

InterOperability Lab — 121 Technology Drive, Suite 2 — Durham, NH 03824 — (603) 862-3749

September 27, 2010

Engineer Name Sample Company, Inc. 1010 Mobile Way San Jose, CA 95101

Mr. Engineer:

Enclosed are the test results from the D-PHY TX Physical Layer Conformance testing performed on the:

Sample Company 1234 Camera Sensor 1-Lane CSI-2 Transmitter

The testing was performed according to v0.98 of the MIPI Alliance D-PHY Conformance Test Suite, which is available to MIPI Alliance Members at:

https://members.mipi.org/mipi-testing/workspace/StartPage

Also note that most of the measurements in this report were performed on captured DSO waveform data using the freely available DPHYGUI physical layer conformance software tool, which is available to all MIPI members, and may be downloaded at the URL above. The raw waveform data files used for this report may be obtained upon request, if duplication of results or further analysis of the data is desired. (Contact UNH IOL for assistance.)

Any conformance failures observed during testing are listed below:

• NO CONFORMANCE ISSUES WERE OBSERVED DURING TESTING

Please feel free to contact me via email at <u>aab@iol.unh.edu</u> with any questions you may have regarding this report.

Sincerely,

Andy Baldman

Digital Signature Information

This document was created using an Adobe digital signature. A digital signature helps to ensure the authenticity of the document, but only in this digital format. For information on how to verify the integrity of this document, please proceed to the following site:

http://www.iol.unh.edu/certifyDoc/

If, after following the steps indicated above, the document status still indicates "Validity of author NOT confirmed", please contact the UNH-IOL to confirm the document's authenticity. To further validate the certificate integrity, Adobe 6.0 should report the following fingerprint information:

MD5 Fingerprint (2010): EEE1 7A82 7806 EB21 AF94 F189 E4BE 361B SHA-1 Fingerprint (2010): ECFB 7FAF AB4A 0832 2408 E965 9F5C E3F2 D784 AAAB

DUT Details	
Week testing was performed	20100927
Manufacturer	Sample Company
Model	1234 Camera Sensor
Max. Supported HS Bit Rate	800 Mbps
Mfr. Serial Number	9876543210
Firmware Version	v1.0
Hardware Version	v0.10
Software Version	3.15
UNH-IOL ID Number	99999
Test System Hardware	
Real-time DSO	Agilent Infiniium DSA91304A, 13GHz, 40GS/s Real-time DSO, with four
	Agilent 1169A InfiniiMax 12GHz Differential Probes
Termination Fixture	UNH-IOL D-PHY Reference Termination Board (RTB) v2.0
Additional Comments/Notes	
Testing was performed on Clo Not Applicable (N/A), as the I	ck Lane and Data Lane 0. (Results for Data Lanes 1, 2, and 3 are reported as OUT does not implement these Lanes.)

