

UNH-IOL MIPI Alliance Test Program D-PHY RX S-Parameter Test Report

InterOperability Lab — 121 Technology Drive, Suite 2 — Durham, NH 03824 — (603) 862-3749

September 27, 2010

Engineer Name Sample Company, Inc. 1010 Mobile Way San Jose, CA 95101

Mr. Engineer:

Enclosed are the test results from the D-PHY RX S-Parameter Conformance testing performed on the:

Sample Company Model 4544 LCD Display 4-Lane DSI Receiver

The testing was performed according to v0.98 of the MIPI Alliance D-PHY Conformance Test Suite, which is available to MIPI Alliance Members at:

https://members.mipi.org/mipi-testing/workspace/StartPage

Any issues observed during testing are listed below:

- Failure of Test 3.2.1: HS-RX Differential Return Loss (SDD11)
- Failure of Test 3.2.2: HS-RX Common-Mode Return Loss (SCC11)

Please feel free to contact me via email at aab@iol.unh.edu with any questions you may have regarding this report.

Sincerely,

Andy Baldman

Digital Signature Information

This document was created using an Adobe digital signature. A digital signature helps to ensure the authenticity of the document, but only in this digital format. For information on how to verify the integrity of this document, please proceed to the following site:

http://www.iol.unh.edu/certifyDoc/

If, after following the steps indicated above, the document status still indicates "Validity of author NOT confirmed", please contact the UNH-IOL to confirm the document's authenticity. To further validate the certificate integrity, Adobe 6.0 should report the following fingerprint information:

MD5 Fingerprint (2010): EEE1 7A82 7806 EB21 AF94 F189 E4BE 361B SHA-1 Fingerprint (2010): ECFB 7FAF AB4A 0832 2408 E965 9F5C E3F2 D784 AAAB

Table 1-0: Test Setup and DUT Configuration Information

Table 1-0: Test Setup and De T Comiscitation Into mation					
DUT Details					
Week testing was performed	20100927				
Manufacturer	Sample Company				
Model	Model 4544 LCD Display (4-Lane DSI Receiver)				
Max. Supported HS Bit Rate	800 Mbps				
Mfr. Serial Number	9876543210				
Firmware Version	v1.0				
Hardware Version	v0.10				
Software Version	3.15				
UNH-IOL ID Number	99999				
Test System Hardware					
Time Domain Reflectometer	Agilent DCA-J 86100C, with S-parameter Option 201 and 54754A module				

Additional Comments/Notes

All test results marked 'N/P' in the result tables indicate that the test (or test case) was not performed due to lack of time and/or technical limitations. All tests marked 'N/A' are considered Not Applicable, due to the DUT not implementing these lanes.

Table 3-2: (Section 3, Group 2): HS-RX S-Parameters

Table 3-2: (Section 3, Group 2): HS-RX S-Parameters					
Test/Parameter	Range	Measured	Units	Fig.	
Test 3.2.1: HS-RX Differential Return Loss (SDD11)					
(Clock Lane): Minimum SDD11 margin	> 0	-1.29	dB	<u>6</u>	
(Data Lane 0): Minimum SDD11 margin	> 0	-2.14	dB	<u>7</u>	
(Data Lane 1): Minimum SDD11 margin	> 0	-0.95	dB	<u>8</u>	
(Data Lane 2): Minimum SDD11 margin	> 0	-1.59	dB	9	
(Data Lane 3): Minimum SDD11 margin	> 0	-1.58	dB	<u>10</u>	
Test 3.2.2: HS-RX Common-Mode Return Loss (SCC11)					
(Clock Lane): Minimum SCC11 margin	> 0	-0.82	dB	<u>16</u>	
(Data Lane 0): Minimum SCC11 margin	> 0	1.08	dB	<u>17</u>	
(Data Lane 1): Minimum SCC11 margin	> 0	0.43	dB	<u>18</u>	
(Data Lane 2): Minimum SCC11 margin	> 0	-0.26	dB	<u>19</u>	
(Data Lane 3): Minimum SCC11 margin	> 0	-0.37	dB	<u>20</u>	
Test 3.2.3: HS-RX Mode Conversion Limits (SDC11)					
(Clock Lane): Minimum SDC11 margin	> 0	1.29	dB	<u>31</u>	
(Data Lane 0): Minimum SDC11 margin	> 0	2.89	dB	<u>32</u>	
(Data Lane 1): Minimum SDC11 margin	> 0	5.44	dB	<u>33</u>	
(Data Lane 2): Minimum SDC11 margin	> 0	3.27	dB	34	
(Data Lane 3): Minimum SDC11 margin	> 0	2.72	dB	<u>35</u>	
Test 3.2.4: HS-RX DC Differential Input Impedance (Z _{ID})					
(Clock Lane): Z _{ID}	80 / 125	107.06	Ohms	<u>1</u>	
(Data Lane 0): Z _{ID}	80 / 125	106.29	Ohms	<u>2</u>	
(Data Lane 1): Z _{ID}	80 / 125	106.57	Ohms	<u>3</u>	
(Data Lane 2): Z _{ID}	80 / 125	105.65	Ohms	<u>4</u>	
(Data Lane 3): Z _{ID}	80 / 125	106.57	Ohms	<u>5</u>	

