
/R/ /R/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /R/ /R/
/R/ /R/ /A/ /R/
/R/ /R/ /A/ /R/
/R/ /R/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /R/ /R/
/R/ /R/ /A/ /R/
/R/ /R/ /A/ /R/
/R/ /R/ /A/ /R/
/R/ /R/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /R/ /R/
/R/ /R/ /A/ /R/
/A/ /A/ /A/ /A/
/R/ /R/ /A/ /R/
/R/ /R/ /A/ /R/
/R/ /R/ /A/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /R/ /R/
/R/ /R/ /A/ /R/
/R/ /R/ /A/ /R/
/A/ /A/ /A/ /A/
/R/ /R/ /A/ /R/
/R/ /R/ /A/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /R/ /R/
/R/ /R/ /A/ /R/
/R/ /R/ /A/ /R/
/R/ /R/ /A/ /R/
/A/ /A/ /A/ /A/
/R/ /R/ /A/ /R/

Part D (maintain alignment on lane 3)
2. Repeat Part A, using the following patterns for step 3.

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /A/
/R/ /R/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /A/
/R/ /R/ /R/ /A/
/R/ /R/ /R/ /R/

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

52

The University of New Hampshire
InterOperability Laboratory

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /A/
/R/ /R/ /R/ /A/
/R/ /R/ /R/ /A/
/R/ /R/ /R/ /R/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /A/
/A/ /A/ /A/ /A/
/R/ /R/ /R/ /A/
/R/ /R/ /R/ /A/
/R/ /R/ /R/ /A/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /A/
/R/ /R/ /R/ /A/
/A/ /A/ /A/ /A/
/R/ /R/ /R/ /A/
/R/ /R/ /R/ /A/

Lane 0 Lane 1 Lane 2 Lane 3
/R/ /R/ /R/ /R/
/R/ /R/ /R/ /A/
/R/ /R/ /R/ /A/
/R/ /R/ /R/ /A/
/A/ /A/ /A/ /A/
/R/ /R/ /R/ /A/

Observable results:

a. The DUT should receive both frames.
b. The DUT should receive both frames.
c. The DUT should receive both frames.
d. The DUT should receive both frames.

Possible Problems: If the patterns listed above do not cause a deskew error to be recognized by
the DUT, another pattern may be substituted.

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

53

The University of New Hampshire
InterOperability Laboratory

Test 48.2.7 – Reacquire alignment

Purpose: To verify that the DUT is able to maintain alignment for receiving a specific set of
deskew errors.

References:

[1] IEEE Std. 802.3ae-2002 subclauses 48.2.4.2.2, 48.2.5.2.3, Figure 48-8

Resource Requirements: A testing station capable of encoding (decoding) 8 bit octets to (from)
10-bit code groups as specified in clause 48 and sending (receiving) these code groups using the
signaling method described in clause 47, 53, or 54.

Last Modification: September 20, 2005

Discussion: Once a device has properly acquired alignment and synchronization, certain
network behaviors may cause a certain amount of instantaneous skew to be introduced into the
link. This skew should cause the DUT to lose alignment and then acquire a new alignment on
the incoming data stream.

Test Setup: Connect the device under test (DUT) to the testing station (transmit to receive,
receive to transmit) with the appropriate medium (i.e. multi-mode fiber, single mode fiber, SMA
cables, backplane).

Procedure:

1. Bring the DUT to a state in which the DUT is able to receive and transmit data frames.
2. Instruct the Testing Station to send a stream of valid frames to the DUT.
3. Instruct the testing station to introduce and maintain a minimum of 10 UI of skew to the

idle stream and transmit a frame.
4. Instruct the testing station to correct the 10 UI of skew and continue to transmit valid

frames to the DUT.

Observable results:
a. The DUT should lose alignment when skew is introduced into the idle stream and then

regain alignment on the new stream. The DUT should repeat this process when the skew
is removed from the idle stream.

Possible Problems: If the DUT cannot lose and regain alignment with a small number of
columns, then it may not be possible to perform this test due to testing station capabilities.

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

54

The University of New Hampshire
InterOperability Laboratory

Test 48.2.8 – Skew tolerance

Purpose: To verify that the DUT is able to properly achieve alignment and receive frames when
skew is introduced to the XAUI link.

References:

[1] IEEE Std. 802.3ae-2002 subclauses 48.2.4.2.2, Table 48-5

Resource Requirements: A testing station capable of encoding (decoding) 8 bit octets to (from)
10-bit code groups as specified in clause 48 and sending (receiving) these code groups using the
signaling method described in clause 47, 53, or 54.

Last Modification: July 29, 2004

Discussion: Both active and passive elements of a 10GBASE-X link may introduce skew
between any of the four lanes. The deskew function has the ability to compensate for this skew
at the receiver. The ||A|| ordered_set is a unique code-group, or /A/, on each lane that is not used
in any other ordered_set. Since each lane transmits an /A/ simultaneously, there is little skew
introduced at the transmitter. The PMA of the transmitter, the PCB the signals traverse, the
medium, and the PMA of the receiver are all allowed to introduce various amounts of skew,
measured in UI, to the 10GBASE-X link.

Lane0 Lane1 Lane2 Lane3
+1 0 0 0
+2 0 0 0
+3 0 0 0
+X 0 0 0

Lane0 Lane1 Lane2 Lane3
-1 0 0 0
-2 0 0 0
-3 0 0 0
-Y 0 0 0

Lane0 Lane1 Lane2 Lane3
0 +1 0 0
0 +2 0 0
0 +3 0 0
0 +X 0 0

This table shows how the skew can be introduced in either direction on any of the lanes. For this
test, only a single lane will be tested at a time. The skew will be increased in one direction on a
single lane until the DUT no longer receives frames. Then, the skew will be increased in the
other direction on the same lane. The same process will be repeated on each of the other lanes.

Test Setup: Connect the device under test (DUT) to the testing station (transmit to receive,
receive to transmit) with the appropriate medium (i.e. multimode fiber, single mode fiber, SMA
cables, backplane).

Procedure:

1. Connect the DUT to the testing station, but turn off the transmitters of the testing station
so that the DUT is receiving no signal.