Table 1-0: Test Setup and DUT Configuration Information

Test/Parameter	Conformance Range	Lane 0 Measured	Lane 1 Measured	Lane 2 Measured	Lane 3 Measured	Units	Fig.
Test 1.1.1: Data Lane LP-TX Thevenin Out	tput High Level	Voltages (Vo	эн)				
Measured V_{OH} for V_{DP} (50pF C_{LOAD}):	1100 / 1300	1178.2	N/A	N/A	N/A	mV	1
Measured V_{OH} for V_{DN} (50pF C_{LOAD}):	1100 / 1300	1185.4	N/A	N/A	N/A	mV	<u>2</u>
Measured V_{OH} for V_{DP} (No C_{LOAD}):	1100 / 1300	1177.1	N/A	N/A	N/A	mV	<u>3</u>
Measured V_{OH} for V_{DN} (No C_{LOAD}):	1100 / 1300	1180.3	N/A	N/A	N/A	mV	<u>4</u>
Test 1.1.2: Data Lane LP TX Thevenin Out	put Low Level	Voltages (Vo	L)				
Measured V_{OL} for V_{DP} (50pF C_{LOAD}):	-50 / +50	-5.0	N/A	N/A	N/A	mV	<u>1</u>
Measured V_{OL} for V_{DN} (50pF C_{LOAD}):	-50 / +50	-5.1	N/A	N/A	N/A	mV	<u>2</u>
Measured V_{OL} for V_{DP} (No C_{LOAD}):	-50 / +50	-6.3	N/A	N/A	N/A	mV	<u>3</u>
Measured V_{OL} for V_{DN} (No C_{LOAD}):	-50 / +50	-5.7	N/A	N/A	N/A	mV	<u>4</u>
Test 1.1.3: Data Lane LP TX 15%-85% Ris	e Time (T _{RLP})						
Measured T_{RLP} for V_{DP} (50pF C_{LOAD}):	< 25	13.5	N/A	N/A	N/A	ns	<u>5</u>
Measured T_{RLP} for V_{DN} (50pF C_{LOAD}):	< 25	13.8	N/A	N/A	N/A	ns	<u>6</u>
Measured T_{RLP} for V_{DP} (No C_{LOAD}):	< 25	10.3	N/A	N/A	N/A	ns	<u>7</u>
Measured T_{RLP} for V_{DN} (No C_{LOAD}):	< 25	10.3	N/A	N/A	N/A	ns	<u>8</u>
Test 1.1.4: Data Lane LP TX 15%-85% Fal	ll Time (T _{FLP})						
Measured T_{FLP} for V_{DP} (50pF C_{LOAD}):	< 25	11.7	N/A	N/A	N/A	ns	<u>9</u>
Measured T_{FLP} for V_{DN} (50pF C_{LOAD}):	< 25	11.6	N/A	N/A	N/A	ns	<u>10</u>
Measured T_{FLP} for V_{DP} (No C_{LOAD}):	< 25	11.1	N/A	N/A	N/A	ns	<u>11</u>
Measured T_{FLP} for V_{DN} (No C_{LOAD}):	< 25	10.8	N/A	N/A	N/A	ns	<u>12</u>
Test 1.1.5: Data Lane LP TX Slew Rate vs.	$C_{LOAD} (\delta V / \delta t_{SR})$)					
V_{DP} (Falling Edges, $C_{LOAD} = 50 pF$):							
MAX $\delta V / \delta t_{SR}$ (entire edge):	< 150	121.9	N/A	N/A	N/A	mV/ns	<u>9</u>
MIN $\delta V/\delta t_{SR}$ (400-930mV):	> 30	60.0	N/A	N/A	N/A	mV/ns	<u>9</u>
V_{DN} (Falling Edges, $C_{LOAD} = 50 \text{pF}$):							
MAX $\delta V/\delta t_{SR}$ (entire edge):	< 150	113.8	N/A	N/A	N/A	mV/ns	<u>10</u>
MIN $\delta V/\delta t_{SR}$ (400-930mV):	> 30	61.1	N/A	N/A	N/A	mV/ns	<u>10</u>
V_{DP} (Rising Edges, $C_{LOAD} = 50 pF$):			2				
MAX $\delta V/\delta t_{SR}$ (entire edge):	< 150	104.8	N/A	N/A	N/A	mV/ns	<u>5</u>
MIN $\delta V / \delta t_{SR}$ (400-700mV):	> 30	55.6	N/A	N/A	N/A	mV/ns	<u>5</u>
MIN $\delta V/\delta t_{SR}$ margin (700-930mV):	> 0	29.8	N/A	N/A	N/A	mV/ns	<u>5</u>
V_{DN} (Rising Edges, $C_{LOAD} = 50 pF$):							
MAX $\delta V/\delta t_{SR}$ (entire edge):	< 150	106.1	N/A	N/A	N/A	mV/ns	<u>6</u>
MIN $\delta V/\delta t_{SR}$ (400-700mV):	> 30	57.5	N/A	N/A	N/A	mV/ns	<u>6</u>
MIN $\delta V/\delta t_{SR}$ margin (700-930mV):	> 0	31.7	N/A	N/A	N/A	mV/ns	<u>6</u>

Table 1-1: (Section 1, Group 1): Data Lane LP-TX Signaling Requirements:

Table 1-1: (Continued)

Test/Parameter	Conformance	Lane 0	Lane 1	Lane 2	Lane 3	Units	Fig.
Test 1 1 (Dete Lene LD TV Dulse Width	Range	Clash (T	Measured	Measured	Measured		
Test 1.1.6: Data Lane LP 1X Pulse width o	of Exclusive-OR	CIOCK (I _{LP-P}	ULSE-TX)				
SOPF CLOAD, 930mV Trip Level:			/ /	()	/ -		
Width of first XOR Clock pulse	>40	54.2	N/A	N/A	N/A	ns	<u>14</u>
Width of last XOR Clock pulse	> 40	43.0	N/A	N/A	N/A	ns	<u>14</u>
Min width of all other pulses	> 20	42.5	N/A	N/A	N/A	ns	<u>14</u>
50pF C _{LOAD} , 500mV Trip Level:							
Width of first XOR Clock pulse	> 40	54.8	N/A	N/A	N/A	ns	<u>15</u>
Width of last XOR Clock pulse	>40	55.7	N/A	N/A	N/A	ns	<u>15</u>
Min width of all other pulses	> 20	55.4	N/A	N/A	N/A	ns	<u>15</u>
No C _{LOAD} , 930mV Trip Level:							
Width of first XOR Clock pulse	> 40	54.3	N/A	N/A	N/A	ns	<u>17</u>
Width of last XOR Clock pulse	> 40	45.8	N/A	N/A	N/A	ns	<u>17</u>
Min width of all other pulses	> 20	45.6	N/A	N/A	N/A	ns	<u>17</u>
No C _{LOAD} , 500mV Trip Level:							
Width of first XOR Clock pulse	> 40	55.1	N/A	N/A	N/A	ns	<u>18</u>
Width of last XOR Clock pulse	> 40	56.2	N/A	N/A	N/A	ns	<u>18</u>
Min width of all other pulses	> 20	56.1	N/A	N/A	N/A	ns	<u>18</u>
Test 1.1.7: Data Lane LP TX Period of Exc	lusive-OR Cloc	k (T _{LP-PER-TX})					
50pF C _{LOAD} , 930mV Trip Level:							
Minimum LP XOR Clock period	> 90	106.6	N/A	N/A	N/A	ns	<u>14</u>
50pF C _{LOAD} , 500mV Trip Level:							
Minimum LP XOR Clock period	> 90	104.8	N/A	N/A	N/A	ns	<u>15</u>
No C _{LOAD} , 930mV Trip Level:							
Minimum LP XOR Clock period	> 90	106.8	N/A	N/A	N/A	ns	<u>17</u>
No C _{LOAD} , 500mV Trip Level:							
Minimum LP XOR Clock period	> 90	104.3	N/A	N/A	N/A	ns	<u>18</u>