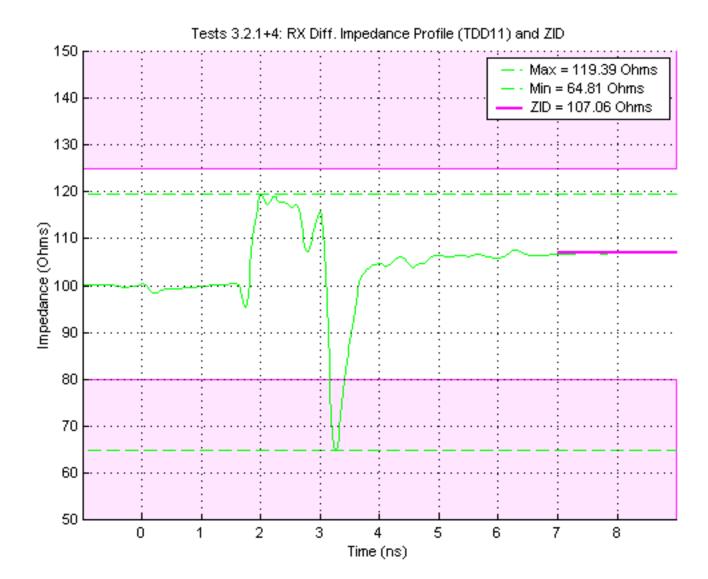


Figure 1: HS-RX Differential Impedance Profile (TDD11) and ZID (Clock Lane)

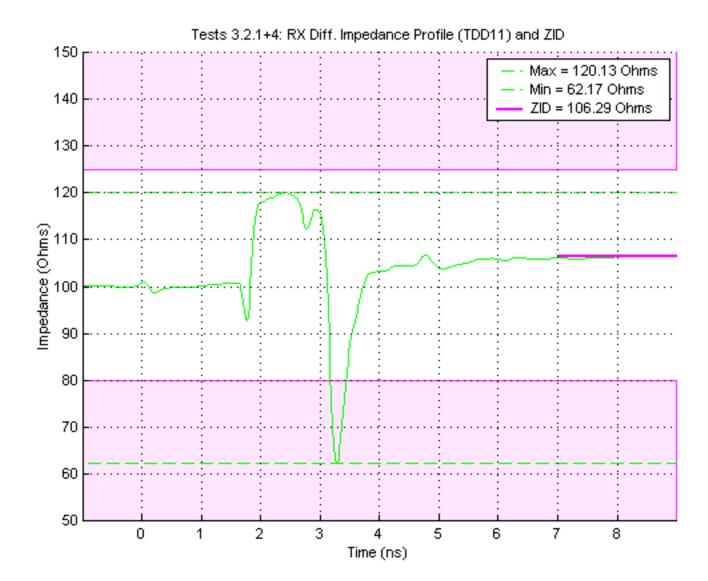


Figure 2: HS-RX Differential Impedance Profile (TDD11) and ZID (Data Lane 0)

Tests 3.2.1+4: RX Diff. Impedance Profile (TDD11) and ZID 150 Max = 124.61 Ohms Min = 65.14 Ohms 140 ZID = 106.57 Ohms 130 120 Impedance (Ohms) 100 90 80 70 60 50 0 2 3 4 5 6 7 8 Time (ns)

Figure 3: HS-RX Differential Impedance Profile (TDD11) and ZID (Data Lane 1)

Tests 3.2.1+4: RX Diff. Impedance Profile (TDD11) and ZID Max = 118.05 Ohms Min = 62.03 Ohms ZID = 105.65 Ohms Impedance (Ohms) Time (ns)

Figure 4: HS-RX Differential Impedance Profile (TDD11) and ZID (Data Lane 2)

