
 

 

 

 

Design, Implementation, and Performance  

Analysis of Session Layer Protocols  

for SCSI over TCP/IP 

Anshul Chadda 

Robert D. Russell 

TR 01-06 

August 2001 

 

 



 ii 
 

 
 

Table of Contents 
  

List of Tables ...................................................................................................................... v 
List of Figures .................................................................................................................... vi 
ABSTRACT..................................................................................................................... viii 
 
CHAPTER           PAGE 
 
1. Introduction..................................................................................................................... 1 

1.1 Motivation and Goal for this Thesis ......................................................................... 1 
1.2 Resources Used......................................................................................................... 1 
1.3 Organization of the Thesis ........................................................................................ 2 

 
2. SCSI, NAS, and SAN ..................................................................................................... 3 

2.1 SCSI (Small Computer System Interface) ................................................................ 3 
2.1.1 Phase sequences in the SCSI Protocol ............................................................... 4 
2.1.2 Tasks .................................................................................................................. 6 
2.1.3 Command Descriptor Block (CDB)................................................................... 6 
2.1.4 Task Management Functions ............................................................................. 7 

2.2 Network Attached Storage (NAS) ............................................................................ 8 
2.3 Storage Area Network (SAN)................................................................................... 9 
2.4 SAN Approaches .................................................................................................... 10 

2.4.1 SCSI on top of SAN on top of Ethernet........................................................... 10 
2.4.2 SCSI on top of SAN on top of IP..................................................................... 11 
2.4.3 SCSI on top of SAN on top of UDP ................................................................ 11 
2.4.4 SCSI on top of SAN on top of TCP................................................................. 12 

2.5 SAN Approach for this thesis ................................................................................. 12 
 
3. Session Layer Protocols................................................................................................ 15 

3.1 SCSI Encapsulation Protocol (SEP) ....................................................................... 15 
3.2 Internet SCSI (iSCSI) ............................................................................................. 17 

3.2.1 Steps involved in iSCSI Protocol to support I/O operation ............................. 17 
3.2.2 iSCSI PDU format ........................................................................................... 20 
3.2.3 Sequence Numbering ....................................................................................... 20 
3.2.4 Error Recovery................................................................................................. 23 
3.2.5 Important Operational Parameters ................................................................... 23 

 
4. Fast Kernel Tracing....................................................................................................... 25 

4.1 FKT Setup......................................................................................................... 25 
4.2 Application Programmer Interface ......................................................................... 26 
4.3 Kernel Programmer Interface ................................................................................. 27 
4.4 Recording and Printing ........................................................................................... 27 

 



 iii 
 

 
 
 
5. SCSI SubSystem in Linux ............................................................................................ 29 

5.1 SCSI Layers in Linux.............................................................................................. 29 
5.1.1 Upper level....................................................................................................... 29 
5.1.2 Middle level ..................................................................................................... 30 
5.1.3 Low-level drivers ............................................................................................. 30 

5.2 Important SCSI Data Structures.............................................................................. 30 
5.2.1 Scsi_Host_Template struct .............................................................................. 30 
5.2.2 Scsi_Host struct .......................................................................................... 34 
5.2.3 Scsi_Cmnd struct ............................................................................................. 35 

5.3 Discovery Process for SCSI Targets....................................................................... 37 
 
6. SEP Initiator Design And Implementation ................................................................... 38 

6.1 Overview of SEP Low-Level Driver (LLD) Design............................................... 38 
6.2 sep_config ............................................................................................................... 40 
6.3 Data structures involved in SEP LLD..................................................................... 40 
6.4 The SCSI_Host_Template Implementation............................................................ 42 

 
7. iSCSI Initiator Design And Implementation................................................................. 46 

7.1 Overview of iSCSI Low-Level Driver (LLD) Design............................................ 46 
7.2 Data structures involved in iSCSI LLD .................................................................. 48 

7.2.1 session struct .................................................................................................... 49 
7.2.2 connection struct .............................................................................................. 51 
7.2.3 command struct ................................................................................................ 51 

7.3 The SCSI_Host_Template Implementation............................................................ 53 
7.4 Low-level iSCSI Driver Design.............................................................................. 57 

7.4.1 Processing a WRITE SCSI Command............................................................. 57 
7.4.2 Processing a READ SCSI Command .............................................................. 61 
7.4.3 Processing an ABORT Command ................................................................... 62 

 
8. Performance Analysis ................................................................................................... 64 

8.1 Test Set-Up ............................................................................................................. 64 
8.1.1 CPUs ................................................................................................................ 64 
8.1.2 Ethernet Technologies ..................................................................................... 64 
8.1.3 Fiber_Channel Technologies ........................................................................... 65 
8.1.4 Version of Linux Operating System ................................................................ 65 

8.2 Performance Metrics ............................................................................................... 65 
8.3 Performance Variables............................................................................................ 65 
8.4 Accuracy of Data .................................................................................................... 67 

