

University of New Hampshire InterOperability Laboratory

DSL Consortium Broadband Forum TR-115 Report

UNH-1	OL —121 Technology Dr	ive, Suite 2—Durham, NH 03824—+1-6	603-862-2911
Consortium Manager	Lincoln Lavoie	lylavoie@iol.unh.edu	+1-603-674-2755
Tester	Jane Doe	Jane@dsl.net	555-5555
Report Author	Jane Doe	jane@dsl.net	555-5555
Report Reviewed by	Lincoln Lavoie	lylavoie@iol.unh.edu	+1-603-674-2755
Revision 1.0			April 30, 2015
			-
DSLTech			

DSLTech Hollywood Hills California DSLTech@DSL.net 555-5555

Mr. DSL;

Enclosed are the results from the Broadband Forum's TR-115 VDSL2 Functionality Test Plan performed on the VTU-68. The testing was performed according to Version 2.0 of the TR-115 and the latest corrigendum documents, which may be downloaded from the following address:

<u>http://www.broadband-forum.org/technical/download/TR-115_Issue-2.zip</u> <u>http://www.broadband-forum.org/technical/download/TR-115_Issue-2_Amendment-1.pdf</u> <u>http://www.broadband-forum.org/technical/download/TR-115_Issue-2_Corrigendum-1.pdf</u>

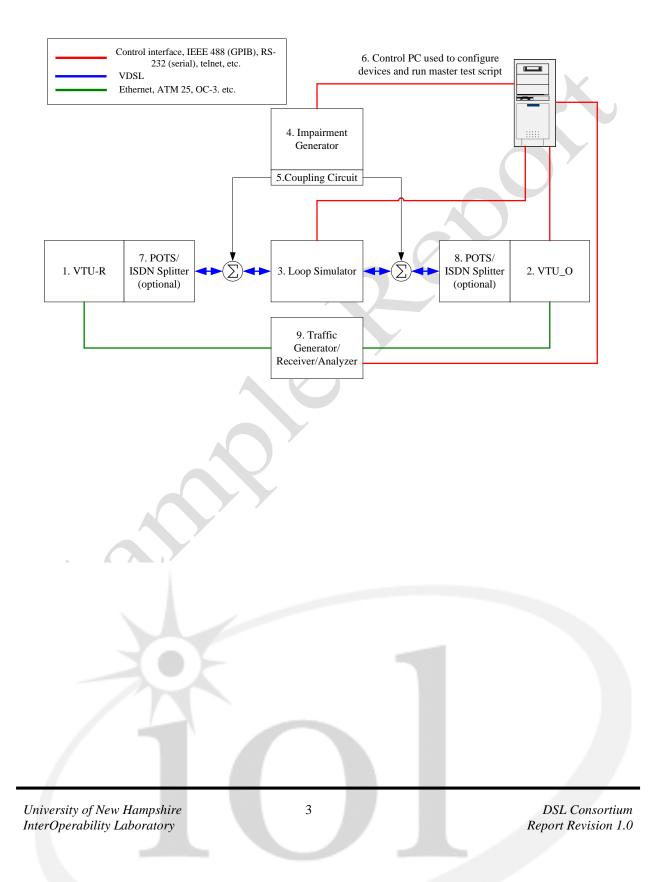
If you have any questions about the test procedures or results, please feel free to contact me via email at <u>jane@dsl.net</u>, or by phone at 555-5555.

Sincerely, Jane Doe

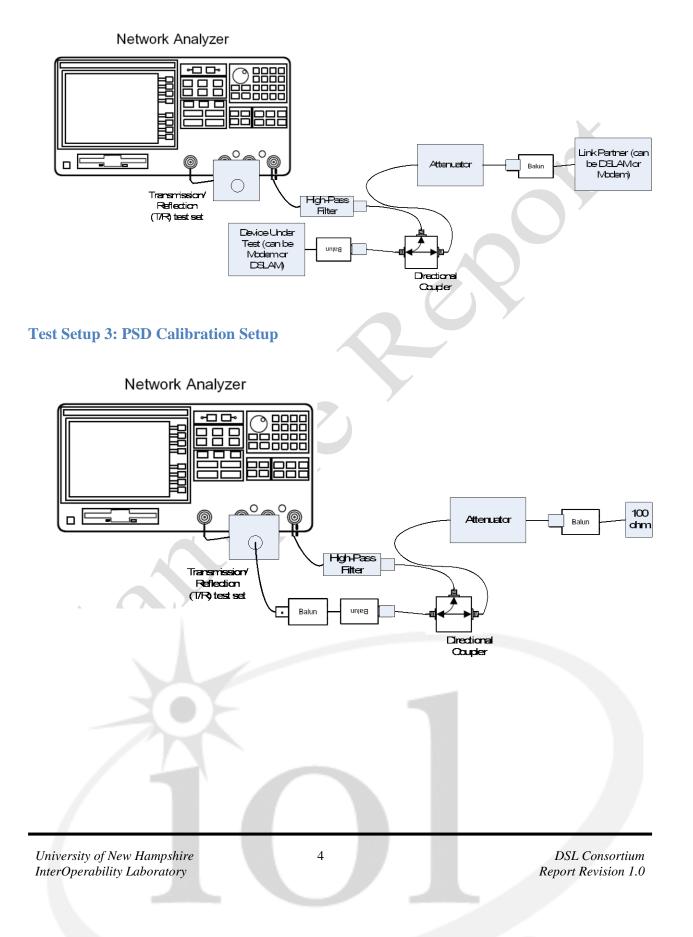
Reviewed By, Lincoln Lavoie

Digital Signature

Report Revision History

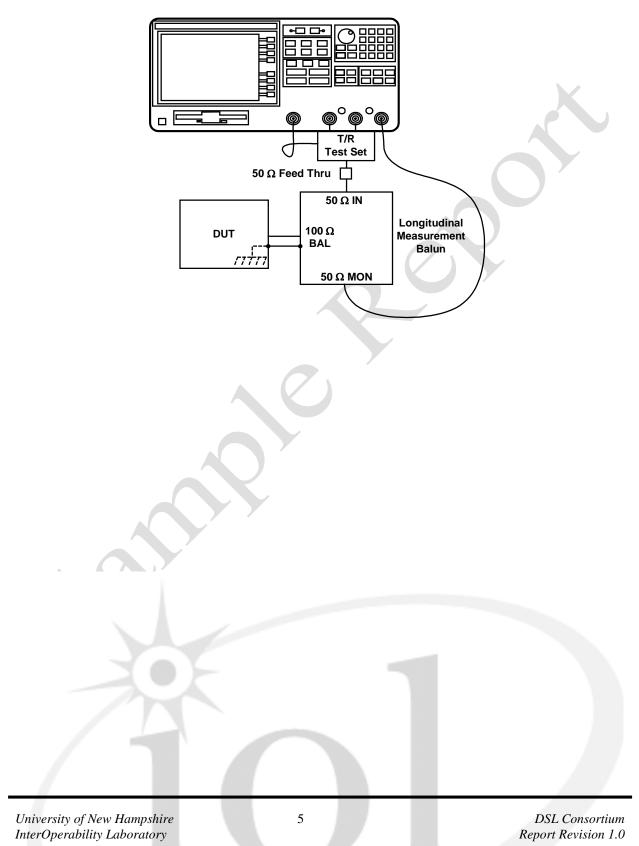

Revision	Date	Author	Description of Changes
1.0	April 30, 2015	Jane Doe	• Initial report.

About Report Revisions:


Revisions are typically made to reports to correct errors, typos, or omissions. A revision may also include a retest of one or more test cases, with those test cases identified in the table above. A report revision will not change the software/firmware used during the testing, resulting in some test cases using differing software/firmware versions.