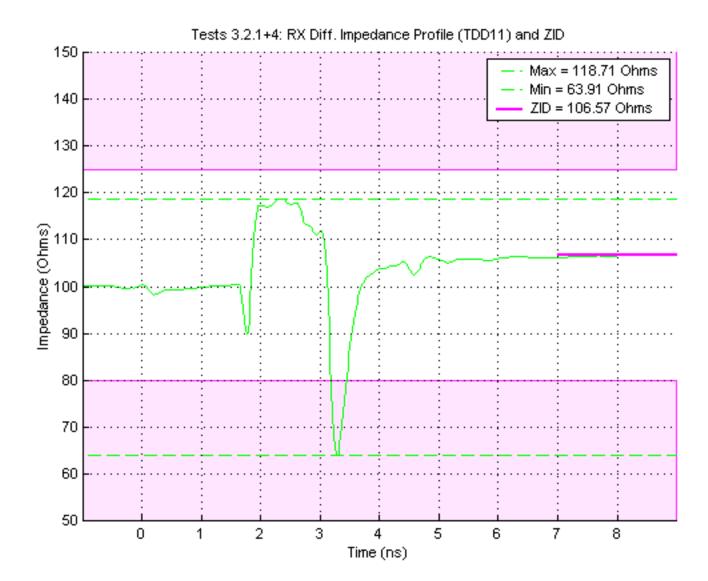


Figure 5: HS-RX Differential Impedance Profile (TDD11) and ZID (Data Lane 3)

Test 3.2.1: RX Differential Return Loss (SDD11) 10_F 0 -10 Mag (dB) -30 -40 -50 Min Margin: 500MHz (-1.29dB) -60 200 400 600 800 1000 1200 1400 1600 0 Freq (MHz)

Figure 6: HS-RX Differential Return Loss (SDD11) (Clock Lane)

Test 3.2.1: RX Differential Return Loss (SDD11) 10_F 0 -10 Mag (dB) -30 -40 -50 Min Margin: 500MHz (-2.14dB) -60 200 400 600 800 1000 1200 1400 1600 0 Freq (MHz)

Figure 7: HS-RX Differential Return Loss (SDD11) (Data Lane 0)

Test 3.2.1: RX Differential Return Loss (SDD11) 10_F 0 -10 Mag (dB) -30 -40 -50 Min Margin: 500MHz (-0.95dB) -60 200 400 600 800 1000 1200 1400 1600 0 Freq (MHz)

Figure 8: HS-RX Differential Return Loss (SDD11) (Data Lane 1)

Test 3.2.1: RX Differential Return Loss (SDD11) 10_F 0 -10 Mag (dB) -30 -40 -50 Min Margin: 500MHz (-1.59dB) -60 200 400 600 800 1000 1200 1400 1600 0 Freq (MHz)

Figure 9: HS-RX Differential Return Loss (SDD11) (Data Lane 2)

Test 3.2.1: RX Differential Return Loss (SDD11) 10_F 0 -10 Mag (dB) -30 -40 -50 Min Margin: 500MHz (-1.58dB) -60 200 400 600 800 1000 1200 1400 1600 0 Freq (MHz)

Figure 10: HS-RX Differential Return Loss (SDD11) (Data Lane 3)

Test 3.2.2: RX Common-Mode Impedance Profile (TCC11) (Informative) 70 60 SO 40 Suppose (Ohms) 30 20 10 0 1 2 3 4 5 6 7 8

Figure 11: HS-RX Common-Mode Impedance Profile (TCC11) (Clock Lane) (Informative)

Time (ns)

Test 3.2.2: RX Common-Mode Impedance Profile (TCC11) (Informative)

70

60

30

20

Figure 12: HS-RX Common-Mode Impedance Profile (TCC11) (Data Lane 0) (Informative)

0

1

2

3

4

Time (ns)

5

6

7

8

10

Test 3.2.2: RX Common-Mode Impedance Profile (TCC11) (Informative) 70 60 SO 40 Suppose (Ohms) 30 20 10 0 1 2 3 4 5 6 7 8

Figure 13: HS-RX Common-Mode Impedance Profile (TCC11) (Data Lane 1) (Informative)

Time (ns)

Test 3.2.2: RX Common-Mode Impedance Profile (TCC11) (Informative) 70 60 SO 40 Suppose (Ohms) 30 20 10 0 1 2 3 4 5 6 7 8

Figure 14: HS-RX Common-Mode Impedance Profile (TCC11) (Data Lane 2) (Informative)

Time (ns)

Figure 15: HS-RX Common-Mode Impedance Profile (TCC11) (Data Lane 3) (Informative)

0

1

2

3

4

Time (ns)