8.4.1 Side Effects of Adding Probes......................................................................... 67 
8.4.2 Confidence Level of Data ................................................................................ 67 

8.5 Ethernet Payload ..................................................................................................... 68 
8.6 Performance Results for SEP.................................................................................. 68 

8.6.1 Effect of Target Domain on Bandwidth for SEP............................................. 69 



 iv 
 

 
 
 
8.6.2 Effect of Target Block Size on Bandwidth for SEP ........................................ 72 
8.6.3 Effect of Initiator Scatter Gather List Size on Bandwidth for SEP ................. 74 
8.6.4 Effect of Ethernet Link Speed on Bandwidth for SEP .................................... 75 
8.6.5 Effect of Ethernet Packet Size on Bandwidth for SEP .................................... 76 
8.6.6 Effect of Coalescing Interrupt Time Interval on Bandwidth for SEP.............. 77 
8.6.7 Effect of Old (Alteon) and New (3-Com) Acenic Cards on Performance....... 78 

8.7 Performance Results for iSCSI ............................................................................... 78 
8.7.1 Effect of LLD Queuing Length on Bandwidth for iSCSI................................ 79 
8.7.2 Effect of Max PDU Size on Bandwidth for iSCSI .......................................... 81 

 
9. Conclusions and Future Work ...................................................................................... 83 

9.1 Conclusions............................................................................................................. 83 
9.2 Future Work ............................................................................................................ 84 

 
References......................................................................................................................... 85 
APPENDIX A................................................................................................................... 87 
APPENDIX B ................................................................................................................... 91 
APPENDIX C ................................................................................................................... 92 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 



 v 
 

 
 

List of Tables 
 
Table                Page  
 
2.1 Device Involvement in Information Transfer Phases. .................................................. 6 
2.2 Task Management Response Values. ........................................................................... 7 
7.1 Session State Table. .................................................................................................... 50 
7.2 Task Management Response Values. ......................................................................... 52 
7.3 Task Management Function Values............................................................................ 52 
8.1 Statistics on Bandwidth with Target in Kernel Mode................................................. 70 
8.2 Analysis Table produced by fkt_print for SEP Low-Level driver.............................. 72 
8.3 % CPU utilization comparison for Target Domain change. ....................................... 72 
8.4 % CPU utilization comparison for Target Block Size change.................................... 73 
8.5 % CPU utilization comparison for Scatter-gather list size change. ............................ 74 
8.6 % CPU utilization comparison for Ethernet Link Speed Change............................... 75 
8.7 % CPU utilization comparison for Ethernet Packet Size change. .............................. 76 
8.8 % CPU utilization comparison for CITI change......................................................... 77 
8.9 Effect of Old (Alteon) and New (3-Com) Acenic Cards on Performance.................. 78 
8.10 Analysis Table produced by fkt_print for iSCSI Low-Level driver. ........................ 80 
8.11 % CPU utilization comparison for CITI change....................................................... 81 
8.12 % CPU utilization comparison for LLD queuing length. ......................................... 82 
 
 
 
 
 
 
 
 
      
 
 
 
 
 
 
 
 
 
 
 
 
 



 vi 
 

 
 

List of Figures 
 
Figure                Page  
 
2.1 Representation of a SCSI System. ................................................................................ 4 
2.2 SCSI Protocol................................................................................................................ 4 
2.3 Information Transfer Phases. ........................................................................................ 5 
2.4 10-Byte CDB. ............................................................................................................... 6 
2.5 Network Attached Storage (NAS). ............................................................................... 8 
2.6 Storage Area Network (SAN)....................................................................................... 9 
2.7 Fiber Channel Solution to Storage Area Network (SAN). ......................................... 10 
2.8 Our Approach to Storage Area Network (SAN)......................................................... 12 
2.9 Components involved to support SCSI....................................................................... 13 
3.1 SEP Header. ................................................................................................................ 16 
3.2 iSCSI Basic Header Segment (iSCSI draft ver 7)....................................................... 21 
3.3 iSCSI Basic Header Segment(BHS) for SCSI Command (iSCSI draft ver  7). ......... 22 
3.4 iSCSI Additional Header Segment(AHS) for SCSI Command. ................................. 22 
5.1 SCSI SubSystem in Linux. ......................................................................................... 29 
5.2 Scsi_Host_Template struct Definition. ....................................................................... 31 
5.3 API between SCSI Mid-Level and Low-Level driver. ............................................... 33 
5.4 Scsi_Host struct Definition. ........................................................................................ 34 
5.5 Scsi_Cmnd struct Definition....................................................................................... 35 
6.1 SEP Low-Level Driver (LLD) Design........................................................................ 39 
6.2 Organization of Data Structures in SEP LLD............................................................. 41 
6.3 sep_control_block struct Definition. ............................................................... 42 
6.4 SCSI_Host_Template struct Definition. ............................................................. 43 
6.5 API between SCSI Mid-Level and SEP Low-Level Driver. ...................................... 44 
7.1 iSCSI Low-Level driver (LLD) Design. ..................................................................... 47 
7.2 Organization of data structures in iSCSI LLD............................................................ 49 
7.3 session struct Definition. ....................................................................................... 50 
7.4 connection struct Definition........................................................................................ 51 
7.5 command struct Definition. ....................................................................................... 52 
7.6 Scsi_Host_Template  struct Definition. ...................................................................... 53 
7.7 API between SCSI Mid-Level (SML) and iSCSI  Low-Level Driver (LLD). ........... 55 
7.8 Processing of SCSI Command.................................................................................... 58 
7.9 Data Processing for WRITE Command...................................................................... 60 
7.10 Culmination of SCSI Command. .............................................................................. 61 
7.11 Data Processing for READ Command. .................................................................... 62 
7.12 Processing an ABORT Command. ........................................................................... 63 
8.1 Ethernet Frame for a TCP. .......................................................................................... 68 
8.2 TCP TimestampOption. .............................................................................................. 68 
 