Table 1-2: (Section 1, Group 2): Clock Lane LP-TX Signaling Requirements:

Test/Parameter	Conformance Range	Clock Lane Measured	Units	Fig.
Test 1.2.1: Clock Lane LP-TX Thevenin Output H	igh Level Voltages (V _{OH})		
Measured V_{OH} for V_{DP} (50pF C_{LOAD}):	1100 / 1300	1250.5	mV	-
Measured V_{OH} for V_{DN} (50pF C_{LOAD}):	1100 / 1300	1254.8	mV	-
Measured V_{OH} for V_{DP} (No C_{LOAD}):	1100 / 1300	1198.8	mV	-
Measured V_{OH} for V_{DN} (No C_{LOAD}):	1100 / 1300	1240.6	mV	-
Test 1.2.2: Clock Lane LP TX Thevenin Output Lo	w Level Voltages (V	V _{OL})		
Measured V_{OL} for V_{DP} (50pF C_{LOAD}):	-50 / +50	-3.1	mV	-
Measured V_{OL} for V_{DN} (50pF C_{LOAD}):	-50 / +50	-5.3	mV	-
Measured V_{OL} for V_{DP} (No C_{LOAD}):	-50 / +50	1.4	mV	-
Measured V_{OL} for V_{DN} (No C_{LOAD}):	-50 / +50	2.5	mV	-
Test 1.2.3: Clock Lane LP TX 15%-85% Rise Time	e (T _{RLP})			
Measured T_{RLP} for V_{DP} (50pF C_{LOAD}):	< 25	18.7	ns	-
Measured T_{RLP} for V_{DN} (50pF C_{LOAD}):	< 25	14.5	ns	-
Measured T_{RLP} for V_{DP} (No C_{LOAD}):	< 25	12.7	ns	-
Measured T_{RLP} for V_{DN} (No C_{LOAD}):	< 25	12.3	ns	-
Test 1.2.4: Clock Lane LP TX 15%-85% Fall Time	$e(T_{FLP})$			
Measured T_{FLP} for V_{DP} (50pF C_{LOAD}):	< 25	13.2	ns	-
Measured T_{FLP} for V_{DN} (50pF C_{LOAD}):	< 25	11.6	ns	-
Measured T_{FLP} for V_{DP} (No C_{LOAD}):	< 25	14.7	ns	-
Measured T_{FLP} for V_{DN} (No C_{LOAD}):	< 25	12.8	ns	-
Test 1.2.5: Clock Lane LP TX Slew Rate vs. CLOAD	$(\delta V/\delta t_{SR})$			
V_{DP} (Falling Edges, $C_{LOAD} = 50 \text{pF}$):				-
MAX $\delta V / \delta t_{SR}$ (entire edge):	< 150	135.4	mV/ns	-
MIN $\delta V/\delta t_{SR}$ (400-930mV):	> 30	51.2	mV/ns	-
V_{DN} (Falling Edges, $C_{LOAD} = 50 \text{pF}$):				-
MAX $\delta V / \delta t_{SR}$ (entire edge):	< 150	134.6	mV/ns	-
MIN $\delta V / \delta t_{SR}$ (400-930mV):	> 30	63.4	mV/ns	-
V_{DP} (Rising Edges, $C_{LOAD} = 50 pF$):				-
MAX $\delta V/\delta t_{SR}$ (entire edge):	< 150	135.4	mV/ns	-
MIN $\delta V / \delta t_{SR}$ (400-700mV):	> 30	51.2	mV/ns	-
MIN $\delta V/\delta t_{SR}$ margin (700-930mV):	> 0	1.2	mV/ns	-
V_{DN} (Rising Edges, $C_{LOAD} = 50 \text{pF}$):				-
MAX $\delta V/\delta t_{SR}$ (entire edge):	< 150	134.6	mV/ns	-
MIN δV/δt _{SR} (400-700mV):	> 30	63.4	mV/ns	-
MIN $\delta V/\delta t_{SR}$ margin (700-930mV):	> 0	5.6	mV/ns	-

Table 1-3: (Section 1, Group	3): Data Lane HS-	IX Burst Signal	ling Require	ments:	
Test/Parameter	Conformance Range (Formula)	Conformance Range (Numeric)	Lane 0 Measured	Lane 1 Measured	Lane 2 Measur
Test 1.3.1: Data Lane HS En	try: T _{LPX} Value				