5

6

7

8

20

10

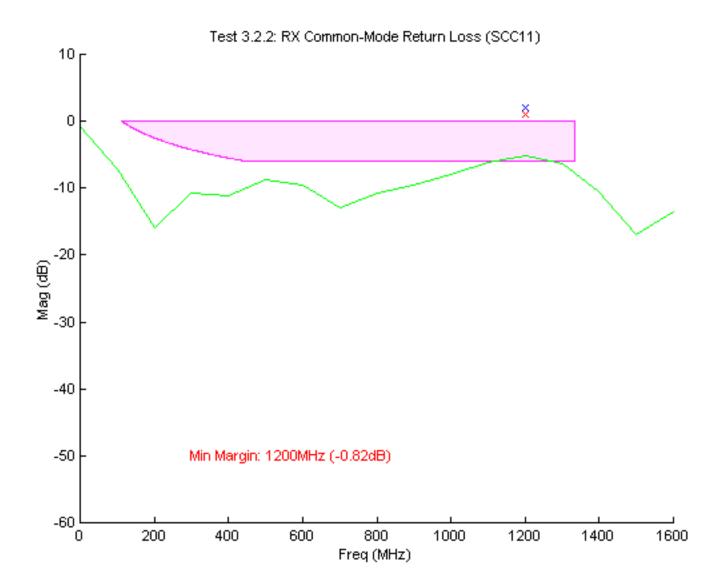


Figure 16: HS-RX Common-Mode Return Loss (SCC11) (Clock Lane)

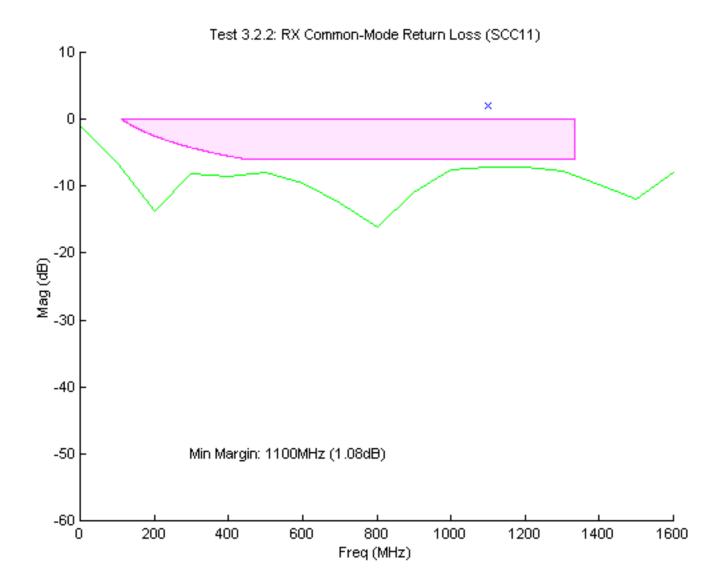


Figure 17: HS-RX Common-Mode Return Loss (SCC11) (Data Lane 0)

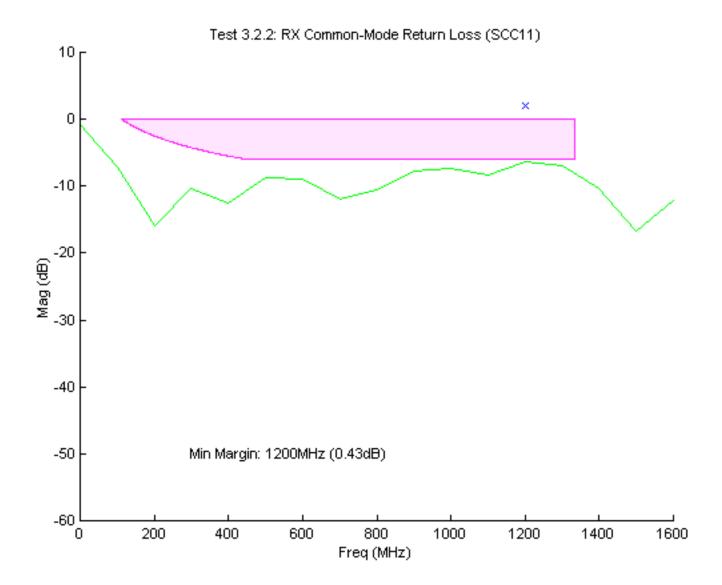


Figure 18: HS-RX Common-Mode Return Loss (SCC11) (Data Lane 1)

