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Abstract—Most network applications today are written to use
TCP/IP via sockets. Remote Direct Memory Access (RDMA) is
gaining popularity because its zero-copy, kernel-bypass features
provide a high throughput, low latency reliable transport. Unlike
TCP, which is a stream-oriented protocol, RDMA is a message-
oriented protocol, and the OFA verbs library for writing RDMA
application programs is more complex than the TCP sockets
interface. UNH EXS is one of several libraries designed to
give applications more convenient, high-level access to RDMA
features. Recent work has shown that RDMA is viable both in
the data center and over distance.

One potential bottleneck in libraries that use RDMA is the
requirement to wait for message advertisements in order to
send large zero-copy messages. By sending messages first to an
internal, hidden buffer and copying the message later, latency can
be reduced at the expense of higher CPU usage at the receiver.
This paper presents a communication algorithm that has been
implemented in the UNH EXS stream-oriented mode to allow
dynamic switching between sending transfers directly to user
memory and sending transfers indirectly via an internal, hidden
buffer depending on the state of the sender and receiver. Based
on preliminary results, we see that this algorithm performs well
under a variety of application requirements.

Keywords-RDMA; Reliable stream transport; Communication
algorithm;

I. INTRODUCTION

Traditionally, most network applications use TCP/IP. How-
ever, on high-speed networks, TCP/IP is inefficient due to
buffering and operating system involvement in data transfers.
Remote Direct Memory Access (RDMA) allows an application
developer to transfer data between user-space applications
running on different systems while bypassing the kernel as
well as the intermediate buffering involved in TCP/IP. RDMA
also directly exposes the queues used to request transfer
operations, allowing multiple transfers to be simultaneously
outstanding from the perspective of the application. The
OpenFabrics Alliance (OFA) [1] produces the OpenFabrics
Enterprise Distribution (OFED) [2], which consists of a low-
level transport- and vendor-independent API called “verbs” for
writing RDMA applications.

Due to the complexity of programming for verbs, most
application writers write their RDMA programs for an upper-
layer protocol such as MPI [3] or rsockets [4]. These protocols
attempt to hide the complexity of verbs, but in doing so, must
give up some of the benefits of RDMA. In particular, these

APIs are missing explicit registration of user I/O memory or
asynchronous I/O, both of which are necessary for efficient
zero-copy transfers.

The UNH EXS [5], [6], [7] library is an implementation of
the Extended Sockets API (ES-API) [8], a specification written
by the Open Group [9] that offers a sockets-like interface that
explicitly allows the user access to RDMA features such as
memory registration and asynchronous socket I/O. UNH EXS
offers both stream-oriented (SOCK STREAM) and message-
oriented (SOCK SEQPACKET) connected sockets, and was
not created with the goal of running unmodified sockets
applications, which simplifies the design considerably.

RDMA is gaining popularity among a wider audience of ap-
plication developers as they need higher levels of performance
than TCP/IP sockets can offer. However, due to the ubiquity of
the byte stream-oriented TCP/IP protocol, most applications
expect byte stream semantics. There are subtle differences
between stream-oriented and message-oriented transports that
make it difficult to simply port a program expecting byte
stream semantics to a message-oriented transport. In particular,
if a sender tries to send more bytes than the receiver is
expecting in a stream-oriented protocol, the sockets library
will split the message into chunks so that the receiver will still
get the entire message. However, a message-oriented protocol
such as UDP or RDMA will only send the part of the message
that fits into the receiver’s memory area. Thus, a naı̈ve attempt
to port a program may result in data loss.

Additionally, recent work has focused on using RDMA
over distance, which presents significant challenges [10].
Most importantly, increasing distance means that propagation
delay becomes orders of magnitude larger than the sum of
the other delay components. Direct data transfers using the
RDMA READ and RDMA WRITE operations require that
the application know the virtual address and remote key of
the remote user memory area. This is usually communicated
through small message “advertisement” messages sent before
big data transfers. This works well when an application reuses
I/O memory frequently or when the propagation delay is
insignificant. However, over distance, having to wait for an
advertisement in order to send a large message is impractical
due to the high latency. In this case, it is actually faster for
the receiver to copy from a static intermediate buffer than to
wait for the advertisements to be satisfied.



The problem we are attempting to solve is to design a
thread-safe algorithm that combines the zero-copy benefit
of RDMA with the fast send response benefit of TCP-style
buffering in a dynamic manner.

In this paper, we develop a byte stream protocol for UNH
EXS that combines copies from an intermediate buffer at the
receiver with direct data transfers using user advertisements.
This is intended to handle two cases: (i) when the sender
is ahead of the receiver, the sender will send directly into
the receiver’s intermediate buffer and the receiver will copy
from its intermediate buffer to user memory; (ii) otherwise, the
receiver is ahead of the sender, and the sender can match its
user data with user memory advertisements sent by the receiver
and send the data directly into the receiver’s advertised user
memory, bypassing the intermediate buffer. We expect that
case (i) is most frequent in current sockets applications due
to the synchronous nature of the sockets API, and case (ii)
will become more prevalent in future applications which will
be written with asynchronous and zero-copy I/O in mind. Our
goal is to adaptively handle both cases efficiently. Additionally,
this will also allow adapting to the current state of the network.

The contributions of this paper are: (i) design of an algo-
rithm to dynamically switch between buffered and zero-copy
transfers over RDMA, depending on current conditions; (ii)
proof of the correctness and safety of this algorithm; (iii)
implementation of this algorithm as part of the UNH EXS
library; (iv) demonstration and evaluation of the performance
of this implementation.