2. Turn on the transmitters of the testing station, and transmit idle followed by a frame to
the DUT.

3. Observe counters and other indicators on the DUT.
4. Repeat steps 1-2 and increase the skew on Lane 0 by +1 UI until the DUT no longer

receives the frame.

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

55

The University of New Hampshire
InterOperability Laboratory

5. Repeat steps 1-4 and increase the skew on Lane 0 by -1 UI until the DUT no longer
receives the frame.

6. Repeat steps 1-5 on Lane 1, Lane 2, and Lane 3.

Observable results:

a. The DUT should be tolerant of at least 21 UI total skew on its receiver.

Possible Problems: It may be difficult to determine the amount of skew generated at the
receiver of the DUT. The skew can only be calibrated to the point at which the testing station
connects to the DUT.

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

56

The University of New Hampshire
InterOperability Laboratory

GROUP 3: Transmit Related

Overview: These tests are designed to verify that the device under test transmits properly
encoded and formed data and idle streams. The PCS functions explored are defined in Clause 48
of IEEE Std. 802.3ae-2002.

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

57

The University of New Hampshire
InterOperability Laboratory

Test 48.3.1 – 8B/10B Encoding

Purpose: To verify that the device under test (DUT) selects the proper encoding for transmitted
code-groups.

References:

[1] IEEE Std. 802.3ae-2002 subclauses 48.2.3, Figure 48-3, 48.2.4
[2] IEEE Std. 802.3-2002 subclauses 36.2.4.4, 36.2.4.5, Table 36-1, Table 36-2

Resource Requirements: A testing station capable of encoding (decoding) 8 bit octets to (from)
10-bit code groups as specified in clause 48 and sending (receiving) these code groups using the
signaling method described in clause 47, 53, or 54.

Last Modification: September 20, 2005

Discussion: The PCS transmit process updates its running disparity value after each code-group
is sent. The current value of the running disparity is used to select the proper encoding of each
transmitted code-group.

In order to adequately test the 8B/10B encoding process, it is necessary to have the device under
test transmit all valid data code-groups and all valid special code-groups. This includes /K/, /R/,
/A/, /S/, /T/, /K28.1/, /K28.6/, and /K23.7/ for both the positive and negative running disparity.
Both forms of each valid data code-group can be generated as part of normal packet data.

Test Setup: Connect the device under test (DUT) to the testing station (transmit to receive,
receive to transmit) with the appropriate medium (i.e. multi-mode fiber, single mode fiber, SMA
cables, backplane).

Procedure:
Part A: (Valid data code-groups)

1. Bring the DUT to a state in which the DUT is able to receive and transmit data frames.
2. Force the DUT to transmit packets containing both forms of every valid data code-group

listed in Table 36-1.
3. Observe all transmissions from the DUT.

Part B: (Valid special codes groups)

1. Bring the DUT to a state in which the DUT is able to receive and transmit data frames.
2. Force the DUT to transmit code-groups containing both forms of every valid special

code-group listed in Table 36-2.
3. Observe all transmissions from the DUT.

Observable Results:

a. At all times, the DUT should transmit the correct encoding of the appropriate code-group
as specified in Part A step 2.

b. At all times, the DUT should transmit the correct encoding of the appropriate code-group
as specified in Part B step 2.

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

58

The University of New Hampshire
InterOperability Laboratory

Possible Problems: Part B can only be performed if the device under test has direct access to
the XGMII.

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

59

The University of New Hampshire
InterOperability Laboratory

Test 48.3.2 – Idle Sequencing

Purpose: To verify that the DUT follows the proper rules for the sequencing of Idle.

References:

[1] IEEE Std. 802.3ae-2002 subclauses 48.2.4.2, 48.2.4.2.1, 48.2.4.2.2, 48.2.4.2.3, Figure
48-6.

Resource Requirements: A testing station capable of encoding (decoding) 8 bit octets to (from)
10-bit code groups as specified in clause 48 and sending (receiving) these code groups using the
signaling method described in clause 47, 53, or 54.

Last Modification: July 26, 2004

Discussion: Idle ordered_sets, ||I||, are transmitted continuously by the DUT whenever frames
are not being transmitted. All idle ordered_sets come across the XGMII as
TXD<31:0>=0x07070707 and TXC<3:0>=0xF. The PCS then encodes the idle into the
appropriate column of /R/, /K/, or /A/, depending on the rules in 48.2.4.2. Ignoring skew that
may be present at the transmitter, the DUT always transmits a full column of the same idle
ordered_set. This helps to maintain lane synchronization and alignment at the receiver of the
link partner. Additionally, a device can manipulate the idle stream in order to perform clock rate
compensation in the PCS layer. The idle sequencing begins with the first full column following
a ||T||. This will be the first column to contain idle characters in each of the four lanes. There are
several explicit rules that need to be followed with regard to idle sequencing.

The first ||I|| following ||T|| alternates between ||A|| or ||K|| (maintaining ||A|| spacing)
||R|| is always the second full column of idle after ||T||
||A|| is sent after r non-||A|| columns, where r is uniformly distributed integer between 16 and 31,
inclusive. This establishes a minimum and maximum ||A|| spacing.
||K|| and ||R|| are sent with a uniform distribution in the absence of ||A||

These rules, with the help of Figure 48-6 define what the idle stream should look like. It is also
specified that one of two 7th order polynomials must be used to generate the pseudo-random idle
sequence: X7+X6+1, or X7+X3+1.

Test Setup: Connect the device under test (DUT) to the testing station (transmit to receive,
receive to transmit) with the appropriate medium (i.e. multi-mode fiber, single mode fiber, SMA
cables, backplane).

Procedure:

Part A (check first two columns of idle):
1. Establish a valid link with the DUT.
2. Instruct the DUT to send frames that are at least 116 bytes in length to the testing station.
3. Observe all transmissions from the DUT.
4. Repeat steps 1-2, with frames that are 64 bytes in length.
5. Repeat step 4, attempting to get the DUT to transmit ||Q|| between the frames.

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

60

The University of New Hampshire
InterOperability Laboratory

Part B (check ||A|| spacing and ||K||, ||R|| spacing):
1. Establish a valid link with the DUT such that the DUT will send nothing but idle.
2. Observe all transmissions from the DUT.