 



 vii 
 

 
 
 
8.3 Effect of Target Domain on Bandwidth for SEP. ....................................................... 69 
8.4 Effect of Target Block Size on Bandwidth for SEP. .................................................. 73 
8.5 Effect of Initiator Scatter-Gather List Size on Bandwidth for SEP ............................ 74 
8.6 Effect of Ethernet Link Speed on Bandwidth for SEP ............................................... 75 
8.7 Effect of Ethernet Packet Size on Bandwidth for SEP. .............................................. 76 
8.8 Effect of CITI on Bandwidth for SEP......................................................................... 77 
8.9 Effect of LLD Queuing Length on Bandwidth for iSCSI........................................... 79 
8.10 Effect of Max Data PDU Size on Bandwidth for iSCSI. .......................................... 81 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 viii 
 

 
 

ABSTRACT 
 

Design, Implementation, and Performance Analysis of Session  
Layer Protocols for SCSI over TCP/IP 

 
By  

 
Anshul Chadda 

University of New Hampshire, December 2001 
 
In the last decade, there has been a demand in the computer industry to physically 
separate storage from the main computing system. The motivation for this thesis came 
from the desire for higher performance and greater scalability in Storage Networking. 
There are two approaches in the industry to support storage across networks: Network 
Attached Storage (NAS) and Storage Area Networks (SAN). NAS intercepts the 
communication between application (host) and storage at a fairly high level, because the 
application typically accesses the remote storage via a special file system that in turn 
utilizes a standard network protocol stack. The unit of access is a file managed by the 
NAS. A SAN intercepts the communication between application (host) and storage at a 
fairly low level, because the host views the remote storage as a device that is accessed 
over an I/O channel capable of long-distance transfers. The unit of access is a ‘raw’ 
storage block managed by the SAN.  Small Computer System Interface (SCSI) is a 
ubiquitous and popular disk technology that supports block level access. The major                        
limitation of SCSI is the length of the SCSI bus. Several protocols have been proposed to 
extend the length of the SCSI bus: Fiber Channel (FC), SCSI Encapsulation Protocol 
(SEP) and Internet SCSI (iSCSI). Although FC fits into the requirement of high 
performance, it has limited scalability as it needs a specialized network of storage 
devices. SEP and iSCSI are the two Session Layer Protocols to support SCSI on top of 
TCP/IP/Ethernet networks and hence enhancing scalability of SANs. 
 
The objective of this thesis is to design, implement, and evaluate SEP and iSCSI. As an 
overview, the two protocols get the SCSI I/O requests in the kernel on the host 
(application) and transfer it over the TCP/IP network to the target (device). The SEP and 
iSCSI low-level drivers are designed and implemented for the initiator to support the 
latest protocol drafts. An existing target emulator is modified and extended to support the 
additional features specified in the latest iSCSI draft. The evaluation of the two protocols 
involves basic performance analysis using software tracing facilities in the Linux kernel. 
The results suggest the optimum performance parameter values for I/O operation over 
generic TCP/IP/Ethernet Networks. 