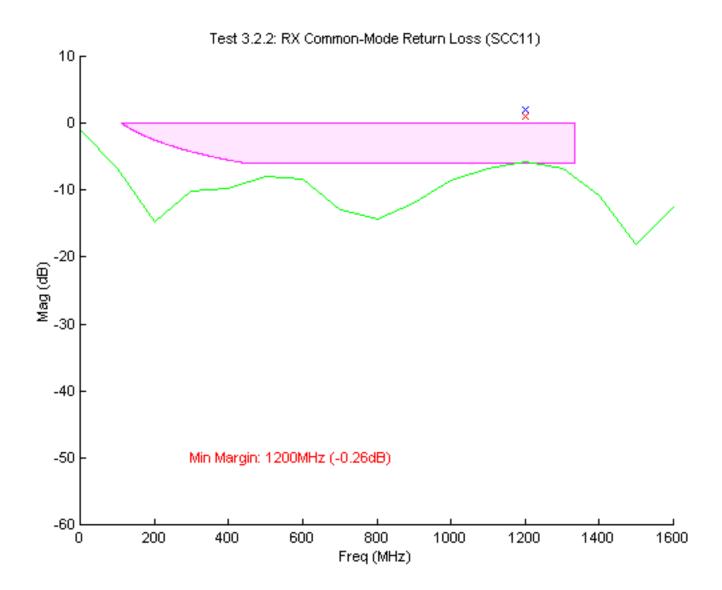


Figure 19: HS-RX Common-Mode Return Loss (SCC11) (Data Lane 2)

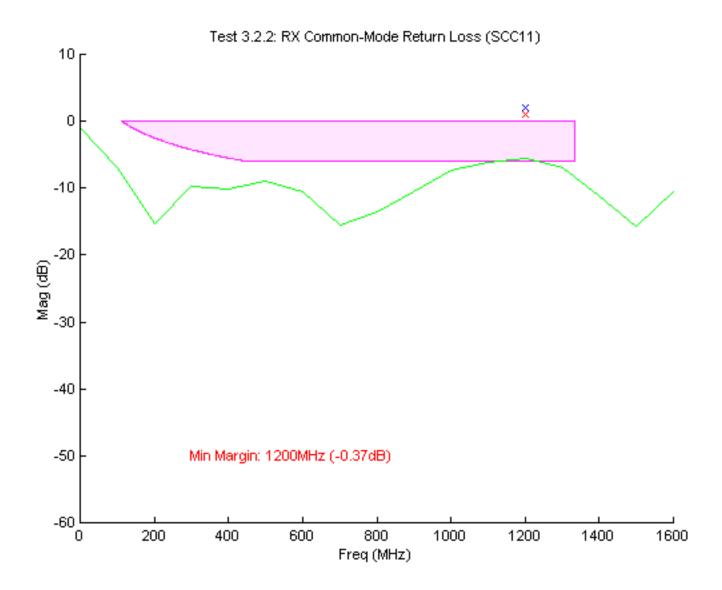


Figure 20: HS-RX Common-Mode Return Loss (SCC11) (Data Lane 3)

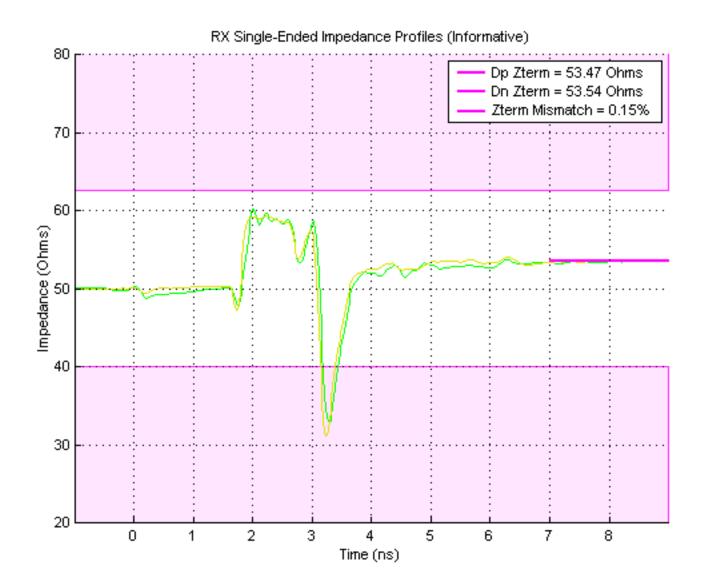


Figure 21: HS-RX Single-Ended Impedance Profiles (Clock Lane) (Informative)

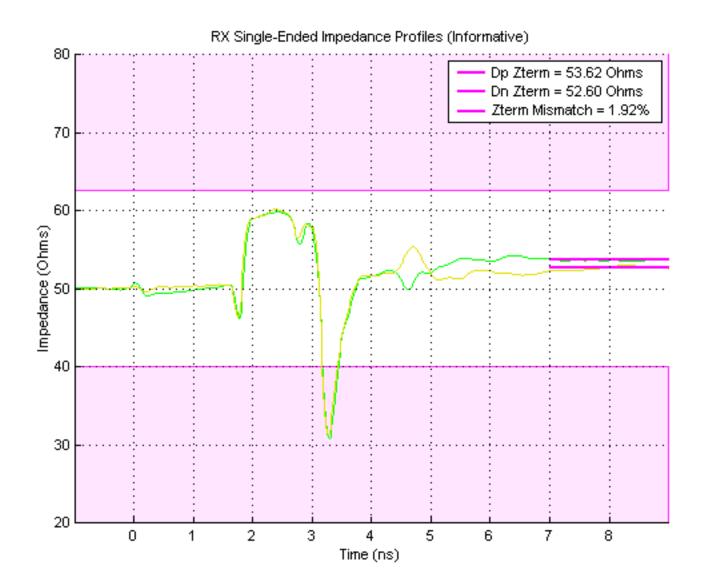


Figure 22: HS-RX Single-Ended Impedance Profiles (Data Lane 0) (Informative)