. . 1 3 (0 .. 0 IIG TV D 4 **G**•

	(Formula)	(Numeric)	Wicasureu	Measured	Measureu	measureu		
Test 1.3.1: Data Lane HS Er	try: T _{LPX} Value						-	
Measured T _{LPX}	N/A	> 50	50.81	N/A	N/A	N/A	ns	<u>19</u>
Test 1.3.2: Data Lane HS Er	try: T _{HS-PREPARE} V	alue	1				1	T
Measured T _{HS-PREPARE}	40ns+4*UI/	45.00/	64.25	N/A	N/A	N/A	ns	<u>19</u>
	85ns+6*UI	92.50						
Test 1.3.3: Data Lane HS Er	try: T _{HS-PREPARE} +	T _{HS-ZERO} Value	1				1	T
Measured T _{HS-PREP+ZERO}	> 145ns+10*UI	> 157.50	474.74	N/A	N/A	N/A	ns	<u>19</u>
Test 1.3.4: Data Lane HS-T2	X Differential Volta	ages (V _{OD(1)} , V _{OD}	(0)					
$(Z_{ID}=100): V_{OD(1)}$	N/A	140 / 270	202.3	N/A	N/A	N/A	mV	<u>20</u>
$(Z_{ID}=100): V_{OD(0)}$	N/A	-140 / -270	-200.0	N/A	N/A	N/A	mV	<u>21</u>
$(Z_{ID}=125): V_{OD(1)}$	N/A	140 / 270	222.0	N/A	N/A	N/A	mV	<u>22</u>
$(Z_{ID}=125): V_{OD(0)}$	N/A	-140 / -270	-220.5	N/A	N/A	N/A	mV	<u>23</u>
$(Z_{ID}=80): V_{OD(1)}$	N/A	140 / 270	182.0	N/A	N/A	N/A	mV	<u>24</u>
$(Z_{ID}=80): V_{OD(0)}$	N/A	-140 / -270	-180.4	N/A	N/A	N/A	mV	<u>25</u>
Test 1.3.5: Data Lane HS-T2	X Differential Volta	age Mismatch (∆	V _{OD})					
$(Z_{ID}=100): \Delta V_{OD}$	N/A	< 10	2.2	N/A	N/A	N/A	mV	-
$(Z_{\rm ID}=125):\Delta V_{\rm OD}$	N/A	< 10	1.5	N/A	N/A	N/A	mV	-
$(Z_{\rm ID}=80): \Delta V_{\rm OD}$	N/A	< 10	1.6	N/A	N/A	N/A	mV	-
Test 1.3.6: Data Lane HS-T	X Single-Ended Ou	tput High Volta	ges (V _{OHHS(D}	p), Vohhs(dn))			
$(Z_{ID}=100)$: $V_{OHHS(DP)}$	N/A	< 360	298.3	N/A	N/A	N/A	mV	<u>26</u>
$(Z_{ID}=100)$: $V_{OHHS(DN)}$	N/A	< 360	304.7	N/A	N/A	N/A	mV	<u>27</u>
$(Z_{ID}=125): V_{OHHS(DP)}$	N/A	< 360	306.4	N/A	N/A	N/A	mV	<u>28</u>
$(Z_{ID}=125): V_{OHHS(DN)}$	N/A	< 360	313.3	N/A	N/A	N/A	mV	<u>29</u>
$(Z_{ID}=80): V_{OHHS(DP)}$	N/A	< 360	289.0	N/A	N/A	N/A	mV	<u>30</u>
$(Z_{ID}=80)$: $V_{OHHS(DN)}$	N/A	< 360	296.3	N/A	N/A	N/A	mV	<u>31</u>
Test 1.3.7: Data Lane HS-T	X Static Common-I	Mode Voltages ($V_{CMTX(1)}, V_{CN}$	MTX(0)				
$(Z_{ID}=100): V_{CMTX(1)}$	N/A	150 / 250	203.1	N/A	N/A	N/A	mV	32
$(Z_{\rm ID}=100): V_{\rm CMTX(0)}$	N/A	150 / 250	203.4	N/A	N/A	N/A	mV	<u>32</u>
$(Z_{ID}=125): V_{CMTX(1)}$	N/A	150 / 250	201.5	N/A	N/A	N/A	mV	<u>33</u>
$(Z_{ID}=125): V_{CMTX(0)}$	N/A	150 / 250	202.3	N/A	N/A	N/A	mV	33
$(Z_{\rm ID}=80): V_{\rm CMTX(1)}$	N/A	150 / 250	203.0	N/A	N/A	N/A	mV	<u>34</u>
$(Z_{\rm ID}=80): V_{\rm CMTX(0)}$	N/A	150 / 250	202.7	N/A	N/A	N/A	mV	<u>34</u>
Test 1.3.8: Data Lane HS-T2	X Static Common-	Mode Voltage M	ismatch (ΔV	CMTX(1,0))	21/4			
$(Z_{\rm ID}=100): \Delta V_{\rm CMTX(1,0)}$	N/A	< 5	-0.2	N/A	N/A	N/A	mV	-
$(Z_{\rm ID}=125): \Delta V_{\rm CMTX(1,0)}$	N/A	< 5	-0.4	N/A	N/A	N/A	mV	-
$(Z_{\rm ID}=80): \Delta V_{\rm CMTX(1,0)}$	N/A	< 5	0.1	N/A	N/A	N/A	mV	-
Test 1.3.9: Data Lane HS-12	X Dynamic Commo	on-Level Variati	ons Between	50-450MHz	$Z \left(V_{CMTX(LF)} \right)$			25
$(Z_{ID}=100)$: $V_{CMTX(LF)}$	N/A	< 25	8.8	N/A	N/A	N/A	түрк	<u>35</u>
Test 1.3.10: Data Lane HS-1	X Dynamic Comm	ion-Level Varia	tions Above	450MHz (V	CMTX(HF))		mV	25
$(Z_{ID}=100): V_{CMTX(HF)}$	N/A	< 15	4.8	N/A	N/A	N/A	III V _{RMS}	<u>35</u>
Test I.3.II: Data Lane HS-I	X 20%-80% Rise	Time (t_R)	200.4					26
$(Z_{\rm ID}=100): t_{\rm R}$		150/	509.4	IN/A	IN/A	N/A	ps	<u>36</u>
(7 -125); (0.3*UI	5/5.04	252.2	™ ⊥/ λ	.	7k ⊤ / A		27
$(Z_{\rm ID}=125): t_{\rm R}$		150/	353.3	N/A	N/A	N/A	ps	<u>31</u>
$(7 - 90) \cdot 4$	0.3*UI	3/3.04	272.2	T \T / A	TN T / A	7k T / A	200	20
$(\Sigma_{\rm ID}=\delta 0)$: $\iota_{\rm R}$	1307	150/	2/3.2	IN/A	IN/A	IN/A	ps	<u>38</u>
	0.5 01	575.04						
	ļ		ļ			<u> </u>		