 
 



 1 
 

 
 

Chapter 1 
 

Introduction 
 

1.1 Motivation and Goal for this Thesis 
 
In the last decade, there has been a demand in the computer industry to physically 
separate storage from the main computing system. The motivation for this thesis came 
from the desire for higher performance and greater scalability in Storage Networking. 
There are two approaches in the industry to support storage across networks: Network 
Attached Storage (NAS) and Storage Area Networks (SAN). NAS intercepts the 
communication between application (host) and storage at a fairly high level, because the 
application typically accesses the remote storage via a special file system that in turn 
utilizes a standard network protocol stack. The unit of access is a file managed by the 
NAS. A SAN intercepts the communication between application (host) and storage at a 
fairly low level, because the host views the remote storage as a device that is accessed 
over an I/O channel capable of long-distance transfers. The unit of access is a ‘raw’ 
storage block managed by the SAN.  Small Computer System Interface (SCSI) is a 
ubiquitous and popular disk technology that supports block level access. The major 
limitation of SCSI is the length of the SCSI bus. Several protocols have been proposed to 
extend the length of the SCSI bus: Fiber Channel (FC), SCSI Encapsulation Protocol 
(SEP) and Internet SCSI (iSCSI). Although FC fits into the requirement of high 
performance, it has limited scalability as it needs a specialized network of storage 
devices. SEP and iSCSI are the two Session Layer Protocols to support SCSI on top of 
TCP/IP/Ethernet networks and hence enhancing scalability of SANs. 
 
The objective of this thesis is to design, implement, and evaluate SEP and iSCSI. As an 
overview, the two protocols get the SCSI I/O requests in the kernel on the host 
(application) and transfer it over the TCP/IP network to the target (device). The SEP and 
iSCSI low-level drivers are designed and implemented for the initiator to support the 
latest protocol drafts. An existing target emulator is modified and extended to support the 
additional features specified in the latest iSCSI draft. The evaluation of the two protocols 
involves basic performance analysis using software tracing facilities in the Linux kernel. 
The results suggest the optimum performance parameter values for I/O operation over 
generic TCP/IP/Ethernet Networks. 
 
1.2 Resources Used  
 
The facilities for the thesis project are provided by the InterOperability Lab, University of 
New Hampshire. The resources used for this project are two high speed Linux PCs, one 
serving as an initiator and other as an target. The initiator system has a Gigabit Ethernet 
Network Interface Card  (Company: Alteon Acenic) to connect to the target. The target 



 2 
 

system has a Gigabit Ethernet Network Interface Card (Company: Alteon Acenic card) to 
connect to the initiator and a Fiber Channel Card (Company: Qlogic Corporation 
ISP2200 A) to connect to a Fiber Channel Disk.   
 
1.3 Organization of the Thesis 
 
Chapter 2 explains the SCSI protocol features, advantages, and disadvantages. The 
Storage Area Networks (SAN) and Network Attached Storage (NAS) concepts are also 
explained. Different SAN approaches over a generic TCP/IP/Ethernet Network and the 
SAN approach followed for this thesis are discussed.  Chapter 3 explains the Session 
Layer Protocols used to support SCSI over TCP. The two protocols discussed are SCSI 
Encapsulation Protocol (SEP) and Internet SCSI (iSCSI). Chapter 4 explains the Fast 
Kernel Tracing (FKT) Software Probes used to do performance analysis of SEP and 
iSCSI Implementations. Chapter 5 explains the Organization of SCSI Subsystem in 
Linux. The Interface provided by SCSI to the low-level driver is elaborated. Chapter 6 
explains the design and implementation of the SEP Initiator Implementation. Chapter 7 
discusses the design and implementation of the iSCSI Initiator Implementation. Chapter 8 
goes into the Performance Analysis of SEP and iSCSI using FKT Software Probes. 
Chapter 9 summarizes the work done and the conclusions drawn along with work that can 
be done in the future. Appendix A explains the additions and changes made to the target 
to support the latest iSCSI draft (version 7).  
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 



 3 
 

 
 

Chapter 2 
 

SCSI, NAS, and SAN 
 
In this section, we discuss the SCSI (Small Computer System Interface) technology and 
bring out its advantages over other existing disk technologies. The concepts of Network 
Attached Storage and Storage Area Networks are elaborated next. Finally, the possible 
approaches to support SAN and the approach followed in this thesis are discussed. 
 
2.1 SCSI (Small Computer System Interface) 
 
SCSI [1] is a universal disk drive interface which is much more advanced than its chief 
competitor, IDE/ATA [2]. SCSI is a system-level bus, with intelligent controllers on each 
SCSI device working together to manage the flow of information on the channel. SCSI 
supports many different types of devices, and is not at all tied to hard disks the way 
IDE/ATA is—ATAPI supports non-hard-disk IDE devices but it is really a kludge of 
sorts. SCSI has several advantages over IDE that make it preferable for many situations, 
usually in higher-end machines. It is far less commonly used than IDE/ATA due to its 
higher cost.  
 
The basic feature of SCSI is to give the computer complete device independence. With 
SCSI, the system should not need any modification when replacing a device from one 
manufacturer with that from another manufacturer. The burden of being able to 
manipulate the peripheral specific hardware shifts from the host system to the peripheral 
device. As a result, development cycles are significantly reduced. 
 