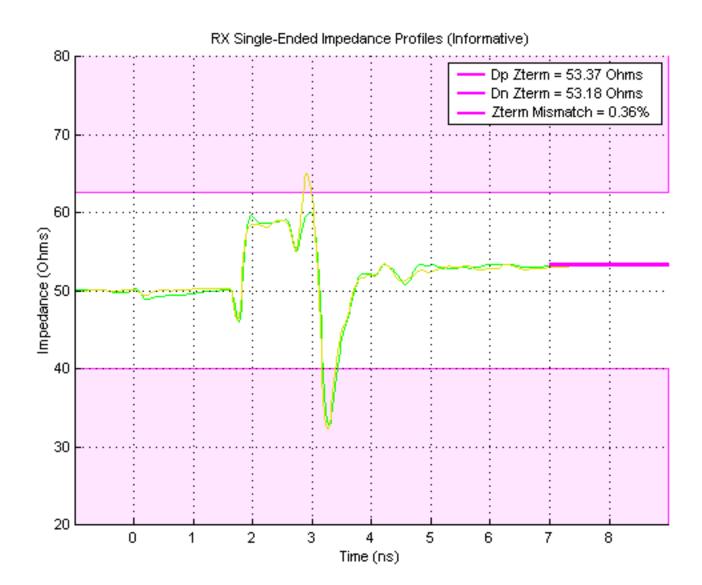


Figure 23: HS-RX Single-Ended Impedance Profiles (Data Lane 1) (Informative)

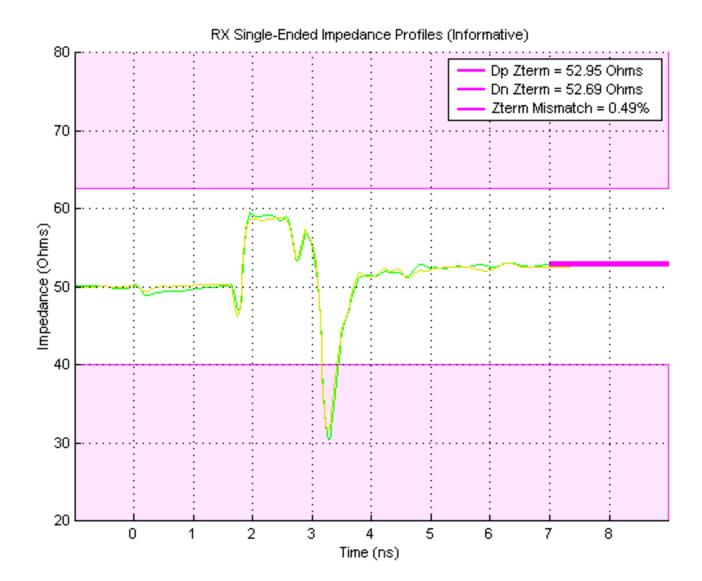


Figure 24: HS-RX Single-Ended Impedance Profiles (Data Lane 2) (Informative)

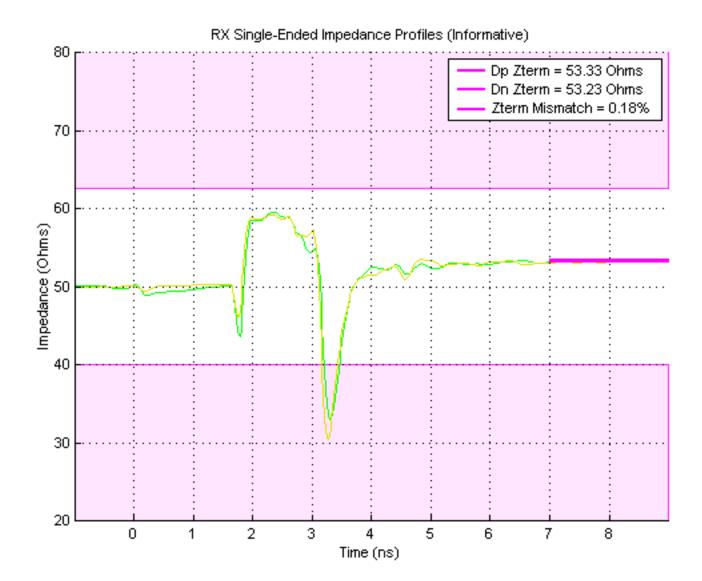


Figure 25: HS-RX Single-Ended Impedance Profiles (Data Lane 3) (Informative)