Observable results:

a1. In Part A, the first column of idle after the ||T|| should alternate between ||A|| and ||K||
when sending frames of at least 116 bytes in length.

a2. In Part A, the first column of idle after the ||T|| should follow the pattern of ||A||, ||K||, ||K||,
when sending frames of 64 bytes in length.

a3. In Part A, the second column of idle after the ||T|| should always be ||R|| or ||Q||.
b1. In Part B, the ||A|| spacing should be between 16 and 31 columns, inclusive.
b2. In Part B, the distribution of ||K|| and ||R|| should follow one of the two defined

polynomials.
b3. In Part B, the ||A|| spacing should be uniformly distributed, or randomly distributed in the

manner fitting one of the two defined polynomials. (See ||A|| spacing Appendix for more
details. This part is INFORMATIVE.)

Possible Problems: None.

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

61

The University of New Hampshire
InterOperability Laboratory

Test 48.3.3 – cvtx_terminate

Purpose: To verify that the DUT properly fills in the column containing the /T/ with /K/ code-
groups.

References:

[1] IEEE Std. 802.3ae-2002 subclauses 48.2.4.3.2, 48.2.6.1.4, Figure 48-6

Resource Requirements: A testing station capable of encoding (decoding) 8 bit octets to (from)
10-bit code groups as specified in clause 48 and sending (receiving) these code groups using the
signaling method described in clause 47, 53, or 54.

Last Modification: February 28, 2003

Discussion: The XGMII is allowed to transmit a frame of any length, bounded, of course, by the
limits set on the MAC in Clause 4. Within those limits, however, any length frame can be
transmitted, and therefore the /T/ control character can land on any of the four lanes. If the
length of the frame is divisible by 4, then the /T/ code-group will be transmitted on lane 0, and so
on for lanes 1, 2, and 3. When the /T/ is transmitted on any lane but lane 3, there exist one or
more lanes that need to be filled with idle code-groups before the first full column of idle can be
transmitted. In these cases, the DUT must transmit /K/ code-groups to complete the column
containing the /T/. For example, if the /T/ code-group was on lane 1, then the DUT would
transmit /K/ on lanes 2 and 3.

Test Setup: Connect the device under test (DUT) to the testing station (transmit to receive,
receive to transmit) with the appropriate medium (i.e. multi-mode fiber, single mode fiber, SMA
cables, backplane).

Procedure:

1. Bring the DUT to a state in which the DUT is able to receive and transmit data frames.
2. Instruct the DUT to transmit frames on length n, where n is an integer multiple of 4.
3. Observe all transmissions from the DUT.
4. Repeat steps 1-3 with frames of size n+1, and n+2.

Observable results:

a. The DUT should complete the column containing the /T/ with /K/ code-groups.

Possible Problems: None

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

62

The University of New Hampshire
InterOperability Laboratory

Test 48.3.4 – Fault Transmission

Purpose: To verify that the DUT properly transmits sequence ordered_sets.

References:

[1] IEEE Std. 802.3ae-2002 subclauses 46.3.4, 48.2.4.5.1, 48.2.6.1.4, Figure 48-6.

Resource Requirements: A testing station capable of encoding (decoding) 8 bit octets to (from)
10-bit code groups as specified in clause 48 and sending (receiving) these code groups using the
signaling method described in clause 47, 53, or 54.

Last Modification: July 26, 2004

Discussion: Sequence ordered_sets are defined in subclause 46.3.4. When sequence
ordered_sets are being sent across the XGMII, the PCS is only allowed to transmit them over the
PMA service interface in the column following an ||A|| ordered_set. In most cases, the sequence
ordered_sets will be coming across the XGMII continuously, and the PCS will have to discard
many of them since an ||A|| is only sent once every 16-31 columns. Sequence ordered_sets do
not otherwise interfere with the randomized ||I|| sequence, and are not acted upon or modified by
the PCS.

Test Setup: Connect the device under test (DUT) to the testing station (transmit to receive,
receive to transmit) with the appropriate medium (i.e. multi-mode fiber, single mode fiber, SMA
cables, backplane).

Procedure:

1. Bring the DUT to a state in which the PCS should be transmitting continuous local fault
sequence ordered_sets.

2. Observe transmissions from the DUT.
3. Repeat steps 1-2 with continuous remote fault sequence ordered_sets.

Observable results:
a. When continuous sequence ordered_sets are being transmitted, the DUT should only

place ||Q|| ordered_sets after ||A|| ordered_sets.

Possible Problems: None

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

63

The University of New Hampshire
InterOperability Laboratory

GROUP 4: Receive Related

Overview: These tests are designed to verify that the device under test follows the rules for the
reception of data and idle streams. The PCS functions explored are defined in Clause 48 of IEEE
Std. 802.3ae-2002.

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

64

The University of New Hampshire
InterOperability Laboratory

Test 48.4.1 – Fault Reception

Purpose: To verify that the DUT properly receives sequence ordered_sets.

References:

[1] IEEE Std. 802.3ae-2002 subclauses 46.3.4, 48.2.4.5.1, 48.2.6.2.4, Figure 48-9.

Resource Requirements: A testing station capable of encoding (decoding) 8 bit octets to (from)
10-bit code groups as specified in clause 48 and sending (receiving) these code groups using the
signaling method described in clause 47, 53, or 54.

Last Modification: February 28, 2003

Discussion: When align_status=FAIL, the PCS receive process is recognizing that valid data
and idle are not yet ready to be received and passed up the stack. Instead, while in the
LOCAL_FAULT_INDICATE state, the PCS receiver state machine should pass up local fault
ordered_sets to its client. Once the DUT has entered either the DATA_MODE or IDLE_MODE
states, it should decode and pass up everything that is being received. If the DUT receives local
or remote sequence ordered_sets at this time, then this should be passed to the PCS client.

Test Setup: Connect the device under test (DUT) to the testing station (transmit to receive,
receive to transmit) with the appropriate medium (i.e. multi-mode fiber, single mode fiber, SMA
cables, backplane).

Procedure:

1. Bring the DUT to a state in which it can receive and transmit frames.
2. Force the DUT into the LOCAL_FAULT_INDICATE state. One method to do this

could be removing the connection between the receiver of the DUT and transmitter of the
Link Partner.