Lane 3

Units | Fig.

Test 1.3.12: Data Lane HS-T	'X 80%-20% Fall [Fime (t _₽)						
$(Z_{ID}=100)$: t _F	150 /	150 /	304.1	N/A	N/A	N/A	ps	39
	0.3*UI	375.04					r -	
$(Z_{ID}=125): t_{F}$	150 /	150 /	349.0	N/A	N/A	N/A	ps	40
	0.3*UI	375.04					1	
$(Z_{ID}=80): t_{F}$	150 /	150 /	268.0	N/A	N/A	N/A	ps	41
	0.3*UI	375.04					-	
Test 1.3.13: Data Lane HS E	xit: T _{HS-TRAIL} Valu	e						
$(Z_{ID}=100)$: T _{HS-TRAIL}	>60+4*UI	> 65.00	65.12	N/A	N/A	N/A	ns	<u>42</u>
Test 1.3.14: Data Lane HS E	xit: 30%-85% Pos	t-EoT Rise Time	e (T _{REOT})					
(Z _{ID} =100): T _{REOT}	N/A	< 35	16.85	N/A	N/A	N/A	ns	<u>42</u>
Test 1.3.15: Data Lane HS E	xit: T _{EOT} Value							
(Z _{ID} =100): T _{EOT}	<105+12*UI	< 120.00	81.97	N/A	N/A	N/A	ns	<u>42</u>
Test 1.3.16: Data Lane HS E	xit: T _{HS-EXIT} Value							
$(Z_{ID}=100)$: $T_{HS-EXIT}$	N/A	> 100	834	N/A	N/A	N/A	ns	-

Table 1-4: (Section 1, Group 4): Clock Lane HS-TX Burst Signaling Requirements:

Test/Parameter	Conformance Range (Formula)	Conformance Range (Numeric)	Clock Lane Measured	Units	Fig.
Test 1.4.1: Clock Lane HS E	Intry: T _{LPX} Value				
Measured T _{LPX}	N/A	> 50	50.84	ns	<u>46</u>
Test 1.4.2: Clock Lane HS E	ntry: T _{CLK-PREPARE}	Value			
Measured T _{CLK-PREPARE}	N/A	38 / 95	53.98	ns	<u>46</u>
Test 1.4.3: Clock Lane HS E	ntry: T _{CLK-PREPARE}	+T _{CLK-ZERO} Valu	le		
Measured T _{CLK-PREP+ZERO}	N/A	> 300	332.61	ns	<u>46</u>
Test 1.4.4: Clock Lane HS-T	X Differential Vol	tages (V _{OD(0)} , V _O	D(1)		
$(Z_{ID}=100): V_{OD(1)}$	N/A	140/270	197.3	mV	<u>47</u>
$(Z_{ID}=100): V_{OD(0)}$	N/A	-140/-270	-205.3	mV	<u>48</u>
$(Z_{ID}=125): V_{OD(1)}$	N/A	140/270	205.1	mV	<u>49</u>
(Z _{ID} =125): V _{OD(0)}	N/A	-140/-270	-209.6	mV	<u>50</u>
$(Z_{ID}=80): V_{OD(1)}$	N/A	140/270	190.1	mV	<u>51</u>
$(Z_{ID}=80): V_{OD(0)}$	N/A	-140/-270	-194.9	mV	<u>52</u>
Test 1.4.5: Clock Lane HS-T	X Differential Vol	tage Mismatch (ΔV_{OD})	-	
$(Z_{ID}=100): \Delta V_{OD}$	N/A	< 10	8.0	mV	-
$(Z_{ID}=125): \Delta V_{OD}$	N/A	< 10	4.5	mV	-
$(Z_{ID}=80): \Delta V_{OD}$	N/A	< 10	4.8	mV	-
Test 1.4.6: Clock Lane HS-T	X Single-Ended O	utput High Volt	ages (V _{OHHS(DP)} , V _{OHHS(DN)})		
$(Z_{ID}=100)$: $V_{OHHS(DP)}$	N/A	< 360	315.6	mV	<u>53</u>
$(Z_{ID}=100)$: V _{OHHS(DN)}	N/A	< 360	318.3	mV	<u>54</u>
$(Z_{ID}=125)$: V _{OHHS(DP)}	N/A	< 360	313.8	mV	55
$(Z_{ID}=125): V_{OHHS(DN)}$	N/A	< 360	316.0	mV	56
$(Z_{\rm ID}=80)$: V _{OHHS(DP)}	N/A	< 360	306.9	mV	57
$(Z_{\rm ID}=80)$: V _{OHHS(DN)}	N/A	< 360	309.8	mV	58
Test 1.4.7: Clock Lane HS-T	X Static Common-	-Mode Voltages	$(\mathbf{V}_{CMTX(0)}, \mathbf{V}_{CMTX(0)})$	<u>ı</u>	
$(Z_{ID}=100): V_{CMTX(1)}$	N/A	150/250	213.9	mV	59
$(Z_{\rm ID}=100): V_{\rm CMTX(0)}$	N/A	150/250	213.8	mV	59
$(Z_{ID}=125): V_{CMTX(1)}$	N/A	150/250	207.2	mV	60
$(Z_{ID}=125): V_{CMTX(0)}$	N/A	150/250	207.9	mV	60
$(Z_{ID}=80): V_{CMTX(1)}$	N/A	150/250	209.0	mV	61
$(Z_{ID}=80): V_{CMTX(0)}$	N/A	150/250	209.4	mV	61
Test 1.4.8: Clock Lane HS-T	X Static Common-	-Mode Voltage N	Aismatch (AV _{CMTV(1,0)})	[·	
$(Z_{ID}=100): \Delta V_{CMTX(1,0)}$	N/A	< 5	(-) CMIA(10)	mV	_
$(Z_{ID}=125)$ $AV_{CMTX(1,0)}$	N/A	< 5	-0.3	mV	-
$(Z_{ID}=80) \cdot \Delta V_{CMTX(1,0)}$	N/A	< 5	-0.2	mV	_
Test 1.4.9: Clock Lane HS-T	X Dynamic Comm	on-Level Variat	tions Between 50-450MHz (VCMTV(F))		
$(Z_{ID}=100)$ · V _{CMTX(LE)}	N/A	< 25	8.6	mVpk	62
Test 1.4.10: Clock Lane HS-	TX Dynamic Com	mon-Level Varia	ations Above 450MHz (V _{CMTV(HE)})		
(Z _{ID} =100): V _{CMTX(HE)}	N/A	< 15	5.4	mV _{RMS}	62
Test 1.4.11: Clock Lane HS-	TX 20%-80% Rise	Time (t _P)		1	
(Z _{ID} =100): t _R	150/0.3*UI	150 / 375 04	296.9	ps	<u>63</u>
(Z _{ID} =125): t _R	150/0.3*UI	150 / 375 04	309.9	ps	<u>64</u>
(Z _{ID} =80): t _R	150/0.3*UI	150 / 375.04	289.3	ps	<u>65</u>
	I				

Test 1.4.12: Clock Lane HS-	TX 80%-20% Fall	Time (t _F)			
$(Z_{ID}=100)$: t _F	150/0.3*UI	150 /	306.7	ps	66
		375.04		-	
$(Z_{ID}=125): t_F$	150/0.3*UI	150 /	316.8	ps	<u>67</u>
		375.04			
$(Z_{ID}=80): t_{F}$	150/0.3*UI	150 /	296.5	ps	<u>68</u>
		375.04			
Test 1.4.13: Clock Lane HS	Exit: T _{CLK-TRAIL} Va	lue			
$(Z_{ID}=100)$: $T_{CLK-TRAIL}$	N/A	> 60	78.17	ns	<u>69</u>
Test 1.4.14: Clock Lane HS	Exit: 30%-85% Po	st-EoT Rise Tin	ne (T _{REOT})		
Clock Lane T _{REOT}	N/A	< 35	17.27	ns	<u>69</u>
Test 1.4.15: Clock Lane HS	Exit: T _{EOT} Value				
Clock Lane T _{EOT}	<105+12*UI	< 120.00	95.43	ns	<u>69</u>
Test 1.4.16: Clock Lane HS	Exit: T _{HS-EXIT} Valu	e			
Clock Lane T _{HS-EXIT}	N/A	> 100	13450	ns	-
Test 1.4.17: Clock Lane HS	Clock Instantaneo	us (UI _{INST})			
Maximum UI _{INST}	N/A	< 12.5	1.300	ns	-

	up 5): 115 114 Ch	ock-to-Data Lan	e i iiiiig kee	unements				
Test/Parameter	Conformance Range (Formula)	Conformance Range (Numeric)	Lane 0 Measured	Lane 1 Measured	Lane 2 Measured	Lane 3 Measured	<u>Units</u>	Fig.
Test 1.5.1: HS Entry: T _{CI}	_{K-PRE} Value							
(Z _{ID} =100): T _{CLK-PRE}	> 8*UI	> 10.00	13.23	N/A	N/A	N/A	ns	<u>19</u>
Test 1.5.2: HS Exit: T _{CLK}	POST Value							
(Z _{ID} =100): T _{CLK-POST}	>60ns+52*UI	> 125.01	147.56	N/A	N/A	N/A	ns	<u>42</u>
Test 1.5.3: HS Clock Risi	ng Edge Alignme	nt to First Paylo	ad Bit					
First Data Lane	N/A	Pass/Fail	PASS	N/A	N/A	N/A	-	<u>73</u>
payload bit of the HS								
burst aligns with a rising								
edge of the HS clock								
Test 1.5.4: Data-to-Clock	Skew (T _{SKEW(TX)}))						
Maximum observed	N/A	-150/+150	141.3	N/A	N/A	N/A	mUI	<u>74</u>
Data-to-Clock Lane								
skew								
Minimum observed	N/A	-150/+150	27.6	N/A	N/A	N/A	mUI	<u>74</u>
Data-to-Clock Lane								
skew								
Mean Data-to-Clock	N/A	-150/+150	84.0	N/A	N/A	N/A	mUI	75
Lane skew (Informative)								