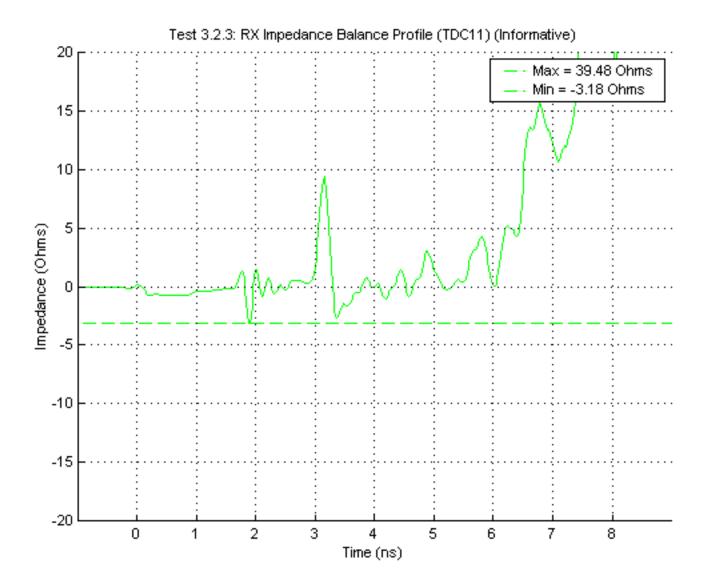


Figure 26: HS-RX Impedance Balance Profile (TDC11) (Clock Lane) (Informative)

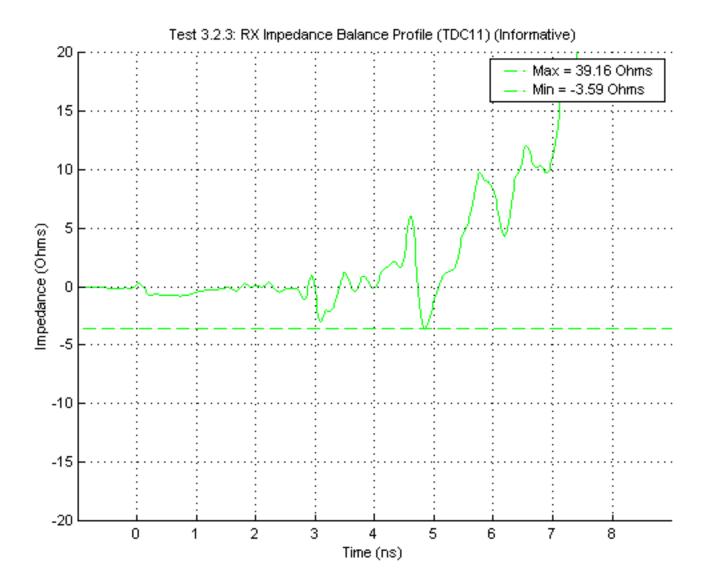


Figure 27: HS-RX Impedance Balance Profile (TDC11) (Data Lane 0) (Informative)

Figure 28: HS-RX Impedance Balance Profile (TDC11) (Data Lane 1) (Informative)

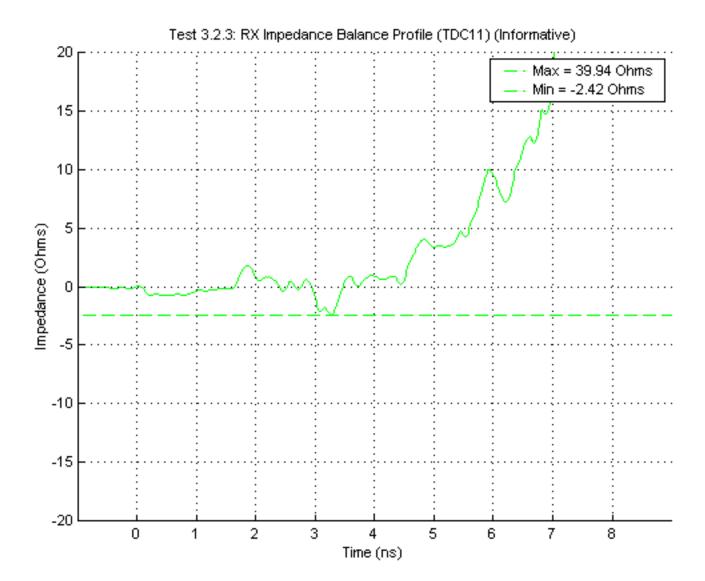


Figure 29: HS-RX Impedance Balance Profile (TDC11) (Data Lane 2) (Informative)