II. BACKGROUND

A. Related Work

We first examine other protocols that implement stream
semantics over RDMA. The Sockets Direct Protocol (SDP)
was included as an annex of the InfiniBand specification [11],
and represents the first attempt to implement a TCP-like stream
protocol over RDMA. The initial implementation of SDP,
referred to as BCopy mode, used buffer copies, similar to
BSD sockets. However, other implementers wrote a zero-copy
mode for SDP [12], [13]. The first of these, ZCopy mode
[12], did not allow multiple simultaneous send requests—the
send() call would block until the data was received. This
was to prevent the user from modifying the user memory
involved in a data transfer while the data transfer was in
progress. A later implementation, Asynchronous Zero-Copy
SDP (AZ-SDP) mode [13], allowed for multiple simultaneous
send requests. AZ-SDP uses the mprotect() call to force a
segmentation fault if the user modifies the contents of memory
that is part of an ongoing transfer, and either blocks the user
application or copies the data if the user changes the contents
of the memory area during a transfer operation. However, this
protection mechanism introduces an extra kernel call for every
data transfer operation, as well as the complexity of correctly
resuming the user application after the segmentation fault
handler completes. The added complexity is necessary because
SDP was intended to run unmodified sockets applications, and

these applications assume that they may reuse memory as soon
as the sockets library returns control to the application.

The newer rsockets protocol [4] attempts to solve the same
problem as SDP, but uses a different protocol. The current
goal of rsockets is parity with standard TCP-based sockets,
so that the rsend() and rrecv() calls are blocking and perform
buffer copies on both the send and receive side on all transfers.
However, the roadmap includes adding an asynchronous API
and zero-copy functionality as a set of extra functions on top
of rsockets.

Another approach for handling streams in RDMA is uS-
tream, described in [14]. The uStream protocol uses threads
to allow asynchronous send requests. However, it also uses
internal preregistered send and receive buffers, which means
that uStream is not truly zero-copy. It also requires two com-
munication channels—a data channel and a control channel.
This simplifies the data path but requires extra resources to
manage the connections.

In our previous work [15], we studied the performance im-
pact of various RDMA verbs programming techniques. Many
of the results from the study are applicable to UNH EXS.
In particular, using many simultaneous outstanding operations
is essential to achieving good performance for an RDMA
connection. Thus, any high-performance sockets replacement
for RDMA must be asynchronous and capable of queueing
many simultaneous transfer operations. UNH EXS also makes
use of the inline functionality of modern RDMA hardware for
small messages as well as the RDMA WRITE WITH IMM
operation, as recommended in the study.

B. Terminology

The RDMA verbs library provides two sets of transfer
operations via asynchronous verbs that post an operation onto
a send or receive queue. The SEND and RECV operations
provide familiar channel semantics, in which each SEND
matches a single RECV. However, a RECV operation must
be pending at the receiver before the sender may initiate a
SEND operation. This is because RDMA will not perform
an intermediate copy, so the HCA at the receiver must know
the location in memory to place the data at the time that
the data arrives. To satisfy this requirement, each side of an
RDMA connection will post n RECV transactions at startup,
prior to connection establishment. Each side then gives the
other n send credits. A sender consumes a credit whenever
it performs an action, such as SEND, that would consume a
RECV at the receiver. The receiver returns credits by periodic
acknowledgment (ACK) messages, which indicate that new
RECV transactions have been posted.

The other set of transfer operations provide memory seman-
tics. The RDMA WRITE operation allows a sender to place
data directly into a specified location in the receiver’s virtual
memory space. The receiver application is completely passive
and receives no notification that the operation has started or
completed. A similar RDMA READ operation works in the
opposite direction, but is not used in our solution.



UNH EXS uses the RDMA WRITE WITH IMM transfer
operation, which pushes the contents of a memory area directly
from user virtual memory at the sender to user virtual memory
at the receiver and then notifies the receiver (by consuming a
previously posted RECV transaction). This operation exists
in InfiniBand, RoCE, and newer versions of iWARP. The
operation can be simulated on older iWARP hardware by
following an RDMA WRITE with a small SEND. Hereafter,
we will refer to this RDMA operation simply as WWI.

UNH EXS provides an API in which almost all calls are
truly asynchronous. When the application requests an EXS
operation, the EXS library places a request onto a queue and
control immediately returns to the caller. When the operation
completes, the EXS library places an event onto an event queue
previously created by the user. The user then polls the event
queue for completions, and retrieves the status of the operation.

We consider two different types of WWI operations in the
context of the UNH EXS API. Specifically, this deals with
the ownership of the receiving destination memory area in
a WWI operation. A direct transfer transfers data directly to
memory registered and owned by the receiving application. An
indirect transfer transfers data to an intermediate buffer owned
by the intermediate receiving API, which is later copied to the
memory owned by the receiving application.

Also, in this paper, the term stream always refers to the
byte stream used by a stream-oriented network protocol such
as TCP. In a stream-oriented protocol, each transfer has a
sequence number marking its position in the byte stream. That
is, the sequence number of transfer x is the number of data
bytes sent on the connection prior to the start of transfer x.

C. Modes of Operation

UNH EXS connections currently operate in one of
two modes, message-oriented and stream-oriented. The
application requests message-oriented mode using the
SOCK SEQPACKET socket type in the exs socket() call.
Although not the focus of this paper, a summary of the
implementation of this mode will help the reader understand
the stream-oriented mode. The RDMA protocol for message-
oriented connections is simple. When the application calls
exs recv(), the EXS library at the receiver sends an adver-
tisement (ADVERT) to the EXS library at the sender with the
virtual memory address, length, and RDMA remote key of the
receiver’s memory area. When the user at the other end of the
connection calls exs send() and an ADVERT has reached the
EXS library at that end, the sender then posts an WWI request
with the data. The sender’s host channel adapter (HCA) then
transfers the data directly into the receiving user’s memory
with no intermediate copies. In low-latency networks, this
allows for very high throughput and little additional latency.