3. Observe status and management indicators on the DUT.
4. Repeat steps 1-3 sending local fault sequence ordered_sets to the DUT, and then repeat

sending remote fault sequence ordered_sets.

Observable results:
a. While in the LOCAL_FAULT_INDICATE state, the DUT should pass local fault

sequence ordered_sets to the PCS client.
b. When receiving local fault sequence ordered_sets, the DUT should pass local fault

sequence ordered_sets to the PCS client
c. When receiving remote fault sequence ordered_sets, the DUT should pass remote fault

sequence ordered_sets to the PCS client

Possible Problems: None

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

65

The University of New Hampshire
InterOperability Laboratory

Test 48.4.2 – check_end

Purpose: To verify that the DUT properly implements the check_end function.

References:

[1] IEEE Std. 802.3ae-2002 subclauses 48.2.4.3.2, 48.2.6.1.4, Figure 48-9.
[2] Annex B of this test suite
[3] http://www.ieee802.org/3/interp/interp-5-1103.pdf

Resource Requirements: A testing station capable of encoding (decoding) 8 bit octets to (from)
10-bit code groups as specified in clause 48 and sending (receiving) these code groups using the
signaling method described in clause 47, 53, or 54.

Last Modification: May 2, 2004

Discussion: The check_end function is a prescient terminate function used by the PCS receive
process to indicate whether or not a running disparity error was able to propagate through the
frame and into idle code-groups in the column containing /T/ or in first full column of idle after
||T||. Due to the nature of the running disparity calculation, it is possible for some running
disparity errors to propagate through a frame under certain conditions. All running disparity
errors, however, will be caught in either the idle in ||T|| or in the column of idle after ||T||. If a
running disparity error is found on any lane in these columns, the PCS will return the XGMII
Error control character, thus forcing the frame to become invalid and discarded.

Test Setup: Connect the device under test (DUT) to the testing station (transmit to receive,
receive to transmit) with the appropriate medium (i.e. multi-mode fiber, single mode fiber, SMA
cables, backplane).

Procedure:

Part A (running disparity error in column after ||T||)
1. Bring the DUT to a state in which it can receive and transmit frames.
2. Instruct the testing station to transmit a valid frame to the DUT followed by valid idle.
3. Instruct the testing station to transmit a frame to the DUT that has the /T/ occur on lane 3.
4. Instruct the testing station to have a running disparity error occur on lane 0 of the next

column following the ||T||, but valid idle otherwise.
5. Instruct the testing station to transmit a valid frame to the DUT followed by valid idle.
6. Observe status and management indicators on the DUT.
7. Repeat steps 1 – 6 with the RD error located on lanes 1, 2, and 3 respectively.
8. Repeat steps 1 – 7 with the /T/ occurring on lanes 0, 1, and 2, respectively.
9. Repeat steps 1 – 8 replacing the RD error with a code-group other than /A/ or /K/.
Part B (running disparity error in||T||)
1. Bring the DUT to a state in which it can receive and transmit frames.
2. Instruct the testing station to transmit a valid frame to the DUT followed by valid idle.
3. Instruct the testing station to transmit a frame to the DUT that has the /T/ occur on lane 0.

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

66

http://www.ieee802.org/3/interp/interp-5-1103.pdf

The University of New Hampshire
InterOperability Laboratory

4. Instruct the testing station to have a running disparity error occur on lane 1 of ||T||, but
valid idle otherwise.

5. Instruct the testing station to transmit a valid frame to the DUT followed by valid idle.
6. Observe status and management indicators on the DUT.
7. Repeat steps 1 – 6 with the running disparity error located on lanes 2, and 3 respectively.
8. Repeat steps 1 – 7 replacing the RD error with a code-group other than /K/.

Observable results:

a. In Part A, the DUT should always receive the first and third frames. When the error
occurs in a column that immediately follows a /D/ code-group, the second frame should
always be discarded. When the error occurs in a column that immediately follows a /T/
or /I/ code-group, the second frame should not be discarded.

b. In Part B, the DUT should always receive the first and third frames but never receive the
second frame.

This table shows, in greater detail, each test sequence and its observable result.

Number Test Sequence Valid

Checkend?
 Number Test Sequence Valid

Checkend?
1 / TKKK / RDfmmm KKKK / Yes 22 / DTKK / KKRK / Yes
2 / TKKK / RDmfmm KKKK / Yes 23 / DTKK / KRKK / Yes
3 / TKKK / RDmmfm KKKK / Yes 24 / DTKK / RKKK / No
4 / TKKK / RDmmmf KKKK / Yes 25 / DDTK / KKKR / Yes
5 / DTKK / RDfmmm KKKK / No 26 / DDTK / KKRK / Yes
6 / DTKK / RDmfmm KKKK / Yes 27 / DDTK / KRKK / No
7 / DTKK / RDmmfm KKKK / Yes 28 / DDTK / RKKK / No
8 / DTKK / RDmmmf KKKK / Yes 29 / DDDT / KKKR / Yes
9 / DDTK / RDfmmm KKKK / No 30 / DDDT / KKRK / No
10 / DDTK / RDmfmm KKKK / No 31 / DDDT / KRKK / No
11 / DDTK / RDmmfm KKKK / Yes 32 / DDDT / RKKK / No
12 / DDTK / RDmmmf KKKK / Yes 33 / RDmfmm TKKK / No
13 / DDDT / RDfmmm KKKK / No 34 / RDmmfm TKKK / No
14 / DDDT / RDmfmm KKKK / No 35 / RDmmmf TKKK / No
15 / DDDT / RDmmfm KKKK / No 36 / TKKR / No
16 / DDDT / RDmmmf KKKK / Yes 37 / TKRK / No
17 / TKKK / KKKR / Yes 38 / TRKK / No
18 / TKKK / KKRK / Yes
19 / TKKK / KRKK / Yes
20 / TKKK / RKKK / Yes
21 / DTKK / KKKR / Yes

Interpretation Note: “/ TKKK / RD fmmm KKKK / “ signifies two columns, the first with /T/ on lane 0, the second all /K/s
where the Running Disparity (RD) is flipped (f) on lane 0 (and thus an RD error), and maintained (m) on lanes 1,2,3 (and thus not
an error)

Possible Problems: None

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

67

The University of New Hampshire
InterOperability Laboratory

Test 48.4.3 – Tolerance to ||A|| spacing

Purpose: To determine if the DUT is sensitive to ||A|| spacing

References:

[1] IEEE Std. 802.3ae-2002 subclauses 48.2.4.2, 48.2.4.2.1, 48.2.4.2.2, 48.2.4.2.3, Figure
48-6.