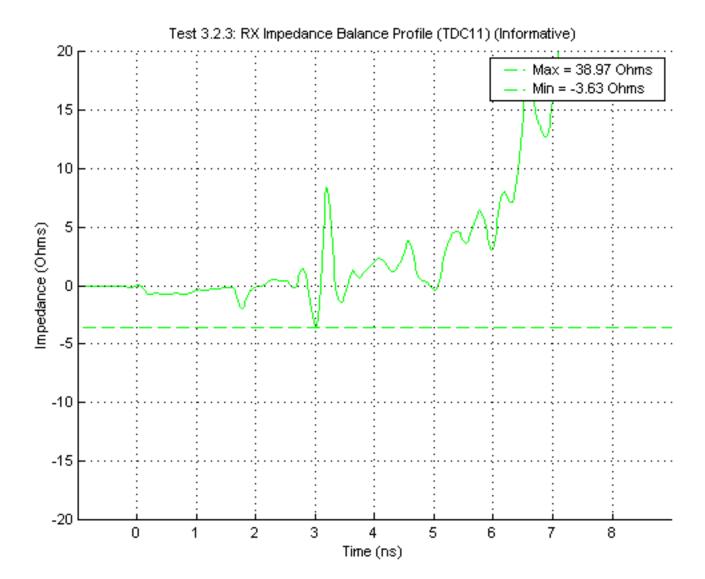


Figure 30: HS-RX Impedance Balance Profile (TDC11) (Data Lane 3) (Informative)

Test 3.2.3: RX Mode Conversion Loss (SDC11) 10_F 0 -10 Mag (dB) -30 -40 -50 Min Margin: 1300MHz (-1.29dB) -60 200 400 600 800 1000 1200 1400 1600 0 Freq (MHz)

Figure 31: HS-RX Mode Conversion Loss (SDC11) (Clock Lane)

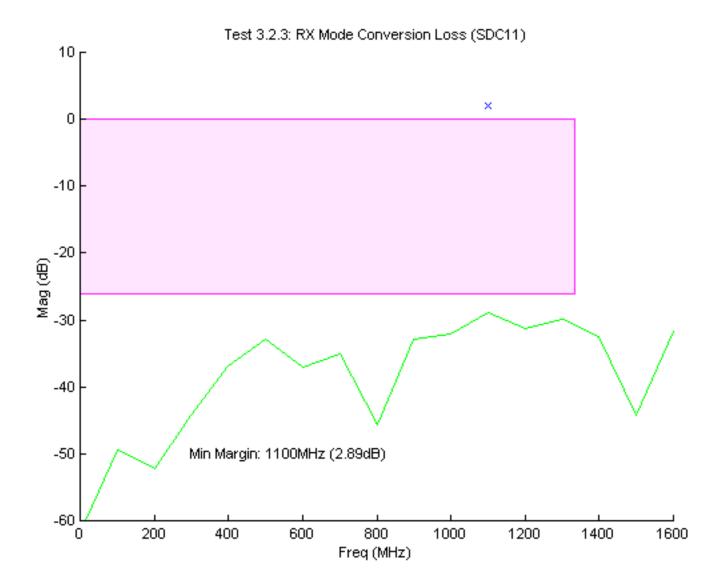


Figure 32: HS-RX Mode Conversion Loss (SDC11) (Data Lane 0)

Test 3.2.3: RX Mode Conversion Loss (SDC11) 10_F × 0 -10 Mag (dB) -30 -40 -50 Min Margin: 1200MHz (5.44dB) -60 200 400 600 800 1000 1200 1400 1600 0 Freq (MHz)

Figure 33: HS-RX Mode Conversion Loss (SDC11) (Data Lane 1)

Test 3.2.3: RX Mode Conversion Loss (SDC11) 10_F × 0 -10 Mag (dB) -30 -40 -50 Min Margin: 1000MHz (3.27dB) -60 200 400 600 800 1000 1200 1400 1600 0 Freq (MHz)

Figure 34: HS-RX Mode Conversion Loss (SDC11) (Data Lane 2)

Test 3.2.3: RX Mode Conversion Loss (SDC11) 10_F × 0 -10 Mag (dB) -30 -40 -50 Min Márgin: 1200MHz (2.72dB) -60 200 400 600 800 1000 1200 1400 1600 0 Freq (MHz)

Figure 35: HS-RX Mode Conversion Loss (SDC11) (Data Lane 3)