An application requests stream-oriented mode by using the
SOCK STREAM socket type in the exs socket() call. In the
initial release of UNH EXS, this mode only used direct trans-
fers. When using direct transfers, the difference between this
mode and the message-oriented mode is that if an exs send()
request is larger than the advertised exs recv() memory area

x, the EXS library at the sender will split the message between
memory area x and subsequent exs recv() calls. The stream-
oriented mode also supports the MSG WAITALL flag at the
receiver, indicating that the receiver should wait until the
user memory is full before signaling completion to the user.
UNH EXS implements this by adding a flag to the ADVERT,
such that if the length y of the exs send() request is smaller
than the advertised exs recv() memory area x, the sender
will keep the ADVERT at the head of its queue until the
sender has transferred all x bytes to the receiver via subsequent
exs send() calls.

III. PROPOSED SOLUTION

Waiting for ADVERTs can be inefficient, especially if the
sender is ready to send before any ADVERTs have arrived.
Thus, having a way to quickly send messages without waiting
for ADVERTs is essential for good performance. Therefore,
we added a “hidden” (in the EXS library) intermediate receive-
side buffer for stream-oriented connections. The ideal solution
will send messages “indirectly” to this intermediate buffer only
when absolutely necessary, in a manner that is transparent
to the user. In this paper, we describe the methods used to
dynamically choose between direct and indirect transfers in
the same connection, based on whether the sender or receiver
is currently “ahead.”

During an indirect transfer, the EXS library at the sender
sends data to the intermediate receive buffer, and the library
at the receiver then copies from this intermediate buffer to
user memory. The intermediate buffer is circular, and the
sender keeps a pointer to the next position in the intermediate
buffer to place data, while the receiver keeps a pointer to
the next position in the intermediate buffer to remove data.
Both sides keep track of the number of bytes currently
stored in the intermediate buffer, and the receiver periodically
sends acknowledgment packets as it removes data from the
intermediate buffer. The intermediate buffer reduces sender-
side latency at the cost of higher CPU usage on the receiver
due to the extra copies.

Because using only indirect transfers throws away one of
the primary benefits of using RDMA, which is zero-copy
semantics, we designed an algorithm to dynamically choose
between using the stream buffer or sending direct transfers if
an ADVERT reaches the sender before it is ready to send.

The motivations behind our approach are as follows. We
require that the EXS library deliver user data from the sender
to the receiver in order and with no errors. We also wish
to maintain as little extra state as possible. In particular, we
would like the sender and receiver to be as independent as
possible, and to make as few assumptions about the other side
as possible. This makes it easier to modify implementation
details at a later time. Finally, we would like the sender to use
direct transfers as frequently as possible; otherwise, the added
complexity produces no performance benefit.

Handling both direct and indirect transfers in the same
connection for a stream-oriented protocol that allows multiple
simultaneous asynchronous requests is nontrivial. The biggest
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Fig. 1. An indirect transfer crosses with multiple ADVERTs from the
receiver. The next WWI in the sequence could match the second or third
ADVERT, depending on how the indirect transfer gets matched at the receiver.
This illustrates the challenge of figuring out which ADVERT comes next in
sequence after an indirect transfer.

TABLE I
VARIABLES USED IN THIS PAPER AND THEIR ASSOCIATED MEANINGS.

Variable Meaning
br Full byte count of the intermediate buffer at the receiver
bs Intermediate buffer free byte count at the sender
ka Count of outstanding adverts from prior phase at receiver
kb Count of outstanding exs recv() with no advert at receiver
lc Length copied out of the intermediate buffer
lr Length given in a user’s exs recv() call
lw Length of a WWI operation
PA Phase number contained in ADVERT
Pr Phase number at receiver
Ps Phase number at sender
qA Queue of received ADVERTs at sender
SA Sequence number contained in ADVERT
Sr Sequence number at receiver
S′
r Next-expected sequence number to use in next advert
Ss Sequence number at sender

reason for this is the nature of byte streams. If the user
calls exs recv(fd, buf, len, . . . ) and there is data to receive,
UNH EXS will eventually place n bytes into buf, where
1 ≤ n ≤ len. That is, the receiver does not know the exact
number of bytes that will be received when the user requests
an exs recv() operation or when the EXS library sends an
ADVERT. Fig. 1 illustrates an issue when the sender uses
indirect transfers via the remote receive buffer.

Both the sender and the receiver keep track of their current
position in the stream, hereafter referred to as the sequence
number. Each ADVERT includes the expected sequence num-
ber of the corresponding exs recv(). For the first ADVERT in
a sequence, this should match the actual expected sequence
number. However, in subsequent ADVERTs in the sequence,
this expected sequence number will be an estimate, which
is 1 more than the previous ADVERT. As the receiver re-
ceives data, the receiver updates the estimated next-expected
sequence number used for future ADVERTs to reflect the
actual amount of data transferred.

The sender and receiver also keep track of a phase number,
where each phase represents a sequence of consecutive direct
or indirect transfers. This phase mechanism provides a “logical
time” similar to that provided by Lamport’s logical clocks
[16], and orders ADVERTs with respect to sequences of
indirect transfers. Initially, the sender and receiver start in

1: while ¬EMPTY(qA) do
2: A← HEAD(qA)
3: if PHASE IS INDIRECT(Ps) ∧ (PA < Ps ∨ SA < Ss)

then
4: if Ps < PA then
5: Ps ← NEXT PHASE(PA)
6: end if
7: throw away ADVERT A
8: else
9: if PHASE IS INDIRECT(Ps) then

10: Ps ← PA . Ps is now direct
11: end if
12: Ss ← Ss + lw
13: send direct transfer
14: return
15: end if
16: end while
17: if ¬FULL(bs) then
18: if PHASE IS DIRECT(Ps) then
19: Ps ← NEXT PHASE(Ps) . Ps is now indirect
20: end if
21: Ss ← Ss + lw
22: bs ← bs − lw
23: send indirect transfer
24: return
25: end if

Fig. 2. This is the algorithm to match an exs send() request to an ADVERT
A or the intermediate stream buffer b. Variable definitions are in Table I.