Test Setups

Test Setup 1: General Test Setup



Test Setup 2: PSD Measurement Setup

Test Setup 4: Longitudinal Balance Measurement Setup

Network Analyzer

Equipment List

- 1. VTU-R (VTU-68): DSLTech (IOL ID: 000A)
 - □ System software version: 1.1.2
 - □ Chipset make: DSLTech
 - □ Chipset model: 3.2
 - □ Chipset firmware version: 45
 - □ Hardware version: 3
- 2. VTU-C (VTU-55): DSLTech (IOL ID: 000B)
 - □ System software version: 1.2.3
 - □ Chipset make: DSLTech
 - □ Chipset model: 3.8
 - □ Chipset firmware version: 5
 - □ Hardware version: 1
 - □ Profile used for testing: AA8d_RA_I_096_056
- 3. Loop simulator: Spirent Communications DLS8131, DLS8132
 - □ Loop simulator serial #: 3000407, 3000390
 - Compensated loops were not applied
- 4. Impairment generator: Spirent DLS5500
 - □ Spirent noise package DLS-5B44 version 1.1.1
 - Compensated noise levels were not applied
- 5. Coupling circuit: Spirent Communication DLS 5404
- 6. Network Analyzer: Agilent 4395A (IOL ID: 1498).
 - □ Agilent 87512A transmission/reflection test set installed.
 - □ Spectrum Analyzer Level Accuracy: +/- 0.8 dB.
- 7. Baluns: North Hills Signal Processing
 - Development Density Measurement Balun: 0301BB
- Longitudinal Balance Measurement Balun: 0320BF
- 8. Directional Couplers: Mini-Circuits ZFDC-10-06
- 9. Traffic Generator: Spirent Communication SmartBits
 - **Card:** 44
 - □ Serial: 123ABCD
- 10. UNH-IOL xDSL Electrical Characteristics GUI
 - □ Software Version: 3
 - □ Operating System: Windows XP PRO
- 11. UNH-IOL xDSL PSD Mask Conformance Tool
 - □ Hardware Revision 2.0
 - □ Software Version: 2.1
 - Operating System: Windows XP PRO

University of New Hampshire
InterOperability Laboratory

Result Key

Result	Meaning	Interpretation
PASS	Pass	The Device Under Test (DUT) was observed to exhibit conformant behavior.
FAIL	Fail	The Device Under Test (DUT) was observed to exhibit non- conformant behavior.
RTC	Refer to Comments	From the observations, a valid pass or fail was not determined. An additional explanation of the situation is included.
Info	Informative	Test is designed for informational purposes only. The results may help ensure the interoperability of the DUT, but are not standards requirements.
Warn	Warning	The DUT was observed to exhibit behavior that is not recommended.
N/A	Not Applicable	This test does not apply to the device type or is not applicable to the testing program selected.
N/S	Not Supported	The Device Under Test (DUT) was not observed to support the necessary functionality required to perform these tests or the requirement is optional and not supported by this device.
N/T	Not Tested	This test was not performed and therefore this is not a complete test report. Please see the comments for additional reasons.
UA	Unavailable	The test was not performed due to limitation of the test tool(s) or interoperable systems, or the test methodology is still under development.

7

Test Summary

Test Number	Test Name	Result
	Section 5 – Physical Layer Tests	
5.1	Interleaving Delay Test	PASS
5.2	Impulse Noise Protection Test	PASS
5.4.1	Bitswap Test	PASS
5.4.2	Wideband Bitswap Test	PASS
5.4.3	Seamless Rate Adaptation Test	PASS
5.5	Loop Diagnostic Mode Test	PASS
5.6	VTU-R Inventory Test	PASS
5.7.1	PSD Mask Test	PASS
5.7.2	Total ATP Test	PASS
5.7.3	RFI Notch Configuration Test	PASS
5.7.4	Downstream Power Back-off Test	PASS
5.7.5	Upstream Power Back-off Test	PASS
5.8	Longitudinal Conversion Loss Test	PASS
5.10	Dying Gasp Test	PASS
	Section 6 – System Level Tests	
6.1	64/65-Octet Encapsulation Far-End PTM-TC Performance Monitoring Test	PASS
Section 7	- Testing G.ploam Configuration Parameters and Performance Monitoring Cou	nters
7.1	Configuration Parameter MINSNRM	PASS
7.2	Configuration Parameter TARSNRM	PASS
7.3	Configuration Parameter PSDMASK	PASS
7.4	Configuration Parameter VDSL2-CARMASK	PASS
7.5	Configuration Parameter MAXNOMATP	PASS
7.6	Performance Monitoring Counters for Code Violations and Errored Seconds	PASS
7.7	Performance Monitoring Counter for SES	PASS
7.8	Performance Monitoring Counter for Unavailable Seconds (UAS)	PASS
7.9	Performance Monitoring Counters for Full initialization and Failed Full initialization	PASS

DSL Consortium Report Revision 1.0

8

Test Detail

Section 5 – Physical Layer Tests Test 5.1 Interleaving Delay Test

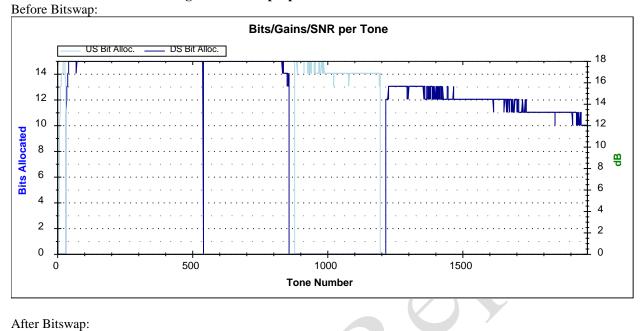
Test Numbe	er and Label					Result
5.1 – Interle	eaving Delay Te	est				PASS
Purpose: The delay without	e purpose of thi	s test is to ver elay is consta				assumes that the system reported interleaving
Results for	[-8/2:					
	Upstream			Downstream	L	
Reported Delay (ms)	System Delay (ms)	∆U1 = (SD-RD) (ms)	Reported Delay (ms)	System Delay (ms)	∆D1 = (SD-RD) (ms)	Result (Pass if US_RD≤8ms and DS_RD≤8ms)
7	10	3	7	8	1	PASS
Results for	[-16/2:					
	Upstream			Downstream		
Reported Delay (ms)	System Delay (ms)	∆U2 = (SD-RD) (ms)	Reported Delay (ms)	System Delay (ms)	Δ D2 = (S D-RD) (ms)	Result (Pass if US_RD≤16ms and DS_RD≤16ms)
7	10	3	7	8	1	PASS
			Delta Calcu	ulation:		
Δ١	$\frac{\text{Upstream}}{U = \Delta U1 - \Delta U2}$ (ms)	2		Downstream $D = \Delta D1 - \Delta D$ (ms)	-	Result (PASS IF $\Delta U \leq 1MS$ AND $\Delta D \leq 1MS$)
0 0 PASS					_ /	
Notes about test implementation:						
None						
<u>()</u>	on Test Results					
None		•				

10

Test 5.2 Impulse Noise Protection Test

Test Number and Lab	el		Result
5.2 – Impulse Noise Pr	otection Test		PASS
	of this test is to verify the functi	onality of INP	
Results:			
	ream CRC		nstream CRC
Allowed	Measured	Allowed	Measured
1	0	1	1
Test Metrics:	1		
the test to pass.	ed seconds measured after the ir	itial wait period SHAL	L be ≤ 1 for PASS
Notes about test imple	montation		
None	mentation:		
Comments on Test Re	enlte.		
None	54115.		
		0	
			7
		×	
		1	
	1 V		
University of New Hamps			DSL Consortiu
InterOperability Laborat			Report Revision 1

Test 5.3 Dual Latency Test (Optional)


Test Number and Label Result									
5.3 – Dual Laten	5.3 –Dual Latency Test (Optional) PASS								
Purpose: Not Provided by the TR-115 technical document.									
-140dBm/Hz VTU-O & -110dBm/Hz VTU-R									
Channel 1 Channel 2									
ES	CV	DELAY 1	ES	CV	DELAY 2				
3	11	2.5	2	6	5				
-140dBm/Hz VTU-R & -110dBm/Hz VTU-O									
Channel 1 Channel 2									
ES	CV	DELAY 1	ES	CV	DELAY 2				
4	12	3.4	3	6	6.2				
Test Metrics:									
1. The measured	delay on the low l	atency channel (D	elay1) SHALL be	< the	PASS				
	latency (Delay2).				I Abb				
2. The number of channel 1.	f reported code vic	lations in channel	_2 SHALL be <		PASS				
	t implementation:								
None.									
Comments on Test Results:									
None									

Test 5.4.1 Bitswap Test

Test Number and Label			Result	
5.4.1 –Bitswap Test			Р	ASS
Purpose: The purpose of this test is to verify t			and VTU-O sta	ays in show-
time and that bit-swapping occurs as a result of	f narrow band n	oise on a line.		
Upstream Bitswap:	l l l l l l l l l l l l l l l l l l l			
	I-8		F-	
	US0	US1	US0	US1
Selected Tone (integer)	14	888	14	888
Total_Bits_US_Old (integer)	5000	5000	4500	4500
Total_Bits_US_New (integer)	5000	5000	4500	4500
CRC count during BER test	0	0	0	0
SES count during BER test	0	0	0	0
Estimated BER (based on Table 23/TR-114)	0	0	0	0
Downstream Bitswap:				
	I-8			1/0
	DS1	DS2	DS1	DS2
Selected Tone (integer)	91	1220	91	1220
Total_Bits_US_Old (integer)	16000	16000	20000	20000
Total_Bits_US_New (integer)	16000	16000	20000	20000
CRC count during BER test	0	0	0	0
SES count during BER test	0	0	0	0
Estimated BER (based on Table 23/TR-114)	0	0	0	0
Test Metrics:				
1. No retrain SHALL occur during the test			P	ASS
2. BITSpsus_New, recorded in step MOP(10),				
BITSpsus_Old in step MOP(7), if tone n is in t	the bands of ups	stream	PASS	
direction.				
3. BITSpsds_New, recorded in step MOP(10),				
BITSpsds_Old in step MOP(7), if tone n is in t	the bands of dov	wnstream	PASS	
direction.				
4. Transmitted_Bits_US_Old SHALL equal Tr				ASS
5. Transmitted_Bits_DS_Old SHALL equal Tr		ASS		
6. SES SHALL NOT increase		ASS		
7. The estimated BER SHALL NOT exceed 1e-7 PASS				
Notes about test implementation:				-
1. To save space within the report, the values	of BITSpsus an	d BITSpsds are	not reported a	bove.
Comments on Test Results:				
None				