Table 1-5: (Section 1, Group 5): HS-TX Clock-to-Data Lane Timing Requirements

Table 1-6: (Section 1, Group 6): LP-TX INIT, ULPS, and BTA Requirements

Test/Parameter	Conformance Range (Formula)	Conformance Range (Numeric)	Measured	Units	Fig.
Test 1.6.1: INIT: LP-TX Init	tialization Period (T _{INIT,MASTER})			
(Clock Lane): T _{INIT,MASTER}	N/A	> 100	531.5	us	-
(Data Lane 0): T _{INIT,MASTER}	N/A	> 100	543.1	us	-
(Data Lane 1): T _{INIT,MASTER}	N/A	> 100	N/A	us	-
(Data Lane 2): T _{INIT,MASTER}	N/A	> 100	N/A	us	-
(Data Lane 3): T _{INIT,MASTER}	N/A	> 100	N/A	us	-
Test 1.6.2: ULPS Entry: Ver	rification of Clock]	Lane LP-TX UL	PS support		
Verify DUT Clock Lane	N/A	Pass/Fail	PASS	-	-
11/10/00 Clock Lane LILPS					
Entry sequence					
Lift y sequence	VAV				
Test 1.6.3: ULPS Exit: Tran	smitted Twaren II	nterval		1	
(Clock Lane): T _{WAKEUP}	N/A	> 1	1061.5	ms	-
(Data Lane 0): T _{WAKEUP}	N/A	>1	1073.7	ms	-
(Data Lane 1): T _{WAKEUP}	N/A	> 1	N/A	ms	-
(Data Lane 2): T _{WAKEUP}	N/A	> 1	N/A	ms	-
(Data Lane 3): T _{WAKEUP}	N/A	>1	N/A	ms	-
Test 1.6.4: BTA: TX-Side T ₁	Interval Valu	e		1	1
Measured T _{TA-GO}	$>= 4*T_{I,PX}$	>= 203.84	N/A	ns	-
Test 1.6.5: BTA: RX-Side T	TA-SURE Interval Va	lue			
Measured T _{TA-SURE}	$\frac{1*T_{LPX}}{2*T_{LPX}}$	50.96 / 101 92	N/A	ns	-
Test 1.6.6: BTA: RX-Side T	Interval Val	101.92	I	I	
Measured T _{TA-GET}	$> 5*T_{LPX}$	>= 254.80	N/A	ns	-

Figure 1: Dp VOH, VOL Values (Data Lane 0, 50pF CLOAD Test Fixture)

Figure 2: Dp VOH, VOL Values (Data Lane 0, 50pF CLOAD Test Fixture)

Figure 3: Dp VOH, VOL Values (Data Lane 0, No CLOAD Test Fixture)

Figure 4: Dp VOH, VOL Values (Data Lane 0, No CLOAD Test Fixture)

Figure 5: Dp LP-TX Rise Time (Data Lane 0, 50pF CLOAD)

Figure 6: Dn LP-TX Rise Time (Data Lane 0, 50pF CLOAD)

Figure 7: Dp LP-TX Rise Time (Data Lane 0, No CLOAD)

Figure 8: Dn LP-TX Rise Time (Data Lane 0, No CLOAD)

Figure 9: Dp LP-TX Fall Time (Data Lane 0, 50pF CLOAD)

Figure 10: Dn LP-TX Fall Time (Data Lane 0, 50pF CLOAD)

Figure 11: Dp LP-TX Fall Time (Data Lane 0, No CLOAD)

Figure 12: Dn LP-TX Fall Time (Data Lane 0, No CLOAD)

Figure 13: Computed LP XOR Clock (Data Lane 0, 50pF CLOAD, 930mV and 500mV Trip Levels)

LP XOR Clock Pulse Widths/Periods (930mV Trip Level)

Figure 16: Computed LP XOR Clock (Data Lane 0, No CLOAD, 930mV and 500mV Trip Levels)

LP XOR Clock Pulse Widths/Periods (930mV Trip Level)

Figure 18: LP XOR Clock Pulse/Period Widths (Data Lane 0, No CLOAD, 500mV Trip Level)

Figure 19: TCLK-PRE, TLPX, THS-PREPARE, and THS-ZERO Intervals (Data Lane 0, ZID=100)

Figure 20: HS-TX Differential Voltage VOD(1) (Data Lane 0, ZID=100)

Figure 21: HS-TX Differential Voltage VOD(0) (Data Lane 0, ZID=100)

Figure 22: HS-TX Differential Voltage VOD(1) (Data Lane 0, ZID=125)