1: if br > 0 ∨ ka > 0 ∨ kb > 0 then
2: do not send ADVERT
3: return
4: end if
5: if PHASE IS INDIRECT(Pr) then
6: Pr ← NEXT PHASE(Pr) . Pr is now direct
7: end if
8: PA ← Pr

9: SA ← S′
r

10: if MSG WAITALL is set then
11: S′

r ← S′
r + lr

12: else
13: S′

r ← S′
r + 1

14: end if
15: send ADVERT

Fig. 3. This is the algorithm used by the receiver when sending an ADVERT
for a user exs recv() buffer. Variable definitions are in Table I.



1: if incoming transfer is direct then
2: Sr ← Sr + lw
3: if MSG WAITALL was not set then
4: S′

r ← S′
r + lw − 1

5: end if
6: do normal processing
7: else . incoming transfer is indirect
8: if PHASE IS DIRECT(Pr) then
9: Pr ← NEXT PHASE(Pr)

10: end if
11: do normal processing
12: end if

Fig. 4. This is the algorithm used by the receiver when a transfer arrives.
Variable definitions are in Table I.

1: copy data from stream buffer
2: send ACK to sender notifying of freed space
3: br ← br − lc
4: Sr ← Sr + lc
5: if advert sent and MSG WAITALL was not set then
6: S′

r ← S′
r + lc − 1

7: end if

Fig. 5. This is the algorithm used by the receiver to copy data out of the
intermediate buffer to user memory. The precondition for this algorithm is
that lc ≤ br . Variable definitions are in Table I.

phase 0. If the sender is able to use a direct transfer, then
the phase remains unchanged. However, if the sender uses
an indirect transfer, then it increments its phase to 1. The
receiver increments its phase to 1 when it receives the indirect
transfer. Once the receiver empties its intermediate buffer, it
will attempt to send ADVERTs again, and increment its phase
to 2. Advertisements from the receiver include the current
sequence number and phase. If both the sequence number
and phase in the ADVERT are at least as large as those
at the sender, then the sender knows that the receiver has
caught up and it can safely use the ADVERT. Otherwise, the
sender knows that the ADVERT is “stale” and throws it away.
The phase number will be even during a sequence of direct
transfers, and odd during a sequence of indirect transfers.

We present the algorithms in more detail in
Fig. 2, 3, 4, and 5. The PHASE IS DIRECT function returns
true if the phase number is even; the PHASE IS INDIRECT
function returns true if the phase number is odd; and the
NEXT PHASE function returns p+ 1 for input p.

When the receiver receives an indirect transfer, the receiver
knows that any unsatisfied ADVERTs in the current phase will

TABLE II
LEGEND FOR THE DIAGRAMS IN FIG. 6, 7, AND 8.

Event Format
Send ADVERT Aid number;seqno;length;phase
Send direct transfer D;matching advert;seqno;length;phase
Send indirect transfer I;(invalidated adverts);seqno;length;phase
Recv Any phase

0 A1;2;100;0

0 A2;3;100;0

D;A1;2;100;0 0
A3;103;100;0D;A2;102;100;0
00

A4;203;100;0D;A3;202;100;0
0

1
I;(A4);302;100;1

1
A5;303;100;0

I;(A5);402;100;1
A6;403;100;2
32
A7;503;100;44

D;A7;502;100;4

1

sender receiver

Fig. 6. This illustrates a potential sequence number gap if the receiver
continues to send ADVERTs after it receives an indirect transfer. In this case,
ADVERT A7 will be incorrectly matched (since it contains a higher phase
number than that at the sender and the next-expected sequence number),
causing the sender to perform a direct transfer into the wrong memory
location. The notation in this figure may be interpreted using Table II.

0 A1;2;100;0

0 A2;3;100;0

D;A1;2;100;0 0
A3;103;100;0D;A2;102;100;0
00

A4;203;100;0D;A3;202;100;0
0

1
I;(A4);302;100;1

1
A5;303;100;0

I;(A5);402;100;1

1
A6;502;100;22

D;A6;502;100;2

1

sender receiver

Fig. 7. This illustrates the fix for the issue shown in Fig. 6. The receiver
must hold off on sending ADVERTs until all prior ADVERTs have been
consumed with data from indirect transfers. The notation in this figure may
be interpreted using Table II.

not be satisfied. The receiver will also not send any new AD-
VERTs until it completely empties its intermediate buffer. This
means that the sender will continue to send indirect transfers
until it fills the buffer or runs out of data to send in its current
burst of data. Once the receiver empties the buffer completely,
it will again start to send ADVERTs for direct transfers, but
only after resynchronizing with the sender. In order to do
this, the receiver must ensure that the sequence number of
the next ADVERT matches what the sender expects. This will
not be the case if there are any outstanding ADVERTs from
a previous phase, since the sequence numbers of both those
ADVERTs and future ADVERTs were estimates, as shown
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Fig. 8. This illustrates the reason that the sender must increment its phase
number whenever an ADVERT arrives with a higher phase number. If the
phase number is not incremented, then ADVERT A6 will be incorrectly
matched (since its phase and sequence numbers would be higher than that
at the sender), causing the sender to perform a direct transfer into the wrong
memory location. The notation in this figure may be interpreted using Table II.

in Fig. 6. To prevent an incorrect match, the receiver will
not send any more ADVERTs until all exs recv()s from the
previous phase have been satisfied. The result is shown in
Fig. 7. Consequently, the receiver will not send an ADVERT
if there is a pending receive with no corresponding ADVERT,
a situation possible only if we had stopped sending ADVERTs
because we received an indirect transfer.