10

Figure 1: Bitswap Upstream Interleaved Profile US0

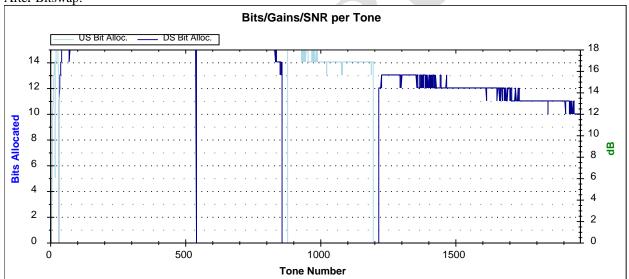
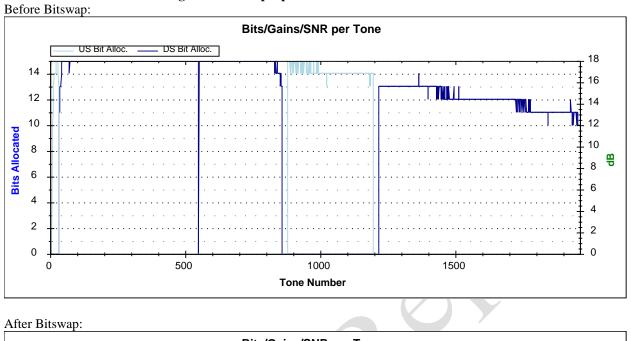



Figure 2: Bitswap Upstream Interleaved Profile US1

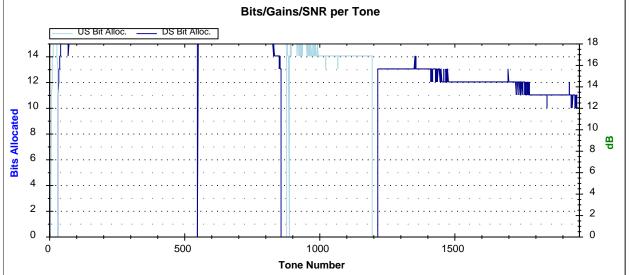
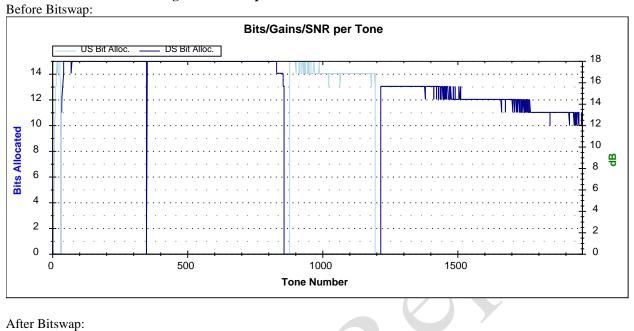



Figure 3: Bitswap Downstream Interleaved Profile DS1

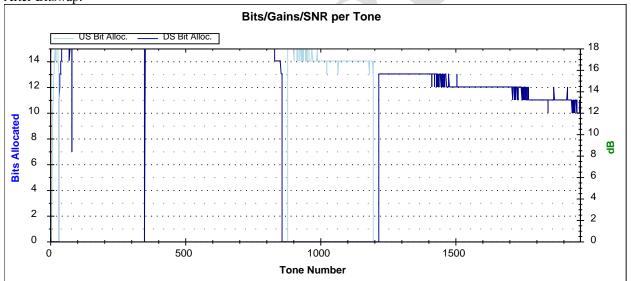
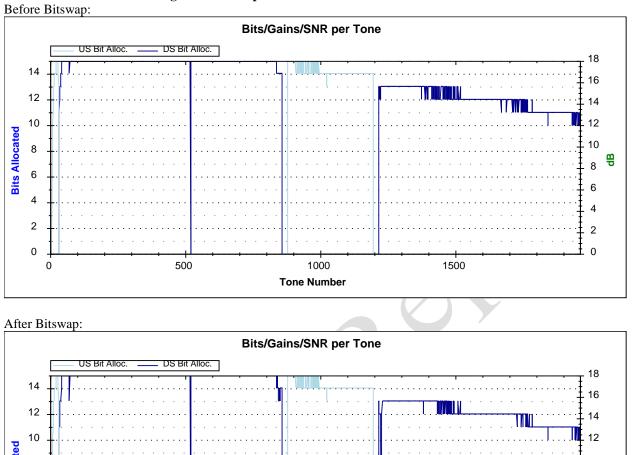



Figure 4: Bitswap Downstream Interleaved Profile DS2

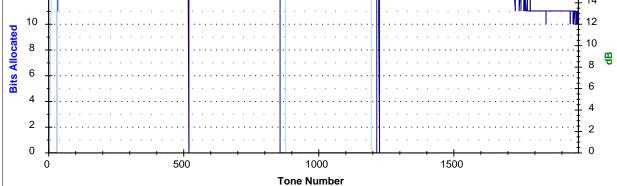
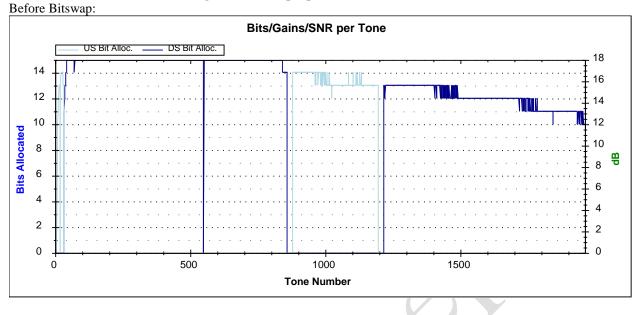
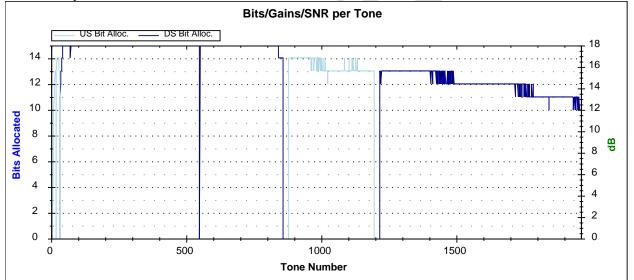
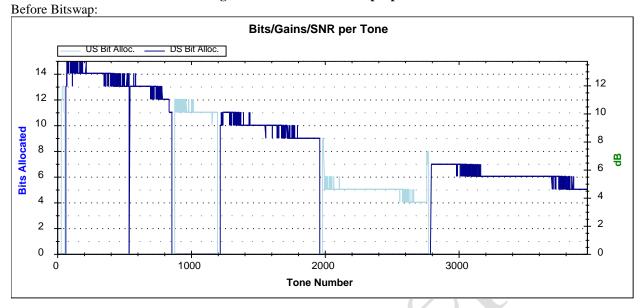




Figure 5: Bitswap Upstream Fast Profile US0

After Bitswap:



Test 5.4.2 Wideband Bitswap Test

Test Number and Label	Result
5.4.2 –Wideband Bitswap Test	PASS
Purpose: The purpose of this test is to verify that the link between a VTU-R and	l VTU-O stays in show-
time and that bit-swapping occurs as a result of wideband noise on a line.	
Downstream wideband bit swap:	
Number of CRC errors reported (integer)	0
Upstream wide band bit swap:	
Number of CRC errors reported (integer)	0
Test Metrics:	
1. No retrains during the test	PASS
2. BITSpsds_New recorded in MOP(10) SHALL differ from the bit allocation,	
BITSpsds_Old, in MOP(3), with band DS1 showing a decreased number of	PASS
bits, and band DS2 showing an increased number of bits.	
3. BITSpsus_New recorded in MOP(10) SHALL differ from BITSpsus_Old	
in MOP(3), with band US1 showing an decreased number of bits, and band	PASS
US2 showing a increased number of bits.	
4. The number of measured CRC's during the measurement period in	PASS
MOP(11) SHALL be ≤ 1	1100
Notes about test implementation:	
1. To save space within the report, the values of BITSpsus and BITSpsds are no	t reported above.
Comments on Test Results:	
None.	