Figure 23: HS-TX Differential Voltage VOD(0) (Data Lane 0, ZID=125)

Figure 24: HS-TX Differential Voltage VOD(1) (Data Lane 0, ZID=80)

Figure 25: HS-TX Differential Voltage VOD(0) (Data Lane 0, ZID=80)

Figure 26: HS-TX Single-Ended Voltage Dp VOHHS (Data Lane 0, ZID=100)

Figure 27: HS-TX Single-Ended Voltage Dn VOHHS (Data Lane 0, ZID=100)

Figure 28: HS-TX Single-Ended Voltage Dp VOHHS (Data Lane 0, ZID=125)

Figure 29: HS-TX Single-Ended Voltage Dn VOHHS (Data Lane 0, ZID=125)

Figure 30: HS-TX Single-Ended Voltage Dp VOHHS (Data Lane 0, ZID=80)

Figure 31: HS-TX Single-Ended Voltage Dn VOHHS (Data Lane 0, ZID=80)

VCMTX1/0: HS Common-Mode Symbol Histograms (23700 Uls, 64 Bins)

VCMTX1/0: HS Common-Mode Symbol Histograms (23701 Uls, 64 Bins)

VCMTX1/0: HS Common-Mode Symbol Histograms (23701 Uls, 64 Bins)

Figure 35: HF/LF Filtered HS-TX Common-Mode Waveforms (Data Lane 0, ZID=100)

Figure 36: HS-TX 20%-80% Rise Time (Data Lane 0, ZID=100)

Figure 37: HS-TX 20%-80% Rise Time (Data Lane 0, ZID=125)

Figure 38: HS-TX 20%-80% Rise Time (Data Lane 0, ZID=80)

Figure 39: HS-TX 20%-80% Fall Time (Data Lane 0, ZID=100)

Figure 40: HS-TX 20%-80% Fall Time (Data Lane 0, ZID=125)

Figure 41: HS-TX 20%-80% Fall Time (Data Lane 0, ZID=80)

Figure 42: THS-TRAIL, TREOT, TEOT, TCLK-POST Intervals (Data Lane 0, ZID=100)

Figure 43: HS Eye Diagram (Data Lane 0, ZID=100) (INFORMATIVE)

Figure 44: HS Eye Diagram (Data Lane 0, ZID=125) (INFORMATIVE)

Figure 45: HS Eye Diagram (Data Lane 0, ZID=80) (INFORMATIVE)

Figure 46: Clock TLPX, TCLK-PREPARE, and TCLK-ZERO Intervals (ZID=100)

Figure 47: HS-TX Differential Voltage VOD(1) (Clock Lane, ZID=100)

Figure 48: HS-TX Differential Voltage VOD(0) (Clock Lane, ZID=100)

Figure 49: HS-TX Differential Voltage VOD(1) (Clock Lane, ZID=125)

Figure 50: HS-TX Differential Voltage VOD(0) (Clock Lane, ZID=125)

Figure 51: HS-TX Differential Voltage VOD(1) (Clock Lane, ZID=80)

Figure 52: HS-TX Differential Voltage VOD(0) (Clock Lane, ZID=80)

Figure 53: HS-TX Single-Ended Voltage Dp VOHHS (Clock Lane, ZID=100)

Figure 55: HS-TX Single-Ended Voltage Dp VOHHS (Clock Lane, ZID=125)

Figure 56: HS-TX Single-Ended Voltage Dn VOHHS (Clock Lane, ZID=125)

HS DnVOHHS Averaged Reference Pulse (Pat: 01, Avgs: 128)

VCMTX1/0: HS Common-Mode Symbol Histograms (24221 UIs, 64 Bins)

VCMTX1/0: HS Common-Mode Symbol Histograms (24222 UIs, 64 Bins)

VCMTX1/0: HS Common-Mode Symbol Histograms (24222 UIs, 64 Bins)

Figure 62: HF/LF Filtered HS-TX Common-Mode Waveforms (Clock Lane, ZID=100)

Figure 63: HS-TX 20%-80% Rise Time (Clock Lane, ZID=100)

Figure 64: HS-TX 20%-80% Rise Time (Clock Lane, ZID=125)

Figure 65: HS-TX 20%-80% Rise Time (Clock Lane, ZID=80)

Figure 66: HS-TX 20%-80% Fall Time (Clock Lane, ZID=100)

Figure 67: HS-TX 20%-80% Fall Time (Clock Lane, ZID=125)

Figure 68: HS-TX 20%-80% Fall Time (Clock Lane, ZID=80)

Figure 69: TCLK-TRAIL, TREOT, TEOT Intervals (Clock Lane, ZID=100)

Figure 70: HS Eye Diagram (Clock Lane, ZID=100) (INFORMATIVE)

Figure 71: HS Eye Diagram (Clock Lane, ZID=125) (INFORMATIVE)

Figure 72: HS Eye Diagram (Clock Lane, ZID=80) (INFORMATIVE)

HS Clock-to-Data Rising Edge Alignment

Figure 74: Data-to-Clock Skew (TSKEW(TX)) (Data Lane 0/Clock Lane, ZID=100)

Figure 75: Data-to-Clock Skew Histogram (Data Lane 0/Clock Lane, ZID=100)

Timing Error Histogram (9860 Values, 256 Bins, Ref = D-PHY Clock)