At the sender, a pending exs send() will only match an
ADVERT if its sequence number SA matches exactly with the
current send sequence number, and the phase PA is greater
than or equal to the sender’s current phase. If either do
not match, then the sender discards the received ADVERT.
The sender then increments the phase to at least PA + 1
if PA > Ps. This avoids a scenario illustrated in Fig. 8,
in which a future ADVERT appears to match because its
sequence number happens to match Ss, by effectively dropping
the entire sequence of ADVERTs. As a result, when an
ADVERT is dropped or no ADVERTs are available, the send
data will be written indirectly into the remote intermediate
buffer. The corresponding exs recv() will thus be satisfied
from the intermediate receive buffer. Once the receiver empties
its buffer, it makes a new attempt to synchronize with the
sender.

IV. EVALUATION

A. Correctness

We present a proof of the correctness of the stream AD-
VERT handling algorithms.

Lemma 1. Every ADVERT from the receiver to the sender
will contain a direct phase number. (See Fig. 3)

Proof: We know that the receiver’s phase Pr0 prior to
starting the algorithm must be either direct or indirect.

Consider the case where Pr0 is direct. Due to the check in
line 5, phase Pr0 is placed unchanged into the ADVERT at
line 8. Thus the ADVERT contains direct phase number PA.

Otherwise, Pr0 is indirect, and it is advanced at line 6 before
being placed into the ADVERT at line 8. We know that the
next-phase for an indirect phase is direct, so the phase number
PA0 placed into the ADVERT is again direct.

Lemma 2. If the receiver sends an ADVERT with phase
number PA0, all future ADVERTs will contain phase number
PA0 until the receiver receives an indirect transfer.

Proof: From Lemma 1 we know that PA0 is direct. Since
for all ADVERTs PA is set in line 8 in Fig. 3, we know
that Pr = PA0 and that Pr is direct. We also know that the
only way for the receiver to advance Pr when Pr is direct is to
receive an indirect transfer, due to the check at line 8 in Fig. 4.
Thus, Pr cannot have advanced since ADVERT A0 in the
absence of an indirect transfer.

Lemma 3. At the sender side, if the sender’s phase is direct,
then the most recent message sent by the sender (if any) was
a direct WWI.

Proof: If the sender has not yet sent a message, then the
sender’s phase is 0 and trivially direct.

Otherwise, the last transfer from the sender was either
direct or indirect. Suppose, for purposes of contradiction, that
the most recent message sent by the sender was an indirect
transfer, but that the sender’s current phase Ps is direct. Let
Ps0 be the sender’s phase prior to sending the indirect transfer
(at line 17 of Fig. 2). If Ps0 were direct, then the phase Ps

would be advanced at line 19, due to the check at line 18, and
would thus be indirect. Otherwise, if Ps0 were indirect, then
the phase Ps would be unchanged after the check at line 18. In
either case, the new (and current) phase Ps after the indirect
transfer in line 23 would be indirect, but that contradicts our
previous assumption that Ps was direct. Thus, the most recent
message sent by the sender must have been a direct transfer.

Lemma 4. If the sender’s current phase Ps is direct and the
sender receives an ADVERT A with phase PA, then Ps = PA.

Proof: By Lemma 1 we know that the ADVERT contains
a direct phase number. By Lemma 3 we know that when the
current phase Ps is direct, the last message sent by the sender
(if any) was a direct transfer.

We now examine the receiver’s phase Pr prior to sending the
ADVERT. Let us assume that Pr is indirect at line 5 in Fig. 3.
If Pr were indirect, then the last transfer that the receiver
received would have been indirect, and thus the sender’s phase
would have to be indirect, but we have assumed that the
sender’s phase Ps is direct. Contradiction.

Thus, Pr must be direct, and the check in line 5 prevents the
phase number from being advanced in line 6 prior to sending
the ADVERT. Consider first the case where Pr is 0. Thus, Ps



must be 0, since if it were non-zero, the sender would have
sent at least one indirect transfer, and we know that the sender
did not send an indirect transfer. Thus, trivially Ps = PA.

Next consider the case where Pr is not zero. We know that
the sender’s phase Ps is not zero because the only way for the
receiver’s phase to become nonzero is to receive an indirect
transfer (thus increasing the receiver’s phase to one, which
is indirect), which would have caused the sender’s phase to
increase. Thus the sender’s phase at some previous time must
have been indirect. Since the Ps is now direct by our initial
assumption, the sender must have sent at least one direct send,
because the only way to transition from an indirect phase
to a direct phase is via line 10 of Fig. 2. Let A0 be the
ADVERT that caused this transition. When the sender sent
a direct transfer in line 13 in response to ADVERT A0, it first
advanced its initial phase Ps0 to PA0 . Due to Lemma 2, Pr

cannot have advanced since ADVERT A0 in the absence of an
indirect transfer. Thus, all ADVERTs sent since A0 will also
have the same phase PA = PA0

. We also know that Ps cannot
have advanced since the previous direct transfer, because the
only way for the sender to advance Ps when it is direct is via
the check for direct phase in line 18 in Fig. 2. Thus, Ps = PA.