Figure 6: Wideband Bit Swap Upstream

After Bitswap:

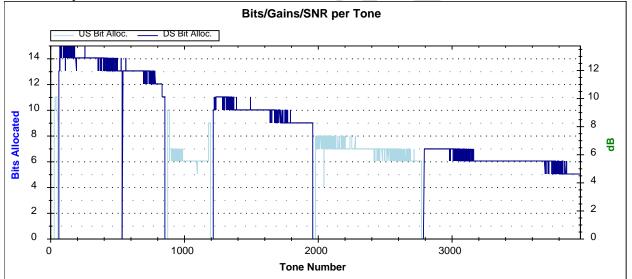
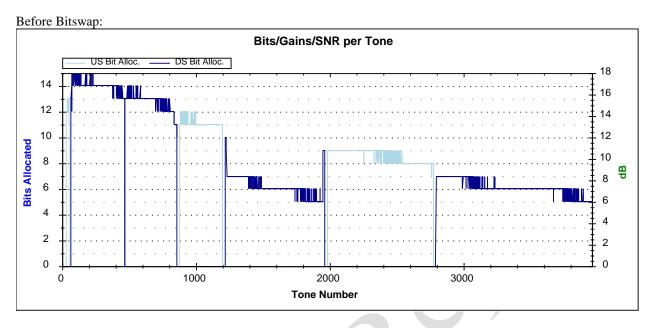
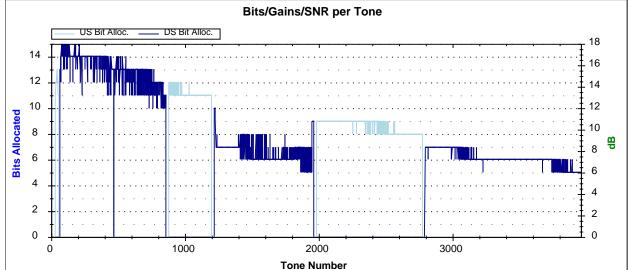




Figure 7: Wideband Bit Swap Downstream

After Bitswap:

st 5.4.3 Seamless Rate Ad		nal)		
Test Number and Labo				Result
5.4.3 –Seamless Rate A				PASS
Purpose: The purpose of	· · · · · · · · · · · · · · · · · · ·	he functionality of S	SRA.	
Results for Downshift	case:		1	
	Upstr		Downs	
	Before SRA	After SRA	Before SRA	After SRA
Bit Rate (kbps)	10000	9000	40000	38000
Noise Margin (dBm)	6	5	6.1	4.5
CRC count (integer)	0		()
Estimated BER	0	1	()
Results for Upshift cas	e:			
	Upstr	eam	Downs	stream
	Before SRA	After SRA	Before SRA	After SRA
Bit Rate (kbps)	10000	11000	40000	41000
Noise Margin (db)	6.2	7	6.5	7.8
CRC count (integer)	0)
Estimated BER	0)
Test Metrics:				
1. No retrain SHALL oc	cur during the test			PASS
2. No DS SES SHALL b	be reported.			PASS
3. BER should not excee	ed 1e-7			PASS
4. Upshift case: After SI	RA, Noise Margin ≤ 86	lb		PASS
5. Downshift case: After	SRA Noise Margin≥	4db		PASS
6. Upshift case: After SI	PASS			
7. Downshift case: After	PASS			
Notes about test implement	mentation:			
1. To save space within	the report, the values	of bi map and gi ma	p are not reported abo	ove.
Comments on Test Res	sults:			
None				

Test 5.4.3 Seamless Rate Adaptation Test (Optional)

University of New Hampshire InterOperability Laboratory

10

21

Test 5.4.4 SOS Test (Optional)

Test Numbe	Test Number and Label Result								
5.4.4 – SOS	5.4.4 – SOS Test (Optional) PASS								
Purpose: The purpose of this test is to verify that the optional OLR mechanism SOS is implemented									
according to	according to the directions of Amendment 3 of ITU-T G.993.2. The test SHALL apply to the SOS								
functionality	with enabled	ROC (robust	overhead chan	nnel).					
Results:	Results:								
	Upstream Downstream								
Noise	REINIT	NDR_Beg	NDR_End	Noise	REINIT	NDR	L_Beg	NDR_End	
-130	5000	6000	4500	-130	18000	21	000	15000	
Test Metric	s:					•			
1. No retrain	SHALL occu	ir during the t	est, after enabl	ling SOS func	ction.			PASS	
2. NDR_SO	S_BEG_DS >	MIN-SOS-B	R-ds					PASS	
3. NDR_SO	S_END_DS >	0.8*NDR_R	EINIT_DS					PASS	
Notes about	Notes about test implementation:								
1. For the following test configuration, the MIN-SOS-BR is configured to be greater than Min-NDR.									
Comments	Comments on Test Results:								
None									

University of New Hampshire InterOperability Laboratory

22

Test 5.4.5 Bitswap to Zero-Bit-Loading Test

Test Number and Label					Result		
5.4.5 –Bitswap to Zero-Bit-Loading Test					PASS		
Purpose: This test injects noise (a single frequency sine wave) on a specific tone and verifies that bit swap							
functions lower t	the bit loading on	the affected tone to a	zero bits as the in	jected noise is inc	creased.		
Results:							
	Upstream			Downstream			
N-Tone	N-Bits	ACTNDR-us	N-Tone N-Bits ACTNDR-ds				
14	13	5000	90	14	20000		
Test Metrics:				• •			
1. No retrain SH	1. No retrain SHALL occur during the test. PASS						
2. The number of bits assigned to the affected tone before MOP(12) SHALL equal					PASS		
Zero.					1100		
Notes about test implementation:							
None.							
Comments on Test Results:							
None							

University of New Hampshire InterOperability Laboratory 23

Figure 11: Bitswap to Zero-Bit-Loading Upstream

Before Bitswap:	0	
Derore Dito (cap)		Figures omitted in sample report.
After Bitswap:		i guies onnueu în sumple report.
The Diswap.		Figures omitted in sample report.

University of New Hampshire InterOperability Laboratory 24

Broadband Forum TR-115 (TR115) v. 2.0 DSLTech VTU-68 (IOL ID: 00001)

Figure 12: Bitswap to Zero-Bit-Loading Downstream

Figures omitted in sample report.

After Bitswap:

Before Bitswap:

Figures omitted in sample report.

University of New Hampshire InterOperability Laboratory 25

Test 5.5 Loop Diagnostic Mode Test

Test Number a	nd Label			Result	
5.5 – Loop Dia	gnostic Mode Test			PASS	
	ourpose of this test is to v				
	e is intended to identify				
	e modems SHALL retur	n to L3 state after compl	letion of the Loop Diagr	nostic mode.	
Results:	1				
	Diagnostic Requ	sted by VTU-R			
	Upstream	Downstream	Upstream	Downstream	
LATN	16 dB	15 dB	16 dB	15 dB	
SATN	13 dB	15 dB	13 dB	15 dB	
SNRM	6.2 dB	6.3 dB	6.2 dB	6.3 dB	
ATTNDR	15000 kbps	55000	15000 kbps	55000	
ACTATP	9.5 dBm	12 dBm	9.5 dBm	12 dBm	
Test Metrics:					
	rns to the L3 state			PASS	
	ration parameter LDSF s			PASS	
	ents for the line diagnos				
	attenuation per band (S			PASS	
	pply within the specified	l ranges as specified in S	Section 7.5.1.9/10,	I Abb	
	7.5.1.14/17 of G.997.1.				
	ents for the line diagnos			PASS	
	l Actual aggregate transr				
	s as specified in Section				
	ents for the linear chann				
	tation scale (HLINSC), §			PASS	
	scale for Hlin(f) (HLIN		cified ranges as	1 A66	
	tion 7.5.1.26.1-3 and 7.5				
	ents for the logarithmic				
	ment time (HLOGMT),			PASS	
	Hlog(f) (HLOGps) app		anges as specified in		
	5.4-6 and 7.5.1.26.10-12				
	ents for the Quiet line no				
	, group size (QLNG) and			PASS	
	in Section 7.5.1.27.1-				
3 and 7.5.1.27.4					
	ents for the Signal-to-no				
time (SNRMT), group size (SNRG) and an array of real values in dB for SNR(f)				PASS	
(SNRps) apply within the specified ranges as specified in Section 7.5.1.28.1-3 and					
7.5.1.28.4-6 of					
	st implementation:	1 (111 12/20 12 12			
	e within the report, the y			, HLOGG,	
	MT, QLNG, QLNps, SN	KMI, SNKG, SNKps a	re not reported above.		
Comments on	Test Results:				
None					