Resource Requirements: A testing station capable of encoding (decoding) 8 bit octets to (from)
10-bit code groups as specified in clause 48 and sending (receiving) these code groups using the
signaling method described in clause 47, 53, or 54.

Last Modification: July 29, 2004

Discussion: There is a very explicit rule that needs to be followed with regards to ||A|| spacing.
A device that is transmitting Idle must see to it that ||A|| is sent after r non-||A|| columns, where r
is uniformly distributed integer between 16 and 31, inclusive. This establishes a minimum and
maximum ||A|| spacing in the absence of frames. There are no explicit rules that deal with
sensitivity to the reception of different ||A|| spacing. This test seeks to verify whether the DUT is
sensitive to a minimum ||A|| spacing and a maximum ||A|| spacing. For the maximum ||A||
spacing, the DUT must be able to receive two maximum sized frames, separated by 10 bytes of
idle before it sees an ||A||. This corresponds to a total of 799 columns, as shown below. Each
maximum sized frame of 1522 bytes takes up 380 columns, which is preceded by 2 columns of
preamble. Using the assumption that the previous frame transmitted an ||A|| as its first full
column of idle, this frame will transmit a ||K|| followed by an ||R||, followed by the beginning of
the second frame.

||A|| ||R|| and |K|| Pre. Frame ||T|| ||K|| ||R|| Pre. Frame ||T|| ||A||
 31 2 380 1 1 1 2 380 1

Test Setup: Connect the device under test (DUT) to the testing station (transmit to receive,
receive to transmit) with the appropriate medium (i.e. multi-mode fiber, single mode fiber, SMA
cables, backplane).

Procedure:

Part A (min ||A|| spacing)
1. Bring the DUT to a state in which it has achieved synchronization but not alignment.
2. Transmit align_count ||A|| to the DUT, each spaced by 15 columns of ||K|| and ||R||.
3. Transmit a valid frame to the DUT.
4. Observe status and management indicators on the DUT.
5. Repeat steps 1-4 decreasing the number of non ||A|| columns in step 2 until the DUT no

longer receives the frame.
Part B (max ||A|| spacing)
1. Bring the DUT to a state in which it has achieved synchronization but not alignment.
2. Transmit align_count ||A|| to the DUT, each spaced by 799 columns of ||K|| and ||R||.
3. Transmit a valid frame to the DUT.

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

68

The University of New Hampshire
InterOperability Laboratory

4. Observe status and management indicators on the DUT.
5. Repeat steps 1-4 increasing the number of non ||A|| columns in step 2 until the DUT no

longer receives the frame.
Part C (maintain link with no ||A||)
1. Bring the DUT to a state in which it has achieved synchronization and alignment.
2. Modify the idle sequence being sent to the DUT, without bringing the link down, such

that the DUT will be receiving valid ||R|| and ||K|| but not ||A||.
3. Transmit a valid frame to the DUT.
4. Observe status and management indicators on the DUT.

Observable results:

a. The min ||A|| acceptable spacing should be between 0 and 16.
b. The max ||A|| acceptable spacing should be greater than 799 columns.
c. The DUT should maintain the link even if it is receiving no ||A||.

Possible Problems: None

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

69

The University of New Hampshire
InterOperability Laboratory

Appendix A: A_CNT Simulation

The IEEE Std. 802.3ae-2002 (standard for 10 Gigabit Ethernet) defines a mechanism for
scrambling the idle stream when using a 10-gigabit attachment unit interface (XAUI).
Specifically, the Standard specifies that the spacing of the special characters ||A|| must be
uniformly and randomly distributed between 16 and 31 columns, inclusive, and that the
generation of the polynomial used to create this distribution must be one of two specified
polynomials: X7+X6+1, or X7+X3+1. Additionally, it is specified that when not sending ||A||, that
||K|| and ||R|| should be sent with a random uniform distribution using the same polynomials.
This simulation shows that using the specified polynomials in the manner defined by the
standard does not give a uniform distribution of ||A|| spacing and does not give a uniform number
||K|| and ||R|| columns.

In general, one of the purposes for scrambling is to reduce electromagnetic interference (EMI)
while sending idle, which is sent in the absence of data. This randomized stream produces no
discrete spectrum, thus reducing the interference that could arise from transmitting a less random
pattern. The benefits of scrambling the idle stream are not in question, but rather the manner and
means by which the Standard says the scrambling shall take place is contradictory and can be
confusing, especially from the point of view of how to test against the Standard.

X0 X1 X2 X3 X4 X5 X6

X0 X1 X2 X3 X4 X5 X6

Figure 1. Idle Scrambler Implementations

Figure 1 shows a pictorial representation of the two defined scrambler polynomials, where the
top scrambler is X7+X3+1 and the bottom scrambler is X7+X6+1. Note that there are 127
possible settings of this scrambler. The case in which all bits are set to zero is not a valid case
since the state of the scrambler would never change. In both cases, the output of the scrambler,
representing the code_sel variable and the four bits used to feed the A_CNT block are undefined.
This simply means that any bit and any four different bits can be used as the output and A_CNT
feed, respectively. During idle, when an ||A|| is not being sent and the output of the scrambler is
a 1, an ||R|| should be sent, and when the output is a 0, a ||K|| will be sent. Whenever the 5-bit
A_CNT counter decrements to zero, an ||A|| will be sent and then a new four bits will be shifted
into this counter from the random integer generator. This will set the ||A|| spacing to some
random integer between 16 and 31 columns, inclusive.