Theorem. (Safety Property.) If the receiver receives a direct
transfer, then the direct transfer matches the sequence number
SD and the phase number PD of the ADVERT D sent by
the receive transaction block at the head of the receiver’s
exs recv() queue. That is, the sender will never accept a stale
ADVERT, and all data will arrive in the order that the sender
sent it with no data loss.

Proof: The state of the sender at line 8 of Fig. 2 can be
either direct or indirect.

(a) If the sender’s phase is direct, then by Lemma 4, the
phase number of the ADVERT matches the current phase at
the sender. Thus, the sender is in the middle of a sequence of
direct sends, so the advert A at the sender is the same as the
advert D at the head of the receiver’s exs recv() queue.

(b) Consider the case when Ps is indirect. Thus, we know
that the most recent transfer I sent by the sender was indirect,
since the only way that the sender’s phase can become indirect
is via line 19 of Fig. 2, due to the check at line 18. We also
know that PA ≥ Ps and SA ≥ Ss, since we are in the “else”
branch of the check in line 3. Let us assume, for purposes of
contradiction, that ADVERT A at line 8 of Fig. 2 is not the
same as ADVERT D at the head of the exs recv() queue at
the receiver. This implies that at least one of the following
must be true: PA < PD, PA > PD, SA < SD, or SA > SD.
We will establish the contradiction by showing that none of
these can be true.

(b1) First consider the case where PA < PD. The difference
between PD and PA must have been caused by first advancing
Pr from direct to indirect in line 9 in Fig. 4 when the indirect
transfer I was received, and then from indirect to direct in
line 6 in Fig. 3 when advert D was sent. Thus, the receiver
received an indirect transfer after the receiver sent ADVERT

A, when Pr was direct. Then, the corresponding exs recv()
operation for ADVERT A was consumed by the algorithm
in Fig. 5, so Ss > SA since it was advanced by line 21 in
Fig. 2. But this contradicts our earlier knowledge that SA ≥
Ss. Therefore PA 6< PD.

(b2) Next consider the case where PA > PD. Because
the phase number at the sender and receiver is monotonically
nondecreasing, we know that ADVERT D comes in sequence
before ADVERT A. We also know that at the time ADVERT
A was sent, ADVERT D was not in the exs recv() queue
because PD < PA, due to the check in line 1 in Fig. 3. This
contradicts our earlier assumption that D was at the head of
the receive queue. Thus PA 6> PD.

Since we have shown that both PA 6< PD and PA 6> PD

are true, we have PA = PD.
(b3) Next consider the case where PA = PD but SA > SD.

Because the sequence numbers in each sequence of ADVERTs
are monotonically increasing due to the conditional starting at
line 10 of Fig. 3, SA > SD implies that ADVERT D comes in
sequence before ADVERT A. Therefore, the sender received
ADVERT D before ADVERT A. Thus, since the sender just
removed A from its ADVERT queue qA, ADVERT D must
have been previously removed from its ADVERT queue. Since
the last transfer sent by the sender was indirect, the sender
must have rejected ADVERT D at line 7 of Fig. 2. Therefore,
Ss > SA due to lines 4-5. But this contradicts our earlier
knowledge that SA ≥ Ss. Thus SA 6> SD.

(b4) Finally consider the case where PA = PD but
SA < SD. Because the sequence numbers in each sequence of
ADVERTs are monotonically increasing due to the conditional
starting at line 10 of Fig. 3, we know that ADVERT D
comes in sequence after ADVERT A. Therefore, the sender
received ADVERT D after ADVERT A. But SA < SD implies
that ADVERT A is no longer in the receiver’s exs recv()
queue, since ADVERT D is at the head of the receiver’s
exs recv() queue. Thus the exs recv() operation corresponding
to ADVERT A must have been consumed by an indirect
transfer, since the sender’s phase is indirect and the only way
that the sender’s phase could become indirect is via line 19 of
Fig. 2. Thus, the number of bytes copied lc was large enough
to advance Sr beyond SA in line 4 of Fig. 5. We know that
lc ≤ lw because the data could only arrive into the stream
buffer via a transfer from the sender. Thus, the length lw of
the transfer must also have been large enough such that the
sender’s current sequence number Ss was advanced to greater
than SA by line 21 in Fig. 2. But this contradicts our earlier
knowledge that SA ≥ Ss. Thus SA 6< SD.

Since we have derived a contradiction from all of the
possible cases b1 through b4, we must conclude that our initial
assumption that the ADVERT A at line 8 of Fig. 2 is not the
same as the ADVERT D at the head of the exs recv() queue
at the receiver is false.

B. Performance Study

We present a performance study of the dynamic stream
ADVERT handling algorithm as implemented in the UNH



EXS library. This study uses a blast tool, written to utilize
UNH EXS, which sends messages as quickly as possible from
the client to the server. This is meant to model the traffic
generated by a large file transfer. The tool outputs the average
throughput, time per message, and CPU usage on each side.
Additionally, UNH EXS itself keeps statistics on the number of
indirect vs. direct transfers. Unless otherwise specified, we ran
each test 10 times and took the average and 95% confidence
interval for each measurement. All tests use event notification
for retrieving RDMA completion events, as most messages in
this study are large enough that there is little advantage to
busy polling [15]. We define throughput as the total number
of user bytes sent divided by the time elapsed between the
start of the first transfer and the end of the last transfer, as
shown in Equation 1.

throughput =
total user bytes sent
end time− start time

(1)

In our experiments, we compare against two baseline pro-
tocols. The direct-only protocol forces the sender to always
wait for an ADVERT from the receiver before sending, so that
it will never send to the intermediate buffer. In the indirect-
only protocol, the receiver does not send ADVERTs at all,
forcing the sender to send all messages indirectly. Both of
these protocols will correctly transfer all data; they just force
a particular mode of operation for the purposes of performance
comparison. Our blast tool activates these protocols by passing
specific flags to the UNH EXS library.