10

Test Number and Label		Result
5.6 – VTU-R Inventory Test		PASS
Purpose: The purpose of this to	est is to verify that the VTU-R invento	ry formatting is correct according t
	information contained within the field	
*	ided by the equipment supplier to the t	est lab.
Results:		
	Provided	Reported
VTU-R Vendor ID	BB99'ABCD'7777	BB99'ABCD'7777
VTU-R System Vendor ID	BB99'ABCD'7777	BB99'ABCD'7777
VTU-R Version Number	V145TB	V145TB
VTU-R Serial Number	ABCD12345	ABCD12345
Test Metrics:		
	as specified in Section 7.4.2/G.997.1	
	e (2 octets) is correct for the country of	
the VTU-R VDSL2 C		PASS
	e (vendor identification) (4 octets) cor	rectly identifies
the vendor of the VDS		
	s correct as specified in Section 7.4.4/0	
	e (2 octets) is correct for the country of	f the system
integrator (VTU-R ver		PASS
	e (vendor identification) (4 octets) cor	rectly identifies
VTU-R vendor.		
	be different from the Vendor ID.	
	orrect as specified in Section 7.4.6/G.9	
	firmware version and the VTU-R mo	DASS
	this order and separated by a space ch	haracter, i.e.
	ersion> <vtu-r model="">".</vtu-r>	5.4
	rect as specified in Section 7.4.8/G.99	
	ent serial number, the equipment mod	
	ersion. All SHALL be encoded in this	
	aracters, i.e. " <equipment number<="" serial="" td=""><td>er> <equipment< td=""></equipment<></td></equipment>	er> <equipment< td=""></equipment<>
model> <equipment fi<="" td=""><td></td><td></td></equipment>		
Notes about test implementat	ion:	
None Comments on Test Results:		

University of New Hampshire InterOperability Laboratory

27

Test 5.7.1 PSD Mask Test

Test Number and Label		Result	
5.7.1 – PSD Mask Test	PASS		
Purpose: The purpose of this test is to verify tha mask in Showtime does not exceed the mask set f both the passband and stopband frequencies.		1 1 • • •	,
Results:			
Measurement	Value	Measurement Frequency	
1. Power Spectral Density (0dB @ 1MHz)	See plot	10 kHz to 35 MHz	
2. Power Spectral Density (5dB @ 1MHz)	See plot		
3. Power Spectral Density (10dB @ 1MHz)	See plot		
4. Power Spectral Density (15dB @ 1MHz)	See plot		
5. Power Spectral Density (20dB @ 1MHz)	See plot		
Test Metrics:			
1. Measured PSD mask SHALL comply with the 7.2.3/G.993.2 and SHALL not exceed the Limit F			
Notes about test implementation:			
1. The UNH-IOL has implemented a more advance transceiver, without the need of disconnecting the found at the website.			
Comments on Test Results:			
None			

Figure 8: Measured Power Spectral Density with 0dB @ 1MHz loop Figures omitted in sample report.

University of New Hampshire InterOperability Laboratory 29

Figure 9: Measured Power Spectral Density with 5dB @ 1MHz loop Figures omitted in sample report.

University of New Hampshire InterOperability Laboratory 30

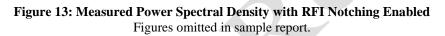
Figure 10: Measured Power Spectral Density with 10dB @ **1MHz loop** Figures omitted in sample report.

University of New Hampshire InterOperability Laboratory 31

Figure 11: Measured Power Spectral Density with 15dB @ **1MHz loop** Figures omitted in sample report.

University of New Hampshire InterOperability Laboratory 32

Figure 12: Measured Power Spectral Density with 20dB @ **1MHz loop** Figures omitted in sample report.


University of New Hampshire InterOperability Laboratory 33

Test 5.7.2 Total ATP Test

Test Number and Label			Result		
5.7.2 – Total ATP Test	PASS				
Purpose: The purpose of this test is to verify that the DUT aggregate transmit power over the entire band falls under the limit specified in the relevant annex of G.993.2					
Results:	-				
Measurement	Value	Measurement Fr	equency		
1. Aggregate Transmit Power (0dB @ 1MHz)	9 dBm	10 kHz to 35 MHz	Z		
2. Aggregate Transmit Power (5dB @ 1MHz)	9 dBm				
3. Aggregate Transmit Power (10dB @ 1MHz)	9 dBm				
4. Aggregate Transmit Power (15dB @ 1MHz)	9 dBm				
5. Aggregate Transmit Power (20dB @ 1MHz)	9 dBm				
Test Metrics:					
1. Measured aggregate transmit power SHALL not exceed the maximum aggregate downstream/upstream transmit power specified in Table 6-1/G.993.2. PASS					
Notes about test implementation:					
1. The ATP measurement is accomplished by integrating the PSD measurement over the frequency bands used for transmission by the transceiver.					
Comments on Test Results:					
None					

Test 5.7.3 RFI Notch Configuration Test

Test Number and Label			Result		
5.7.3 – RFI Notch Configuration Te	PASS				
Purpose: The purpose of this test is t	o verify the ability of VDSL2	transmitters to reduce	the PSD of the		
transmitted signal to a level below -80					
example list of frequency bands is sho	own in Table 30. The data is s	ourced from ITU-T G.9	93.2 and T-		
Systems. First two RFI notches are in	line with the specification from	om TR-100 (section A.1	and B.3.7).		
Results:					
Test Metric	Value	Measurement Freque	ncy		
1. Power Spectral Density	See plot	10 KHZ TO 3	35 MHZ		
2. Aggregate Transmit Power	9 dBm				
Test Metrics:					
1. Measured PSD mask SHALL comp	bly with the requirements from	n Section 7.2.3/G.993.2	PASS		
and SHALL not exceed the Limit PSD mask (LIMITMASK).					
Notes about test implementation:					
1. The UNH-IOL has implemented a more advanced method of measuring the spectrum of an active DSL					
transceiver, without the need of disconnecting the transceiver from the loop. Further information can be					
found at the website.					
Comments on Test Results:					
None					

University of New Hampshire InterOperability Laboratory 35

Test Number and Lab	el			Result
5.7.4 – Downstream P	ower Back-off Test			PASS
		fy the modified VTU-O tra parameters and procedure d		
Results:				
Measurements		Value	Measurement Fre	equency
DPBOESEL 10dB	PSD	See plot	10 kHz to 30 MHz	
DFDUESEL IUUD	ATP	14 dBm		
DPBOESEL 20dB	PSD	See plot		
DFBUESEL 200B	ATP	13 dBm		
DPBOESEL 30dB	PSD	See plot		
Dr DOESEL JOUD	ATP	12 dBm		
DPBOESEL 40dB	PSD	See plot		
DI DOESEE 400D	ATP	13 dBm		
DPBOESEL 50dB	PSD	See plot		
DI DOESEE JOUD	ATP	14 dBm		
DPBOESEL 60dB	PSD	See plot		
DI DOESEE 000D	ATP	14 dBm		
Test Metrics:				
		th the requirements from S the resultant mask (RESUI		PASS
2. VTU-O and VTU-R SHALL synchronize in all tested configurations.			S.	PASS
Notes about test imple	ementation:			
1. The UNH-IOL has in	nplemented a more a	advanced method of measu		
transceiver, without the	need of disconnecti	ng the transceiver from the	loop. Further inform	ation can be
found at the website.				
Comments on Test Re	sults:			
None				

University of New Hampshire InterOperability Laboratory

36

Figure 14: Measured Power Spectral Density with DPBOSEL = 10dB Figures omitted in sample report.

University of New Hampshire InterOperability Laboratory 37

Figure 15: Measured Power Spectral Density with DPBOSEL = 20dB Figures omitted in sample report.

University of New Hampshire InterOperability Laboratory 38

Figure 16: Measured Power Spectral Density with DPBOSEL = 30dB Figures omitted in sample report.

University of New Hampshire InterOperability Laboratory 39

Figure 17: Measured Power Spectral Density with DPBOSEL = 40dB Figures omitted in sample report.

University of New Hampshire InterOperability Laboratory 40

Figure 18: Measured Power Spectral Density with DPBOSEL = 50dB Figures omitted in sample report.

University of New Hampshire InterOperability Laboratory 41

Figure 19: Measured Power Spectral Density with DPBOSEL = 60dB Figures omitted in sample report.