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

70

The University of New Hampshire
InterOperability Laboratory

Uniform ||K|| and ||R|| Spacing
When one of the pseudo-random number generators is sampled after each clock, then a 127-bit
repeating pseudo-random number will be produced. Since the pattern will repeat after 127 clock
cycles, then it is clear that there will be 64 bits taking on a value of one, and 63 bits taking on a
value of zero after 127 clocks. This pattern will then repeat. The tables shown below depict the
repeating pattern of /K/ and /R/ code-groups without the introduction of any /A/ code-groups,
which would overwrite the /K/ or /R/. The DUT should transmit one of these two distributions
of /K/ and /R/ code-groups. For these tables, each column is read from top to bottom and then
left to right. It should also be noted that observation of the idle transmitted from the DUT may
begin at any point in these tables, and thus, the observed idle should be shifted to align with the
tables.

X^7+X^6+1
K28.0 K28.0 K28.5 K28.0
K28.0 K28.0 K28.5 K28.5
K28.0 K28.0 K28.5 K28.5

K28.5

K28.0

K28.0

K28.0
K28.0
K28.0
K28.0
K28.5

K28.0 K28.5 K28.0 K28.5
K28.0 K28.5 K28.0 K28.0
K28.0 K28.0 K28.0 K28.0
K28.0 K28.5 K28.5 K28.5
K28.5 K28.5 K28.5 K28.0
K28.5 K28.5 K28.5 K28.5
K28.5 K28.0 K28.0 K28.5
K28.5 K28.5 K28.5 K28.0
K28.5 K28.0 K28.5 K28.5
K28.5 K28.0 K28.0 K28.0
K28.0 K28.5 K28.5 K28.0
K28.5 K28.5 K28.5 K28.0
K28.5 K28.0 K28.0 K28.5
K28.5 K28.0 K28.0 K28.0
K28.5 K28.0 K28.5 K28.0
K28.5 K28.5 K28.0 K28.0
K28.0 K28.0 K28.0 K28.5
K28.0 K28.5 K28.5 K28.5
K28.5 K28.0 K28.0 K28.0
K28.5 K28.5 K28.5 K28.0
K28.5 K28.5 K28.0 K28.5
K28.5 K28.0 K28.0 K28.5
K28.0 K28.0 K28.5 K28.0
K28.5 K28.0 K28.0 K28.5
K28.0 K28.0 K28.0 K28.0
K28.5 K28.0 K28.0 K28.5
K28.5 K28.5 K28.0 K28.0
K28.5 K28.0 K28.5 K28.5
K 28.0 K28.5 K28.0

X^7+X^3+1
K28.0 K28.0 K28.5 K28.0
K28.0 K28.5 K28.0 K28.5
K28.0 K28.0 K28.0 K28.5
K28.0 K28.5 K28.5 K28.5
K28.0 K28.0 K28.5
K28.0 K28.5 K28.5 K28.5
K28.0 K28.5 K28.5 K28.5
K28.5 K28.5 K28.5 K28.0
K28.5 K28.5 K28.0 K28.5
K28.5 K28.0 K28.0 K28.5
K28.0 K28.5 K28.5
K28.0 K28.0 K28.0 K28.5
K28.0 K28.0 K28.0 K28.5
K28.5 K28.5 K28.5 K28.0
K28.0 K28.0 K28.0 K28.0
K28.0 K28.0 K28.5 K28.5
K28.5 K28.0 K28.0 K28.0
K28.5 K28.0 K28.5
K28.5 K28.5 K28.0 K28.5
K28.0 K28.5 K28.5
K28.5 K28.0 K28.0
K28.0 K28.0 K28.5
K28.5 K28.0 K28.5
K28.5 K28.5 K28.5
K28.0 K28.5 K28.0 K28.0
K28.5 K28.0 K28.0 K28.0
K28.0 K28.5 K28.5 K28.0
K28.0 K28.0 K28.5 K28.5
K28.0 K28.5 K28.0 K28.5
K28.0 K28.0 K28.5 K28.5
K28.0 K28.0 K28.5 K28.5
K 28.5 K28.5 K28.5

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

71

The University of New Hampshire
InterOperability Laboratory

Uniform ||A|| Spacing

A bit that chooses between ||K|| and ||R|| is produced during every clock cycle. The counter that
determines when it is time to send an ||A|| is only evaluated and reset every 16-31 clock cycles.
When the A_CNT variable reaches zero, an ||A|| is sent and a new value is loaded into the
counter. The four bits loaded into the counter can take on any value from zero through fifteen,
and these are combined with an MSB that is always high, thus initializing the counter to 16-31.
This counter will then start to count down, decrementing once for every clock cycle. While this
counter is decrementing, the pseudo-random generator is continuing to shift through its 127-bit
cycle, and ||R|| and ||K|| codes are being transmitted. Thus, the bits being fed to the A counter are
not being fed continuously, but only after the expiration of the current A counter.

If a separate pseudo-random generator existed that only provided a new value upon the
expiration of A_CNT, then the next sequence would get shifted into the counter and no possible
combinations would be missed. If the pseudo-random generator generated its first four output
states as W1, W2, W3, and W4 (where each Wn is 4-bits in length and takes on a decimal value
between 0 and 15, inclusive) then the A counter would be initialized with W1+16. After A_CNT
expired, which would be W1+16 clock cycles, the new value of the counter would be set to
W2+16. This same process would then continue through all 127 different combinations:
W4...W127. However, this is not what happens within a device with a single random number
generator.

If there is a single pseudo-random generator, the A_CNT will only get initialized after the
previous A_CNT has expired. Since the pseudo-random generator is continuously running to
pick between ||R|| and ||K||, the A_CNT will not be initialized with state WX+1 if the current state
is WX, as was shown in the previous paragraph. If A_CNT is originally initialized with WX, then
the next state would be WWX+16. By not sampling the pseudo-random generator after every clock
cycle, not every possible value output by the pseudo-random generator will be observed. The
plots on the next page show simulations of what the ||A|| spacing would actually look like when
the pseudo-random generator is sampled in this manner. It should be noted that if different bits,
or a different order of bits is taken for these four bits, then the histograms may look differently.