There were two parts to the study. The first part tests
our algorithm over two FDR InfiniBand channel adapters
connected through an FDR switch. The second part tests
the effect of our algorithm over distance. For this we used
an Anue network emulator to introduce a fixed delay on a
10Gb Ethernet connection between two RoCE NICs. We used
10Gb Ethernet because our network emulator did not support
InfiniBand or higher Ethernet speeds.

1) FDR InfiniBand: We performed our first series of tests
on two identical nodes with Mellanox Connect-X 3 FDR
InfiniBand HCAs, connected through a Mellanox SX6036
FDR InfiniBand switch. The nodes contain Intel Xeon E5-
2609 CPUs running at 2.40GHz, 64 gigabytes of RAM, and
a PCIe Generation 3 bus. The nodes run Scientific Linux 6.3
with OFED 3.5. The average one-way latency between the two
nodes, as measured by the ib_write_lat tool for 64-byte
messages is 1.76 microseconds.

In Fig. 9a and 9b we can see the effect of the number of
simultaneously outstanding operations on throughput for each
stream protocol with messages of random size chosen from
an exponential distribution. For the indirect-only protocol, we
see that the throughput is between 20 and 27 Gbps, and for
the direct-only protocol, the throughput is between 35 and
44 Gbps. The performance for the indirect protocol is always
substantially lower due to the required buffer copies, which are
far slower than the network. In tests on QDR InfiniBand, the
indirect protocol compares much more favorably in terms of
throughput, since the maximum possible throughput of QDR

TABLE III
AVERAGE NUMBER OF MODE SWITCHES FOR GIVEN NUMBER OF

OUTSTANDING OPERATIONS AT SENDER AND RECEIVER.

Outstanding Operations Mode Switch Direct to Total
Receiver Sender Count Transfer Ratio
1 1 93± 86 0.0011± 0.001
2 2 6529± 346 0.0632± 0.04
4 4 1 in all cases < 0.001
8 8 1 in all cases < 0.001
16 16 1 in all cases < 0.001
32 32 1 in all cases < 0.001
2 1 20± 6 0.99949± 0.0002
4 2 1 in all cases 0.191± 0.1143
8 4 0.1± 0.12 0.914± 0.169
16 8 0 in all cases 1 in all cases
32 16 0 in all cases 1 in all cases

InfiniBand is not dramatically higher than the memory copy
throughput.

The dynamic protocol follows the behavior of the indirect
or direct protocol depending on the number of outstanding
operations. Fig. 9b shows that the throughput is approximately
the same as the direct-only protocol if the number of out-
standing receive operations is twice as large as the number
of outstanding send operations. In these cases, the receiver
is always able to send ADVERTs before the sender is ready
to send, so the sender always sends direct transfers. Fig. 9a
shows that when the number of outstanding send and receive
operations are equal for the dynamic protocol, the throughput
drops to the level of the indirect-only protocol. This is because
in this case, the sender is always able to send indirect transfers
before the receiver gets a chance to send any ADVERTs.

There is a single anomaly in Fig. 9b when the number of
outstanding operations is 4 at the receiver and 2 at the sender.
To explain this anomaly, we look at Table III, which shows for
each case in Fig. 9a and Fig. 9b the average number of times
that the dynamic protocol switches between direct and indirect
transfer modes and the average ratio of direct transfers to total
transfers along with the 95% confidence interval. In the case
with the anomaly, there is exactly one mode switch. Since
UNH EXS starts out in a direct phase, we can conclude that
the sender sends about 20% of its messages as direct transfers
and then sends the remaining transfers as indirect. In all other
cases in Fig. 9b, the receiver is able to keep up with the sender
for the entire duration of the run. This indicates that 2 “extra”
outstanding operations at the receiver is insufficient to ensure
that there is always an ADVERT ready at the sender, since
the PCIe generation 3 bus goes through the CPU caches when
accessing or writing memory [17], making the data transfers
faster than the receiver can send more ADVERTs.

We also show the CPU usage on the receiving side in
Fig. 10a and 10b. For the indirect-only protocol, CPU usage
approaches 100% as the number of simultaneously outstanding
operations increases because the copies from the intermediate
buffer take a significant amount of CPU time and increasing
the number of outstanding operations makes more efficient use
of the fabric, increasing the frequency at which data is added
to the stream buffer. For the direct-only protocol, the CPU
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(a) Number of outstanding operations at the sender and receiver are equal.
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(b) Number of outstanding operations at the sender is half that at the receiver.

Fig. 9. Throughput vs. number of simultaneous outstanding operations at the sender and receiver. Message sizes were selected at random from an exponential
distribution with λ = 1048576 and a maximum message size of 4 MiB.
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(a) Number of outstanding operations at the sender and receiver are equal.
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(b) Number of outstanding operations at the sender is half that at the receiver.

Fig. 10. CPU usage at receiver vs. number of simultaneous outstanding operations at the sender and receiver. Message sizes were selected at random from
an exponential distribution with λ = 1048576 and a maximum message size of 4 MiB.

usage is always much lower because of the zero-copy nature
of RDMA. From this plot, we can see that in cases where the
dynamic protocol is able to use direct transfers, the dynamic
protocol adds little CPU overhead.

We next hold the number of outstanding receive operations
constant at 32 and vary the number of outstanding send opera-
tions from 1 to 32. The throughput is shown in Fig. 11a. Here,
we can see that the throughput increases with message size, as
expected. We also see that the throughput has little variation
as the number of outstanding send operations increases above
5, except when the message size is 128 KiB. To explain this
variation, we also show the ratio of direct transfers to total
transfers in Fig. 11b. Here, we see that although the variation
is low for most message sizes, the variation in the number
of direct transfers is high when the message size is 128 KiB.
Thus, the number of direct transfers has a significant effect on
throughput for the dynamic protocol, again due to the expense
of copying large messages.