University of New Hampshire InterOperability Laboratory 42

5.7.5 – Upstream Pov	ver Back-off Test			PASS
	e of this test is to verify that the ented correctly according to the			
	nit signal in Showtime is adapted			
	hile remaining below the transn			
	lization and within the limit imp			
Results:		· · ·		
Measurements		Value	Measur Freque	
	PSD	See plot		to 30 MHz
0dB @ 1 MHz	ATP	-20 dBm		
	Reported Estimated kl0		_	
	PSD	See plot		
10dB @ 1 MHz	ATP	-18 dBm		
	Reported Estimated kl0			
	PSD	See plot		
20dB @ 1 MHz	ATP	-3 dBm		
	Reported Estimated kl0			
20dB @ 1 MHz	PSD	See plot		
kl0 = 15db	ATP	-11 dBm		
Test Metrics:				
	k SHALL comply with the requestion SHALL not exceed the reference			PASS
	SHALL synchronize in all test			PASS
Notes about test impl		0		
	implemented a more advanced n	nethod of measuring the	he spectrum	of an active I
	e need of disconnecting the tran			
found at the website.		1		

43

Figure 20: Measured Power Spectral Density with 0dB @ 1MHz loop and estimated kl0 Figures omitted in sample report.

University of New Hampshire InterOperability Laboratory 44

Figure 21: Measured Power Spectral Density with 10dB @ 1MHz loop and estimated kl0 Figures omitted in sample report.

University of New Hampshire InterOperability Laboratory 45

Figure 22: Measured Power Spectral Density with 20dB @ 1MHz loop and estimated kl0 Figures omitted in sample report.

University of New Hampshire InterOperability Laboratory 46

Figure 23: Measured Power Spectral Density with 20dB @ **1MHz loop and kl0 = 15dB** Figures omitted in sample report.

University of New Hampshire InterOperability Laboratory 47

Test 5.8 Longitudinal Conversion Loss Test

Test Number and Label			Result
5.8 – Longitudinal Conversion Loss Te	est		PASS
Purpose: The purpose of this test is to v requirement specified in Broadband Ford		gitudinal conversion loss of the I	OUT meets the
Results:			
Measurements	Value	Measurement Freque	ency
Longitudinal balance	See plot	10 kHz to 30 MHz	
Test Metrics:			
1. Longitudinal Conversion Loss > 38 dI 20*log10(f/12MHz) for f > 12MHz	3 for f < 12 MHz,	and $> 38 dB -$	PASS
Notes about test implementation:			
None			
Comments on Test Results:			
None			

Figure 24: Measured Longitudinal Balance Figures omitted in sample report.

University of New Hampshire InterOperability Laboratory

48

Test 5.9 VTU-R INM

lest Nu	mber and La	ıbel				Result
Fest 5.9	- VTU-R INN	N				PASS
control a	and configurat 11.2.3.13, 11	tion INM paramet	ers are implement		ng (INM) function and a ng to the directions of th (.3.1.9).	
Results	:					
		VTU-O			VTU-R	
TEST	INPEQ - LFE	INMME - LFE	INMIAT – LFE	INPEQ -LFE	INMME - LFE	INMIAT – LFE
1	1	9	1	NA	NA	NA
2	2	8	2	1	9	1
3	3	7	3	2	8	2
4	4	6	4	3	7	3
5	5	5	5	4	6	4
6	6	4	6	5	5	5
7	7	3	7	6	4	6
8	8	2	8	7	3	7
9	9	1	9	8	2	8
10	0	0	0	9	1	9
11	1	9	3	0	0	0
12	2	8	2	1	3	1
fest Me	etrics:					
. No lo	ss of synchron	nization SHALL of	occur during the ap	plication of the test i	impulses.	PASS
				2117-LFE and INM be > 200000 and < 40	IAT07-LFE SHALL	PASS
. The ii	ncrease of the	the INMME-LFE		MOP(4) and MOP(6		PASS
4. The in MOP(6) ⊦1/-0 on	ncrease of the SHALL be end one of the bi	event count in the qual to the expect	e INMINPEQ117 ed result in Sectio mitted to allow fo	LFE histogram betw ns 5.9.1 to 5.9.7 for e	ween MOP(4) and each test. A tolerance of e events occurring in the	
5. The in or each -1/-0 or	ncrease of the test SHALL	event count in the equal to the expect ns SHALL be per	e INMIAT07-LF	in Sections 5.9.1 to 5	MOP(4) and MOP(6) 5.9.7. A tolerance of e events occurring in the	PASS
5. For T MOP(8) SHALL	est sequence# SHALL be e be permitted	1, the recorded va qual to the values to allow for unex	recorded in MOP pected impulse eve		1/-0 on one of the bins test environment during	PASS
lotes al lone.		lementation:				

10

Sequence 1

				1	Test S	equen	ce #1]	INMIN	NPEQ	Histog	gram						
Bin	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Initial																	
Final																	
Difference																	
Metric		25			25		0		25		0		25		0	0	25

		r	Fest Sequence	e #1 INMIAT	T Histogram			
Bin	0	1	2	3	4	5	6	7
Initial								
Final								
Difference								
Metric	0	0	0	0	0	0	0	125

Sequence 2

	Test Sequence #2 INMINPEQ Histogram																
Bin	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Initial																	
Final																	
Difference									X								
Metric	0		30		0		30		0		30		0		30		0

		r	Fest Sequence	e #2 INMIAT	T Histogram			
Bin	0	1	2	3	4	5	6	7
Initial								
Final								
Difference								
Metric	0	0	0	0	0	0	0	120

Sequence 3

					Test S	Sequer	nce #3	INMI	NPEQ	Histo	gram						
Bin	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Initial																	
Final																	
Difference																	
Metric	ric $240-2*q$ $q (q<=30)$			0)	0	0	0	0	0	0	0	0	0	0	0		

			Test Sequence	ce #3 INMIA	T Histogram			
Bin	0	1	2	3	4	5	6	7
Initial								
Final								
Difference								
Metric	30)-q	30	0	30	0	30	120

University of New Hampshire InterOperability Laboratory

DSL Consortium Report Revision 1.0

50

Sequence 4

	Test Sequence #4 INMINPEQ Histogram																
Bin	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Initial																	
Final																	
Difference																	
Metric		240		0	0	0	0	0	0	0	0	0	0	0	0	0	0

								1
			Test Sequen	ce #4 INMIA	T Histogram			
Bin	0	1	2	3	4	5	6	7
Initial								
Final								
Difference								
Metric	0	30	0	30	0	30	0	150

Sequence 5

	Test Sequence #5 INMINPEQ Histogram																
Bin	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Initial																	
Final																	
Difference																	
Metric		240		0	0	0	0	0	0	-0	0	0	0	0	0	0	0

			Test Sequen	ce #5 INMIA	T Histogram			
Bin	0	1	2	3	4	5	6	7
Initial								
Final								
Difference								
Metric	30	0	30	0	30	0	30	120

Sequence 6

					Test S	Sequer	nce #6	INMI	NPEQ	Histo	gram						
Bin	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Initial																	
Final																	
Difference																	
Metric		240		0	0	0	0	0	0	0	0	0	0	0	0	0	0

			Test Sequen	ce #6 INMIA	T Histogram			
Bin	0	1	2	3	4	5	6	7
Initial								
Final								
Difference								
Metric	0	30	0	30	0	30	0	150

University of New Hampshire InterOperability Laboratory

DSL Consortium Report Revision 1.0

51

Sequence 7

					Test S	Sequer	nce #7	INMI	NPEQ	Histo	gram						
Bin	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Initial																	
Final																	
Difference																	
Metric		240		0	0	0	0	0	0	0	0	0	0	0	0	0	0

			Test Sequence	ce #7 INMIA	T Histogram			
Bin	0	1	2	3	4	5	6	7
Initial								
Final								
Difference								
Metric	30	0	30	0	30	0	30	120

Sequence 8

					Test S	Sequer	nce #8	INMI	NPEQ	Histo	gram						
Bin	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Initial																	
Final																	
Difference																	
Metric		240		0	0	0	0	0	0	-0	0	0	0	0	0	0	0

			Test Sequence	ce #8 INMIA	T Histogram			
Bin	0	1	2	3	4	5	6	7
Initial								
Final								
Difference								
Metric	0	30	0	30	0	30	0	150

Sequence 9

					Test S	Sequer	nce #9	INMI	NPEQ	Histo	gram						
Bin	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Initial																	
Final																	
Difference																	
Metric		240		0	0	0	0	0	0	0	0	0	0	0	0	0	0

			Test Sequen	ce #9 INMIA	T Histogram			
Bin	0	1	2	3	4	5	6	7
Initial								
Final								
Difference								
Metric	30	0	30	0	30	0	30	120

University of New Hampshire InterOperability Laboratory

DSL Consortium Report Revision 1.0

52

Sequence 10

					Test S	equen	ce #10	INMI	NPEQ) Histo	gram						
Bin	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Initial																	
Final																	
Difference																	
Metric		240		0	0	0	0	0	0	0	0	0	0	0	0	0	0