The kinds of SCSI devices are numerous: interface cards, hard disks, CD-ROMs, and 
scanners.  All of them fall into two fundamentals categories: initiators and targets (Fig. 
2.1). The initiator device is also called the host, and it starts or initiates device-to-device 
communication. The target device receives the communication from the initiator and 
responds. For example, when reading a file from a SCSI hard disk, the SCSI interface 
card (the initiator) requests data from the SCSI hard disk and the hard disk (the target) 
responds to the request by sending the data. This is the most common initiator-target 
interaction in a SCSI system.  
 
SCSI systems can have up to eight devices connected in a daisy chain on a 8-bit SCSI bus 
(16-bit Wide SCSI can have up to sixteen devices). These devices can be any 
combination of initiators and targets, but at least one must be an initiator and one a target 
in order to have a useful system.  
 
 



 4 
 

The SCSI protocol specifies a unique kind of identification called a SCSI ID for each 
SCSI device on the bus. These IDs, or addresses, identify each device so that the 
command requests go to the right device. Without this identification, there would be no 
way to know where to send commands and data along the bus and no way to direct 
signals to a specific device. A 16-bit Wide SCSI bus allows a maximum of 16 devices, 
with IDs ranging from 0 to 15; and 32-bit Wide SCSI allows for 32 devices, ranging from 
0 to 31. 

 
Fig 2.1 Representation of a SCSI System. 

 
Each Target device can also be subdivided into several Logical Units (LUNs). Logical 
units represent devices within devices and are divisions within IDs. The maximum 
number of LUNs on a device, except the Initiator, cannot be more than 8. So, the 
maximum number of LUNs that can be supported on a 8-bit Wide SCSI is 57 (1 Initiator 
+ 7 Targets x 8 LUNs). 
 
2.1.1 Phase sequences in the SCSI Protocol  
 
SCSI uses a method to transfer data between devices on the bus in a circular process that 
starts and ends in the same layer. The process overview is shown in Fig. 2.2. 

Fig 2.2 SCSI Protocol. 
 



 5 
 

The SCSI architecture includes eight distinct phases for communication between the 
initiator and the target: 
BUS FREE Phase (Step 1 in Fig. 2.2): The SCSI devices (initiators and targets) use this 
phase to recognize bus availability.  
ARBITRATION Phase (Step 2 in Fig. 2.2): The SCSI devices (initiators and targets) use 
this phase to gain control of the bus. In other words, this phase resolves bus contention in 
order to access the bus.  
SELECTION Phase (Step 2 in Fig. 2.2): The initiator uses this phase to select targets in 
order to start an I/O process. 
RESELECTION Phase (Step 2 in Fig. 2.2): The target uses this phase to continue a 
previously disconnected I/O process with an initiator. 
COMMAND Phase (Step 2 in Fig. 2.2): In this phase, the target requests Commands, in 
the form of Command Descriptor Blocks, from the initiator. Command Descriptor Block 
is discussed in detail in Section 2.1.3. 
DATA Phase (Step 3 in Fig. 2.2): Depending on the data direction, the phase can be of 
either two types, DATA IN and DATA OUT.  The DATA IN phase allows the target to 
send data to the initiator. The DATA OUT phase allows the initiator to send data to the 
target.  
STATUS Phase (Step 4 in Fig. 2.2): This phase allows the target to send status 
information for any Command to the Initiator. 
MESSAGE Phase (Step 2 or 4 in Fig. 2.2): This phase is divided into two types, 
MESSAGE IN and MESSAGE OUT. In MESSAGE OUT phase (Step 2 in Fig. 2.2), the 
Initiator transmits a message to a target. In MESSAGE IN phase (Step 4 in Fig. 2.2), the 
Target transmits a message to an initiator. 
 

 
Fig 2.3 Information Transfer Phases. 

 
The SCSI bus can be in any one bus phase at a given time. Each phase has a 
predetermined set of rules (or protocol) that apply when the bus changes from one phase 
to another. The BUS FREE, ARBITRATION, SELECTION, and RESELECTION 
phases form part of ‘Initialization Process’ that does not involve any information transfer. 
The COMMAND, DATA, MESSAGE, and STATUS phases are the ‘Information 
Transfer Phases’ used to transfer real information across the data bus (Fig. 2.3). The 



 6 
 

information content of the data bus and the device (Initiator or Target) responsible for it 
during the different Information transfer phases is explained in Table 2.1. 
 
Information Transfer Phase Content of Data Bus Device that determines information 
COMMAND CDB bytes Initiator 
DATA IN Data in byte(s) Target 
DATA OUT Data out byte(s) Initiator 
STATUS Status byte Target 
MESSAGE IN Message in byte(s) Target 
MESSAGE OUT Message out byte(s) Initiator 

Table 2.1 Device Involvement in Information Transfer Phases. 
 
2.1.2 Tasks  
 
The composition of a Task includes a definition of the work to be performed by the 
Target (or logical unit) in the form of a command or group of linked commands. A Task  
can be either Tagged or Untagged. A Tagged Task includes a Tag in its Tagged Task 
Identifier (field present in Command Descriptor Block) that allows many uniquely 
identified tagged tasks to be present concurrently in a single task set. An Untagged Task 
does not include a Tag in its Task Identifier, which restricts the number of concurrent 
untagged tasks in a single task set to one per initiator.  
 