It should be noted that the authors of this test suite, to change the text of 48.2.4.2 so that any of
these three histograms may become acceptable, have generated and submitted a maintenance
request to IEEE 802.3. The complete text of this request can be found here:
http://www.ieee802.org/3/maint/requests/maint_1118.pdf

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

72

http://www.ieee802.org/3/maint/requests/maint_1118.pdf

The University of New Hampshire
InterOperability Laboratory

Here, we can see what is quite clearly a
uniformly distributed random number from
16-31, inclusive. If 4096 trials were held,
and the A_CNT value was uniformly
distributed (with the generating polynomial
only incrementing when A_CNT reaches
zero), then each bin would contain
approximately 256 hits. It is interesting to
note that an A_CNT value of 16 will
always be slightly less than the other
values.

When the X7+X3+1 polynomial is used, the
distribution of the A_CNT values appears
to be uniform, but only among 5 bins.
Nulls exist in all of the other bins after
4096 trials. The bins that do have hits
appear to have approximately 820 hits in
each bin.

When the X7+X6+1 polynomial is used, the
distribution of the A_CNT values is also

ot uniform. Values appear in only 6 bins, n
and nulls are in the others after 4096 trials.

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

73

The University of New Hampshire
InterOperability Laboratory

Appendix B: check_end interpretation

Through discussions with several interested parties, it has become apparent that there are
multiple interpretations of how this function should be implemented. It is generally agreed upon
that the original intent of the function is not clearly captured within the text of the Standard. In
November 2003, interpretation request 5-11/03 was submitted, by the authors of this test suite,
and discussed during the IEEE 802.3 plenary meeting. Complete documentation of the request
and response may be found here: http://www.ieee802.org/3/interp/interp-5-1103.pdf. For the
sake of convenience, parts of that document will be repeated in this annex.

The 10 Gigabit Consortium of the University of New Hampshire’s InterOperability Laboratory,
with the cooperation of members of the 10GEC, has settled on multiple interpretations of
different aspects of the check_end function. When devices are tested using the 10GEC Clause
48 PCS Test Suite, a device that implements any of these interpretations will receive a passing or
pass with comments result. A device that does not implement one of these interpretations will
receive a failing result. It is also recognized that in the instances that have multiple
interpretations, it is not possible to implement more than one of these interpretations.

Clause 48.2.6.1.4 of IEEE Std. 802.3ae-2002 defines the check_end function. The definition of
this function is given here:

Prescient Terminate function used by the PCS Receive process to set the RXD<31:0> and
RXC<3:0> signals to indicate Error if a running disparity error was propagated to any
Idle code-groups in ||T||, or to the column following ||T||. The XGMII Error control
character is returned in all lanes less than n in ||T||, where n identifies the specific
Terminate ordered-set ||T n ||, for which a running disparity error or any code-groups
other than /A/or /K/are recognized in the column following ||T||. The XGMII Error
control character is also returned in all lanes greater than n in the column prior to ||T||,
where n identifies the specific Terminate ordered-set ||T n ||, for which a running disparity
error or any code group other than /K/is recognized in the corresponding lane of ||T||. For
all other lanes the value set previously is retained.

If we break the complicated definition of check_end into smaller parts it's a little easier to
understand.

"The XGMII Error control character is returned in all lanes less than n in ||T||, where n identifies
the specific Terminate ordered-set ||Tn||, for which a running disparity error or any code-groups
other than /A/ or /K/ are recognized in the column following ||T||."

Looking at this sentence, we know that we have four cases for ||Tn||:

||T0|| - terminate in lane 0
||T1|| - terminate in lane 1
||T2|| - terminate in lane 2
||T3|| - terminate in lane 3

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

74

http://www.ieee802.org/3/interp/interp-5-1103.pdf

The University of New Hampshire
InterOperability Laboratory

For each given ||Tn|| you then can see what "all lanes less than n in ||T||" means:

||T0|| - there are no lanes less than n
||T1|| - lane 0
||T2|| - lane 0, lane 1
||T3|| - lane 0, lane 1, lane 2

Note that it never says that the error control character is returned in lane n, but it is only returned
in lanes less than n when an RD error occurs in the column following ||T||. Let's look at the four
cases individually for each lane:

||T0||

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
D D D D D D D D D D D D D D D D
T K K K T K K K T K K K T K K K
* K K K K * K K K K * K K K K *

In this example, the terminate character is in lane 0, and the * represents a running disparity error
(or code-group other than /A/ or /K/) in the column of idle following the ||T0||. Now, since there
are no columns less than 0, the error control character will not be pushed back into the frame,
and the frame should be accepted. Part of the reason is that the /T/ and /K/ will catch running
disparity errors, so anything happening after a valid /T/ or /K/ means that the error occurred
outside the frame and therefore the frame should not be touched.

Now let's examine the other possibilities, when the /T/ occurs in a lane other than 0:

||T1||

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
D D D D D D D D D D D D D D D D
D T K K D T K K D T K K D T K K
* K K K K * K K K K * K K K K *

In this example, the terminate character is in lane 1. Since we have ||T1|| we can return an Error
code in lane 0. Now here is where things get a little vague. There are multiple interpretations of
what should happen. For each of the 4 examples above with ||T1|| this is what you would receive
after going through the PCS:

Option 1

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
D D D D D D D D D D D D D D D D
E T K K E T K K E T K K E T K K
E K K K K E K K K K E K K K K E
(E is error code)

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

75

The University of New Hampshire
InterOperability Laboratory

Option 2

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
D D D D D D D D D D D D D D D D
E T K K D T K K D T K K D T K K
E K K K K E K K K K E K K K K E

In option 1, the E code is returned in lane 0 if a running disparity error is detected in any of the 4
lanes. In option 2, the E code is returned in lane 0 only when the running disparity error is
detected in lane 0.

Similar options apply when the example is extended to the other ||Tn||, as shown here:

||T2||

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
D D D D D D D D D D D D D D D D
D D T K D D T K D D T K D D T K
* K K K K * K K K K * K K K K *

Option 1

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
D D D D D D D D D D D D D D D D
E E T K E E T K E E T K E E T K
E K K K K E K K K K E K K K K E

Option 2

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
D D D D D D D D D D D D D D D D
E E T K E E T K D D T K D D T K
E K K K K E K K K K E K K K K E

Option 3

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
D D D D D D D D D D D D D D D D
E D T K D E T K D D T K D D T K
E K K K K E K K K K E K K K K E

Option 3 is similar to Option 2, but the E is only returned in the lane corresponding to the lane
with the error, and not all lanes. Option 2 has the E returned in all lanes less than n. It should be
noted that the result of both of these options are identical with respect to which frames are
accepted and which frames are discarded.