								1
			Fest Sequence	e #310 INML	AT Histogram	1		
Bin	0	1	2	3	4	5	6	7
Initial								
Final								
Difference								
Metric	0	30	0	30	0	30	0	150

Sequence 11

					Test S	equen	ce #11	INM	INPEQ) Histo	ogram						
Bin	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Initial																	
Final																	
Difference																	
Metric	0	0		120	•	0	0		60		0	0	0	0	0	0	0

	Test Sequence #11 INMIAT Histogram								
Bin	0	1	2	3	4	5	6	7	
Initial									
Final									
Difference									
Metric	0	0	60	0	0	0	0	120	

Sequence 12

					Test S	equen	ce #12	INMI	INPEQ) Histo	ogram						
Bin	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Initial																	
Final																	
Difference																	
Metric		120		0	0	0	0	0	0	0	0	0	0	0	0	0	60

			Test Sequenc	e #12 INMIA	AT Histogram			
Bin	0	1	2	3	4	5	6	7
Initial								
Final								
Difference								
Metric	0	0	0	60	0	0	0	120

University of New Hampshire InterOperability Laboratory

Test 5.10 Dying Gasp Test

Test Number and Label		Result
Test 5.10- Dying Gasp Test		PASS
Purpose: The purpose of this test is to verify that Far-End Loss-of-Power occurrence of a FE-LPR primitive followed by contiguous near-end LOS of		
Results:		
State of System	LPR-F	E failure Bit State
1.After first initialization		1
2. After CPE power is Disconnected		2
3. After Power is restored to CPE		3
4. After Loop is disconnected		4
Test Metrics:		
1. No LPR-FE failure is present at states 1,3 and 4		PASS
2. LPR-FE failure is declared by the VTU-O at state 2		PASS
Notes about test implementation:		
The noise in applied to VTU-R and VTU-O at the same time		
Comments on Test Results:		
None		

University of New Hampshire InterOperability Laboratory 54

Section 6 – System Level Test Test 6.1 64/65-Octet Encapsulation Far-End PTM-TC Performance Monitoring Test

Test Number and	Label		Result
6.1 – 64/65-Octet	Encapsulation Far-End PTM-T	C Performance Monitoring Test	PASS
Purpose: The put	pose of this test is to verify that th	ne access node and CPE use the IEEE802	2.3 Clauses 30,
		ode of the 64/65-Octet Encapsulation Far	-End PTM-TC
Performance Mon	toring counters.		
Results:			
	Initial Counter	Final Counter	
CRC-PFE	0	15	
CV-PFE	0	14	
Test Metrics:			
1. The VTU-R SH	ALL not lose sync with the VTU-	O during the test	PASS
		Q-interface (i.e., at the Access Node)	
	Clause 30 OAM counters:		PASS
a. CRC-PFI	E: Downstream TCCRCErrors cou	inter (32-bit)	1 A55
	Downstream TCCodingViolation		
		ed before and after errors are induced	
		CodingViolations counter changes	
		CRCErrors counter MAY or MAY not	PASS
	on the impact of the errors induce	ed on the received 64/65-octet	
encapsulation synt			
Notes about test i	mplementation:		
None			
Comments on Te	st Results:		
None			

University of New Hampshire
InterOperability Laboratory

55

Section 7 – Testing G.ploam Configuration Parameters and Performance Monitoring Counters

Test 7.1 Configuration Parameter MINSNRM

Test Number a	nd Label			Result
7.1 – Configura	ation Parameter I	MINSNRM		PASS
			TU-R and VTU-O is dropped when	the power of
white noise is in	ncreased by 6 dBm	l.		
Results:				
MINSNRM	TRGTSNRM	Upstream	Downstream	Retrain
IVITINGININI	INGISINNI	Initial SNRM	Initial SNRM	Observed
5	9	9.2	9.8	YES
8	12	12.4	12.1	YES
Test Metrics:				
For all SNRM t	est conditions, the	modem must retrain after the pow	ver of noise is increased by 6dBm	PASS
Notes about tes	st implementatior	1:		
The noise in ap	plied to VTU-R an	d VTU-O at the same time		
Comments on	Test Results:			
None				

University of New Hampshire InterOperability Laboratory 56

Test 7.2 Configuration Parameter TARSNRM

Test Number and	d Label			Result
7.2 – Configurat	ion Parameter TARS	NRM		PASS
Purpose: The pu SNR≥TARSNR –	1	verify that a link betw	veen VTU-R and VTU-	O is established only if
Results:				
Iteration	Ups	tream	Dow	vnstream
Iteration	Target SNR	Recorded SNR	Target SNR	Recorded SNR
1	6	12	6	22
2	6	12	6	22
3	6	12	6	22
Test Metrics:				
1. For Region A:	Each reported SNR m	argin SHALL be \geq (T	ARSNRM – 2 dB).	PASS
2. For Region B:	Each reported SNR ma	argin SHALL be \geq (T	ARSNRM – 1 dB).	PASS
Notes about test	implementation:			
None				
Comments on Te	est Results:			
None				

University of New Hampshire InterOperability Laboratory

Test 7.3 PSD Mask Test

Test Number and Label			Result
7.3 – PSD Mask Test			PASS
Purpose: The purpose of this test is to verify that t MIBMASK and LMITMASK mask in the relevant			the
Results:			
Test Metric	Value	Measurement Freque	ency
1. PSD shall not exceed MIBMASK	See plot	10 kHz to 30 MHz	
2. PSD shall not exceed the LMITMASK	See plot		
Test Metrics:			
1. Measured PSD SHALL NOT exceed the MIB P mask (LMITMASK), and SHALL comply with the 7.2.3/G.993.2.			PASS
Notes about test implementation:			
None			
Comments on Test Results:			
None			
-			

Figure 25: Measured Power Spectral Density Figures omitted in sample report.

University of New Hampshire InterOperability Laboratory 59

Test 7.4 VDSL2 CARMASK Test

Test Number and Label	Result
7.4 – VDSL2-CARMASK Test	PASS
Purpose: The purpose of this test is to verify that the bits of disabled subcarriers are set to	zero
Results:	
See Plot.	
Test Metrics:	
The reported bits of disabled subcarriers BITSpsds and BITSpsus SHALL be set to 0.	PASS
Comments on Test Results	

University of New Hampshire InterOperability Laboratory

60

Figure 29: CARMASK

Figures omitted in sample report.

Upstream

Downstream:

Figures omitted in sample report.

University of New Hampshire InterOperability Laboratory

Test 7.5 MAXNOMATP Test

Test Number and Label					Result
7.5 – MAXNOMATP Test					PASS
Purpose: The purpose of this test falls under the limit specified in t			egate transmit p	ower over t	he entire band
Results:					
Measurement	Measured	VTU-O	Configured	Measure	ment Frequency
	Value	reported value	Value		
US Aggregate Transmit Power	5 dBm	5.1 dBm	5 dBm	10 kF	Iz to 30MHz
DS Aggregate Transmit Power	7 dBm	7.3 dBm	7 dBm	10 kF	Iz to 30MHz
Test Metrics:					
The measured power SHALL be	lower than M	AXNOMATP.			PASS
Notes about test implementation	n:				-
None					
Comments on Test Results					
None					

University of New Hampshire InterOperability Laboratory

62

	er and Label	for Code Vielations and E-	ared Seconds	Result PASS	
		for Code Violations and Error is test is to verify the performa			
	ne purpose of th Fast Profile:				
	rast 110mc.	Initial Value	Final Value	Change in Value	
	CV-C	0	15	15	
	CV-CFE	0	13	13	
	ES-L	0	12	12	
VTU-O	ES-LFE	0	12	12	
Side	SES-L	0	0	0	
Side	SES-LFE	0	0	0	
	UAS-L	10	10	0	
	UAS-LFE	10	10	0	
	CV-C	5000	5015	15	
VTU-R	ES-L	0	16	16	
Side	SES-L	0	0	0	
	UAS-L	0	0	0	
Results for	Interleaved Pro	ofile:			
US INP	DS INP	Initial Value	Final Value	Change in Value	
2	3		rinar value	Change III value	
	CV-C	0	15	15	
	CV-CFE	0	14	14	
	ES-L	0	12	12	
VTU-O	ES-LFE	0	12	12	
Side	SES-L	0 0		0	
	SES-LFE	0	0	0	
	UAS-L	10	10	0	
	UAS-LFE	10	10	0	
	CV-C	5000	5015	15	
VTU-R	ES-L	0	16	16	
Side	SES-L	0	0	0	
	UAS-L	0	0	0	
Fest Metric		1 11 1 1 1		The OC	
		n shall occur during the test.		PASS	
2. No increa eported.	se of SES-L, SE	S-LFE, UAS-L and UAS-LFE	at the VIU-U SHALL be	PASS	
	e no increase o	f SES-L and UAS-L at the VT	U_R SHALL be reported	PASS	
		inter at the VTU-R SHALL be		r'Abb	
	ase of CV-C cou		equal to the mercase of CV-	PASS	
		inter at the VTU-R, as well as	the increase of both CV-CFE		
		ΓU-O, SHALL be at least equa			
	terleaved profile				
		nter at the VTU-R SHALL be	equal to the increase of ES-L	FE	
counter at th				PASS	
		nter at the VTU-R, as well as t			
), SHALL be at least equal to 1	5 and \leq 35 for DS and \leq 32 (PASS	
	ed profile) for U				
	t test implemen	tation:			
None					
Comments	on Test Results	•			
None					