2.1.3 Command Descriptor Block (CDB) 
 
A command is executed when an initiator sends a Command Descriptor Block (CDB) to 
the target during the COMMAND phase. A CDB gives information about the I/O 
operation to be performed to the target. It is classified into three types based on its length: 
6-byte, 10-byte, and 12-byte. A basic format of a 10-byte CDB is shown in Fig. 2.4 [1]. 
 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 
Byte 0 Operation Code 
Byte 1 Logical Unit Number Reserved 
Byte 2 
Byte 3 
Byte 4 
Byte 5 

 
Logical Block Address (if required) 

 
 

Byte 6 Reserved 
Byte 7 
Byte 8 

Transfer length (if required) 

Byte 9 Control Byte 

Fig 2.4 10-Byte CDB. 
 
The fields in the CDB are explained as follows: 
Operation Code: This field tells the target the length of the CDB and the operation an 
initiator wants to perform. 
Logical Unit Number: This field specifies the Logical Unit Number of the target. 
Logical Block Address: This field tells the target where the information is located on the 
physical medium. Logical blocks start at 0 and are contiguous to the last block location 



 7 
 

on the device’s medium. The smallest unit of measurement on a device is a block 
(specified by number of bytes). A typical block size for a hard disk is 512 bytes.  
Transfer Length: This field tells the target the data transfer length associated with the 
CDB, in terms of number of blocks.  
Control Byte: This field is used for command linking, and vendor-specific operations.  
 
The following guidelines apply for the format of a CDB:  

• the first byte of the CDB is always an operation code. 
• the last byte of the CDB is the control byte. 
• the format of the operation code and control byte are identical for every SCSI 

command. 
 
2.1.4 Task Management Functions 
 
Task Management Functions are used by Initiator to control the execution of one or more 
tasks. The initiator invokes a task management function by means of a procedure call 
having the format:  
 
Service Response = Function name(Nexus between Initiator and Target) 

 
The responses returned by the target for any task management function can be one of the 
following: 
 

Response from Target Meaning 
FUNCTION COMPLETE Requested function is completed by the Target 
FUNCTION_REJECTED Requested function is not supported by the Target 
TARGET FAILURE OR 
SERVICE DELIVERY 

Request is terminated due to service delivery failure 
or target malfunction 

Table 2.2 Task Management Response Values. 
 
Different types of task management functions that an initiator can support are as follows:  
Abort Task: The target aborts the task if it exists. If the logical unit supports this function, 
a response of FUNCTION COMPLETE from the target indicates that the task is aborted 
or is not in the task set. The target guarantees that no further responses from the task are 
sent to the initiator. This function is required to be supported by a logical unit that 
supports tagged tasks and may be supported by a logical unit that does not support tagged 
tasks.  
Abort Task Set: The target aborts all the tasks in the task set that were created by the 
initiator. This is equivalent to receiving a series of ABORT TASK requests. Tasks from 
other initiators or in other task sets shall not be aborted. This function is required to be 
supported by all LUNs. 
Clear ACA: The initiator invokes CLEAR ACA to clear an auto contingent allegiance 
condition from the task set serviced by the logical unit. The function is required to be 
supported by a logical unit that accepts a NACA bit value of one in the CDB Control 
byte.  



 8 
 

Clear Task Set: All tasks in the appropriate task set are aborted. No status is sent to the 
initiator for any task affected by this request. This function is required to be supported by 
all LUNs that support Tagged Tasks and is optional for those that do not.  
Logical Unit Reset: The target supporting Logical Unit Reset function has to implement 
the following functions: 

• Abort all the tasks in its task set(s) 
• Clear Auto Contingent Allegiance or Contingent Allegiance condition, if present. 
• Release all established reservations.  
• Set a Unit Attention Condition. 
• Initiate a logical unit reset for all dependent logical units. 

This function has to be supported by all logical units. 
Target Reset: The target supporting Target Reset should issue Logical Unit Resets only to 
the logical units it is using. There is no requirement by any target to support this function.   
 
2.2 Network Attached Storage (NAS)  
 
NAS is one of the mechanisms to separate storage form the main computing system. It 
intercepts the communication between application and storage at a fairly high level, 
because the host typically accesses the remote storage via a special file system that in 
turn utilizes a standard network protocol stack. The unit of access is a file managed by 
the NAS. The host file system becomes a client utilizing the network to access a remote 
server daemon process that in turn accesses the physical storage device. 
 
In this model, the remote server platform has to be relatively sophisticated, usually built 
from a workstation or mainframe computer with a complete multiprocessing operating 
system, file system, network stack, and daemon process. The physical storage device 
itself (i.e., the disk) is physically connected to the remote server via a standard I/O 
channel, such as SCSI. 
 