We next examined the effect of message size on the through-
put and ratio of direct transfers. Fig. 12a shows that throughput

generally increases with message size. However, there is a 46.5
Gbps peak at the 2 mebibyte message size, with slightly lower
throughput for higher message sizes. This may be due to the
effects of caching on the InfiniBand hardware. The effect on
the ratio of direct transfers is shown in Fig. 12b. The ratio
of direct sends to total sends decreases with message size
until the message size reaches about 32 kibibytes, at which
point the ratio begins to increase again. With 512KiB or higher
message sizes, the sender is able to use all direct sends. This
is due to the transmission delay for each message, which
increases as the message size increases. Once the amount of
data in transit becomes large enough, the transmission delay
for the data transfers becomes larger than the total delay for
the ADVERTs flowing in the opposite direction. Therefore, the
receiver’s ADVERT for the next exs recv() operation always
arrives before the sender is ready to perform its next send
operation.

2) 10Gbps RoCE with Anue Network Emulator: We per-
formed testing using an Anue network emulator to introduce
delay between nodes. The two nodes under test used Mellanox
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Fig. 11. Effect of changing the number of simultaneously outstanding operations at the sender for the dynamic protocol. The number of simultaneously
outstanding operations at the receiver was held constant at 32.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 512 2KiB 32KiB 512KiB 8MiB 128MiB

 46000

T
h
ro

u
g

h
p

u
t 

(M
e
g

a
b

it
s 

p
e
r 

se
co

n
d

)

Message size (bytes)

(a) Throughput

 0

 0.2

 0.4

 0.6

 0.8

 1

 512 2KiB 32KiB 512KiB 8MiB 128MiB

R
a
ti

o
 d

ir
e
ct

:i
n
d

ir
e
ct

 t
ra

n
sf

e
rs

Message size

(b) Ratio of direct to total messages

Fig. 12. Effect of message size on the dynamic protocol. The number of simultaneously outstanding operations at the receiver was 4 and at the sender 2.

Connect-X 2 HCAs with one port configured for 10Gbps
RoCE, as this was the highest speed supported by this network
emulator. The nodes were connected through the Anue but
there were no other switches between the two systems. The
nodes contain Intel Xeon X5670 CPUs running at 2.93GHz, 64
gigabytes of RAM, and a PCIe Generation 2 bus. The nodes
run Scientific Linux 6.3 with OFED 3.5. We emulated the
effect of distance by using the Anue network emulator to set
a fixed round-trip delay of 48 ms. The tests themselves used
the same blast tool as in the previous experiments.

We again vary the number of simultaneously outstanding
operations at both the sender and receiver for the dynamic
protocol. The results are shown in Fig. 13. Interestingly,
over distance, all three algorithms had similar performance.
However, when 4-32 buffers are used, the indirect protocol
gives slightly higher throughput than the direct protocol, with
a difference of about 100-400 Mbps. The dynamic protocol
is shown to adapt and give higher throughput than the direct
protocol in this case.
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C. Performance conclusions

From these results, we conclude that EXS stream throughput
with dynamic adaptation is much higher if there are more
outstanding receives than outstanding sends. RDMA assumes
that the receiver is ready to receive before the sender attempts
to send data. By using more outstanding receive operations,
the receiver is ready to receive more often and this increases
throughput and decreases CPU usage at the receiver. However,
using fewer outstanding operations increases the adaptability
of the protocol. Thus, this protocol is well-suited for legacy
applications which may not be written to handle multiple
outstanding network operations on a single connection.

There is a small difference in throughput between direct
vs. indirect transfers over distance. It should be noted that our
test programs involved repeated transfers in one direction with
many outstanding receive operations. Thus, since ADVERT
messages are very small, when the receiver sends ADVERTs,
all of the ADVERTs will arrive at the sender quickly in
succession. When the receiver receives a direct transfer and
the application immediately posts a new receive operation, the
next ADVERT in sequence will be sent out. If this ADVERT
arrives at the sender before the sender is finished sending
messages corresponding to the first burst of ADVERTs, then
the dynamic protocol will be able to use direct transfers with
no additional cost. However, in applications in which many
receive operations cannot be pre-posted, ADVERTs will have
a much larger effect on throughput. In this case, the dynamic
protocol will cause most of the transfers to be indirect, thus
avoiding suboptimal latency or throughput.

This algorithm is dynamic and adapts to the current network
conditions, but if the network and application reach a steady
state, then the algorithm will remain in its current transfer
mode. This ability to adapt lasts throughout the entire life of
the socket connection, so a sudden, large change in network
state will cause the protocol to switch transfer modes appro-
priately.

V. CONCLUSIONS

This paper presented: (i) the design of an algorithm to
dynamically switch between buffered and zero-copy transfers
over RDMA, depending on current conditions; (ii) a proof of
the correctness and safety of this algorithm; (iii) an imple-
mentation of this algorithm as part of the UNH EXS library;
(iv) the results and evaluation of the performance of this
implementation.

VI. FUTURE WORK

We plan to develop more test applications in order to
further determine the performance profile of the dynamic
algorithm, such as dynamically changing send and receive
message sizes and burstiness during a connection. We also
plan on performing latency studies.

In addition, we wish to do more extensive testing over
distance. We plan to use our network emulator to set a jitter
function in order to vary the delay to see the effect of jitter on
our implementation. We would also like to do more testing on
a real long-distance network, such as the ESnet 100G testbed.
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