Test 7.6 Monitoring Counters for Code Violations and Errored Seconds

10

Test 7.7 Performance Monitoring Counter for SES

Test Numbe	er and Label						Result
7.7 – Perfor	mance Monito	ring Counter	for SES				PASS
Purpose: T	he purpose of th	is test is to ve	erify the perf	ormance mor	nitoring counter	s SES	
Results For	RA_F_150_15	0					
	Downstream Upstream				Upstream		
		Initial	Final	Change	Initial	Final	Change
	SES-L	0	0	0	0	20	20
VTU-O	SES-LFE	0	20	20	0	0	0
Side	UAS-L	0	0	0	0	0	0
	UAS-LFE	0	0	0	0	0	0
VTU-R	SES-L	0	20	20	0	0	0
Side	UAS-L	0	0	0	0	0	0
Results For	RA_I_150_150						
		Downstream Upstrean			Upstream		
		Initial	Final	Change	Initial	Final	Change
	SES-L	0	0	0	0	20	20
VTU-O	SES-LFE	0	20	20	0	0	0
Side	UAS-L	0	0	0	0	0	0
	UAS-LFE	0	0	0	0	0	0
VTU-R	SES-L	0	20	20	0	0	0
Side	UAS-L	0	0	0	0	0	0
Test Metric	:						
1. No loss of	1. No loss of synchronization SHALL occur during the test. PA						PASS
2. No increase of UAS-L and UAS-LFE at the VTU-O SHALL be reported.						PASS	
3. If availabl	e, no increase o	f and UAS-L	at the VTU-	R SHALL be	reported.		PASS
	4. The increase of SES-L counter at the VTU-R SHALL be equal to the increase of SES- LFE counter at the VTU-O. PASS						PASS
	ase of SES-L co e VTU-O, SHA						PASS
6. The increase of SES-L counter at the VTU-O SHALL be at least equal to 15 and less than 30(Upstream) PASS					PASS		
	test implemen	tation:				• •	
Test metric #5 from the TR-115 Functionality test plan was broken down into two parts, the upstream and							
	am for easier in					- 1	
Comments on Test Results:							
None		/					

10

Test 7.8 Performance Monitoring Counter for UAS

Test Number and Label					Result	
7.8 – Performance Monitoring Counter for Unavailable Seconds (UAS)					PASS	
Purpose: The purpose of this test is to verify the performance monitoring counters UAS						
Results:						
		Initial Value	Final Value	Change in Value	Disconnect + train up time	
VTU-O	UAS-L	0	100	100		
Side	UAS-LFE	0	100	100	100	
VTU-R Side	UAS-L	0	100	100		
Test Metri	ics:					
1. Change in UAS-L at the VTU-O SHALL not differ from the train up time by more than 10s.					PASS	
2. If available, change in UAS-L at the VTU-R SHALL not differ from the train up time by more than 10s.					PASS	
3. Change in UAS-LFE at the VTU-O SHALL not differ from the train up time by more than 14s.				PASS		
4. If available, change in UAS-L at the VTU-R SHALL not differ from the change of UAS-LFE at the VTU-O by more than 13s.				PASS		
Notes about test implementation:						
None						
Comments	s on Test Resi	ılts:				
None						

Test 7.9 Performance Monitoring Counters for Full initialization and Failed Full initialization

Test Number and Label	Result						
7.9 – Performance Monitoring initialization	PASS						
Purpose: The purpose of this tes	Purpose: The purpose of this test is to verify the performance monitoring counters FI and FFI						
Results:							
	Initial Value	Final Value	Change in Value				
Full initialization	0	30	20				
Failed full initialization	0	20	30				
Test Metric:							
1. The increase of the Full initialization count SHALL be equal to 5 or greater.							
2. The difference between the increase of Full initialization count and the increase of Failed full initialization count SHALL be equal to 5.							
3. The increase of the Failed Full initialization count Shall be equal to 5 or greater. PASS							
Notes about test implementation:							
None							
Comments on Test Results:							
None							

Test 7.10 Inhibition of Performance Monitoring Counters

Test Numb	er and Label						Result
7.10 – Inhibition of Performance Monitoring Counters							PASS
Purpose: The purpose of these tests is to verify that the inhibition and non-inhibition of some DSL							
performance counters (CV, ES, SES, LOSS) is implemented correctly according to Section							
7.2.7.13/G.9							
Results For RA_F_150_150							
		Initial	Tburst 2	Change1	Tburst 2	Single Interrupt	Change2
	CV-C	0	1	1	5	7	9
	CV-CFE	0	2	2	5	9	8
	ES-L	0	2	2	4	5	7
VTU-O	ES-LFE	0	3	3	5	1	6
Side	SES-L	0	5	5	4	3	5
Side	SES-LFE	0	6	6	8	2	4
	LOSS-L	0	7	7	9	8	3
	LOSS- LFE	0	8	8	6	4	2
	CV-C	0	9	9	2	9	1
VTU-R	ES-L	0	1	1	4	5	2
Side	SES-L	0	5	5	3	7	3
Side	LOSS-L	0	6	6	5	6	4
Results For	RA I 150 1	-					· · ·
		Single Interrupt	Tburst 15	Change3	1		
	CV-C	1	5	1			
	CV-CFE	2	3	2			
	ES-L	3	2	3			
VTU-O	ES-LFE	4	1	4			
Side	SES-L	5	2	5			
Side	SES-LFE	6	3	6			
	LOSS-L	4	4	7			
	LOSS- LFE	5	5	8			
VTU-R	CV-C	6	6	9			
	ES-L	7	7	1			
Side	SES-L	8	8	2			
	LOSS-L	9	9	3			
			Test Metric	on next Pag	e		

University of New Hampshire InterOperability Laboratory

67

Test Metric:	
1. VTU-R Change1 SES-L counter SHALL be ≥ 2 and ≤ 3 . If the increase of SES-L is 3,	
the increase of CV-C counter SHALL be ≤ 1 . If the increase of SES-L is 2, the increase of	PASS
the CV-C counter SHALL be $< 18 * 32 + 1$.	
2. VTU-R Change1 ES-L SHALL be ≥ 2 and ≤ 4 .	PASS
3. VTU-R Change2 LOSS-L SHALL be ≥ 1 and ≤ 2 .	PASS
4. VTU-R Change3 ES-L SHALL be ≤ 2 .	PASS
5. VTU-R Change3 SES-L and LOSS-L SHALL be equal to zero.	PASS
6. VTU-O Change1 SES-LFE SHALL be ≥ 2 and ≤ 3 . If the increase of SES-LFE is 3,	
the increase of CV-CFE SHALL be ≤ 1 . If the increase of SES-LFE is 2, the increase of	PASS
the CVE-CFE SHALL be $< 18 * 32 + 1$.	
7. VTU-O Change1 ES-LFE SHALL be ≥ 2 and ≤ 4 .	PASS
8. VTU-O Change2 LOSS-LFE SHALL be ≥ 1 and ≤ 2 .	PASS
9. VTU-O Change3 ES-LFE SHALL be ≤ 2 .	PASS
10. VTU-O Change3 SES-LFE and LOSS-LFE SHALL be equal to zero.	PASS
Notes about test implementation:	
None.	
Comments on Test Results:	
None	

University of New Hampshire InterOperability Laboratory

68

Annex A: Digital Signature Information

This document was created using an Adobe digital signature. A digital signature helps to ensure the authenticity of the document, but only in this digital format. For information on how to verify this document's integrity proceed to the following site:

http://www.iol.unh.edu/certifyDoc

If the document status still indicates "Validity of author NOT confirmed", then please contact the UNH-IOL to confirm the document's authenticity. To further validate the certificate integrity, Adobe 6.0 should report the following fingerprint information:

2015 Signature Information: MD5 Fingerprint: FF 91 7B BD 2E 1A 0E 24 16 A8 23 28 13 69 D0 72 SHA-1 Fingerprint: 0C 88 5A 63 08 51 9B E0 D1 96 59 62 5E B3 52 01 58 C9 AF 27

University of New Hampshire InterOperability Laboratory 69