 
Fig 2.5 Network Attached Storage (NAS). 

 



 9 
 

A NAS must deal with issues of security, consistency, integrity, etc. at the level of a 
complete file (Fig. 2.5). This includes the metadata, directory information about a file and 
all the data blocks in the file. The most common example of a NAS is Sun’s Network File 
System (NFS) [3] which is almost universally supported by all manufacturers. In Linux, 
NFS is one of many file systems accessed by applications through the Virtual File System 
Switch (VFSS). The NFS implementation on the client host utilizes Sun’s Remote 
Procedure Call (RPC) system to perform synchronous interactions with a daemon process 
on the remote server that in turn uses the file system on that platform to do the I/O to the 
physical disk.  
 
Some of the advantages of NFS are that it is easily installable and is affordable. One of 
the disadvantages is that the storage access is limited through the Server. Direct access to 
storage devices is not possible. The other disadvantage is that the I/O performance is 
limited by the speed of a single NAS server’s ability to handle I/O requests from different 
application clients.   
 
2.3 Storage Area Network (SAN)  
 
A Storage Area Network intercepts the communication between application and storage 
at a fairly low level, because the host views the remote storage as a device that is 
accessed over an I/O channel capable of long-distance transfers. The unit of access is a 
‘raw’ storage block managed by the SAN (Fig. 2.6). In this model, the remote server 
system is typically much less sophisticated than for a NAS, because it only has to 
implement that part of the network protocol stack necessary to communicate with clients. 
Furthermore, the remote server system has no notion of a filesystem. 
 
A SAN must deal with issues of security, consistency, integrity, etc. at the level of a 
single block, not a whole file as in a NAS. The most common example of SAN is SCSI 
over Fiber Channel [4]. In this system, the upper-level SCSI driver on the application 

 
Fig 2.6 Storage Area Network (SAN). 

 
client sees Fiber Channel as just another low-level SCSI device driver, and has no 
knowledge that a network is involved, since it is only the Fiber channel driver that deals 
with the network. 



 10 
 

 
Fig 2.7 Fiber Channel Solution to Storage Area Network (SAN). 

 
The upper levels of the normal network protocol stack are completely bypassed, since the 
SAN protocol is implemented entirely within the Fiber Channel driver. The remote server 
system is just a SCSI disk controller modified to accept SCSI commands and to transmit 
data over a Fiber Channel network rather than over an I/O bus. As shown in Fig. 2.7, one 
of the drawbacks of the Fiber Channel solution to SAN is that any Application Client, in 
a generic TCP/IP network, cannot have direct access to any Disk in a Fiber Channel 
Network.  
 
2.4 SAN Approaches 
 
In past two years, there have been different scenarios considered for integrating SAN into 
Ethernet technology to enhance the scalability of SAN. These scenarios differ in how the 
SAN is inserted into the normal network protocol stack, each possibility having its own 
advantages and disadvantages. Each scenario is elaborated upon in a separate section 
below. 

1. SCSI on top of SAN on top of Ethernet. 
2. SCSI on top of SAN on top of IP 
3. SCSI on top of SAN on top of UDP 
4. SCSI on top of SAN on top of TCP 

 
2.4.1 SCSI on top of SAN on top of Ethernet 
 
This option is similar to the SCSI over Fiber Channel approach, the difference being that 
the underlying link layer technologies are different. Fiber Channel has been designed to 
implement the prerequisites required by the SCSI Architecture Model (SAM) [5]. Thus, it 
provides a logical means for extending the SCSI bus and Fiber Channel provides a 
reliable interconnect with SCSI serving as the Upper Level Protocol. One difference in 
the Ethernet environment is that it introduces congestion and contention that can lead to 
packet loss that is not possible in SCSI over Fiber Channel. The other limitation of 
Gigabit Ethernet is the limited distance (maximum of 2 km on multi-mode fiber [6]) and 



 11 
 

the bus topology that it supports. Fiber Channel, on the other-hand, allows connectivity 
over several kilometers using several different topologies. This requires the SAN to deal 
with reliability issues and to add naming conventions so that the geographical reach can 
be extended beyond a LAN. Some of the models have been thought over at UNH are 
discussed briefly: 
• Ignore the problems by assuming that all hosts and storage devices are connected to a 

single LAN, and that there is no packet loss due to contention on the Ethernet. Chris 
Loveland has implemented SCSI over Gigabit Ethernet using the Alteon AceNIC 
cards. The implementation included modification of the existing driver by adding 
functions to it that made it look like a low level SCSI driver in Linux. The packet loss 
is ignored by the driver, so that if an error occurs the low-level SCSI operation times 
out, forcing the high-level SCSI driver to reattempt the operation. 6-byte Ethernet 
MAC addresses were used to denote the client and servers which were connected on 
the same LAN.  