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

76

The University of New Hampshire
InterOperability Laboratory

||T3||
--
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
D D D D D D D D D D D D D D D D
D D D T D D D T D D D T D D D T
* K K K K * K K K K * K K K K *

Option 1

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
D D D D D D D D D D D D D D D D
E E E T E E E T E E E T E E E T
E K K K K E K K K K E K K K K E

Option 2

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
D D D D D D D D D D D D D D D D
E E E T E E E T E E E T D D D T
E K K K K E K K K K E K K K K E

Option 3

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
D D D D D D D D D D D D D D D D
E D D T D E D T D D E T D D D T
E K K K K E K K K K E K K K K E

* * * * *

The second half of the check_end definition is somewhat easier to understand. "The XGMII
Error control character is also returned in all lanes greater than n in the column prior to ||T||, for
which a running disparity error or any code group other than /K/ is recognized in the
corresponding lane of ||T||."

Looking at this sentence, we know that we have four cases for ||Tn||:

||T0|| - terminate in lane 0
||T1|| - terminate in lane 1
||T2|| - terminate in lane 2
||T3|| - terminate in lane 3

For each given ||Tn|| "all lanes greater than n in the column prior to ||T||" means:

||T0|| - lane 1, lane 2, lane 3
||T1|| - lane 2, lane 3
||T2|| - lane 3
||T3|| - no lanes

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

77

The University of New Hampshire
InterOperability Laboratory

Now let's look at similar examples as above:

||T0||

0 1 2 3 0 1 2 3 0 1 2 3
D D D D D D D D D D D D
T * K K T K * K T K K *
K K K K K K K K K K K K

Option 1

0 1 2 3 0 1 2 3 0 1 2 3
D E E E D E E E D E E E
T E K K T K E K T K K E
K K K K K K K K K K K K

Option 2

0 1 2 3 0 1 2 3 0 1 2 3
D E D D D D E D D D D E
T E K K T K E K T K K E
K K K K K K K K K K K K

||T1||

0 1 2 3 0 1 2 3
D D D D D D D D
D T * K D T K *
K K K K K K K K

Option 1

0 1 2 3 0 1 2 3
D D E E D D E E
D T E K D T K E
K K K K K K K K

Option 2

0 1 2 3 0 1 2 3
D D E D D D D E
D T E K D T K E
K K K K K K K K

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

78

The University of New Hampshire
InterOperability Laboratory

||T2||

D D T E

0 1 2 3
D D D D
D D T *
K K K K

Option 1

0 1 2 3
D D D E

K K K K

* * * * *

For the first half of the check_end function, there are two interpretations over which frames get
discarded, and two interpretations on which code-groups are changed to /E/. For the second half
of the function, there are two interpretations on which code-groups are changed to /E/.

The original intent of the check_end function was that potentially valid frames not be invalidated
by the PCS. When an error occurs in a column directly following a valid /T/, /K/, or /A/ code-
group, then the error could not have propagated through data code-groups in the frame, as the
/T/, /K/, and /A/ code-groups will effectively prevent errors such as running disparity errors from
going through them. Since the error could not possibly have occurred within the data portion of
the frame, there should be no need for the PCS to invalidate the frame. One possible
interpretation of the current text is that such action should be taken by the PCS.

It is not clear what the original intent of the check_end function was with respect to replacing
data code-groups with error code-groups. The replacement of a single data code-group with an
error code-group is sufficient to force the frame to be discarded. Also, since the lanes are
independent of each other, it is not possible for an error to propagate from one lane to another.
Although the insertion of multiple error code-groups will have the same result as the insertion of
a single error code-group, it is possible that certain error counters may be caused to increment
needlessly.

According to the previously mentioned interpretation request, the unambiguous response is that
the Standard clearly specifies that option 3 should be used for implementation of the first part of
check_end. Since the observable behavior of a device is identical for option 2 and option 3, the
10GEC will offer a result of PASS for any device that implements option 3, and PASS With
Comments, for any implementation of option 2. A device that implements option 1, or any other
option will receive a result of FAIL. For the second part of check_end, option 2 will receive a
result of PASS, and option 1 will receive a result of PASS with Comments (or PASS if there is
no other option). Any other implementations will receive a result of FAIL.

10GEC TEST SUITE 10GBASE-X PCS Test Suite Version 1.3

79

	MODIFICATION RECORD
	ACKNOWLEDGMENTS
	INTRODUCTION
	TABLE OF CONTENTS
	GROUP 1: Synchronization
	Test 48.1.1 – COMMA code count
	Test 48.1.2 – Reception of INVALID codes
	Test 48.1.3 – Acquire synchronization
	Test 48.1.4 – INVALID code count
	Test 48.1.5 – good_cgs code count
	Test 48.1.6 – Loss of synchronization
	Test 48.1.7 – Maintain Synchronization
	Test 48.1.8 – Reacquire synchronization

	GROUP 2: Alignment
	Test 48.2.1 – Determination of align_count
	Test 48.2.2 – Acquire alignment
	Test 48.2.3 – Loss of alignment count
	Test 48.2.4 – Deskew error identification
	Test 48.2.5 – Loss of alignment
	Test 48.2.6 – Maintain alignment
	Lane 0
	Lane 0
	Lane 0
	Lane 0

	Test 48.2.7 – Reacquire alignment
	Test 48.2.8 – Skew tolerance

	GROUP 3: Transmit Related
	Test 48.3.1 – 8B/10B Encoding
	Test 48.3.2 – Idle Sequencing
	Test 48.3.3 – cvtx_terminate
	Test 48.3.4 – Fault Transmission

	GROUP 4: Receive Related
	Test 48.4.1 – Fault Reception
	Test 48.4.2 – check_end
	Test 48.4.3 – Tolerance to ||A|| spacing

	Appendix A: A_CNT Simulation
	Appendix B: check_end interpretation