• Define a SAN protocol that provides inorder, reliable delivery over unreliable 
Ethernet. Limit the connectivity to a single LAN. This approach taken by Barry 
Reinhold in his specification of SANTRAN [7]. He suggests defining a protocol that 
included an acknowledgement and retransmission on timeout scheme, with fail-over 
to alternate adapters as a last resort. It was designed with the idea that most of 
SANTRAN would be implemented in firmware on the NIC. The host system driver 
would look like a low-level SCSI driver, as in Chris’s system. The driver would 
utilize a SANTRAN packet format that encapsulates SCSI commands along with its 
own control and status information. Although SANTRAN provides its own 
addressing, it seems to expect that this address can be mapped directly onto a MAC 
level address, thereby limiting geographic range to one LAN.  

• Define a SAN protocol that provides in-order, reliable delivery over any underlying 
networking technology, not necessarily limited to a single LAN. 

 
2.4.2 SCSI on top of SAN on top of IP 
 
This approach obviates the problem associated with using just SAN on top of Ethernet of 
limiting the geographic range to one LAN. The limitation in IP is that it doesn’t provide 
in-order delivery of packets, which has to be handled by the SAN. One problem in this 
approach is to handle the intermediate copying. The IP specifications require the IP 
payload to be contiguous on the wire, whereas to achieve zero-copying, the IP payload 
would almost certainly have to be stored separately from the IP header. One way to 
achieve zero-copying is by pushing part of the IP implementation on to the NIC. Nishan’s 
Storage over IP(SOIP) has adopted this approach though no details have been provided. 
 
2.4.3 SCSI on top of SAN on top of UDP 
 
This approach uses UDP as the underlying transport layer protocol. The UDP approach 
allows for error detection (but not correction) through use of checksumming, and port 
multiplexing. Checksumming is a viable option for a SAN environment if it is done in the 
hardware. Port multiplexing is not an issue in the SAN environment. The unreliability of 
IP is not solved by UDP as it is only a thin wrapper around IP. SUN’s RPC subsystem [8] 



 12 
 

utilizes UDP as their network transport protocol to support the SUN’s Network 
filesystem (NFS). RPC deals with the unreliability of UDP by detecting RPC timeouts 
and then retrying RPC operations. 
 
2.4.4 SCSI on top of SAN on top of TCP 
 
This is the one of the most promising of the approaches considered. TCP provides the 
reliable in-order delivery over worldwide networks, unlike IP and UDP, which are 
connectionless oriented. This reliability is desirable for SAN environment though some 
issues which have to be considered: 
• How to avoid intermediate copying? This involves modifications to TCP and all 

layers below TCP in the protocol stack. The intermediate copying affects the 
performance which is very critical to do data transfer in a SAN. 

• How much of the complete TCP/IP protocol can or should be implemented on the 
NIC? The problem is more critical for TCP implementation than for IP or UDP, 
because TCP maintains a huge amount of state information about each connection. 
This is because TCP is a connection oriented protocol. 

Implementing SCSI over TCP for IP storage leverages existing network hardware, 
software, and technical know-how. SCSI over TCP will enable the use of Gigabit 
Ethernet, a proven industry standard, as an infrastructure for storage-area networks 
(SAN). TCP/IP and Ethernet are dominant technologies in networking, and we see this 
trend continuing with SANs. This is the approach used for this thesis that involves 
implementation and evaluation of Session Protocols to support SCSI over TCP/IP 
network.  
 
2.5 SAN Approach for this thesis 
 
Block level access in a TCP/IP/Gigabit Ethernet network to a target disk would require 
TCP/IP implementation in the target hardware in addition to implementation of Session  

 
 Fig. 2.8 Our Approach to Storage Area Network (SAN). 
 



 13 
 

Protocols. Hardware implementation of Network Protocols like TCP/IP is an intricate 
process by itself. An alternate approach, followed in this thesis project, is to emulate a 
target in software on a Remote system as shown in Fig. 2.8.  
 
Efforts to increase scalability of SCSI have increased the number of components involved 
in the Operating System (Fig. 2.9). The transition from classic SCSI approach to our 
approach is discussed as follows: 

• The classic SCSI approach is to have a SCSI Host Bus Adapter (HBA) accessing   
a SCSI disk (target) connected by a SCSI Bus(Fig. 2.9a). The READ/WRITE 
requests generated by the user go through the Filesystem to resolve into SCSI 
Commands, Messages, and Responses. The SCSI requests are passed to the HBA 
that  accesses the SCSI disk (target). 

•  In our approach (Fig. 2.9b), the extra components added are as follows: 
o Network Stack to support TCP/IP.  
o SAN subsystem to support the Session Protocols. 
o Transport Network to communicate between the Initiator and the Target 

Emulator 
 

 
                 (2.9 a)       (2.9b)    

 
Fig 2.9 Components involved to support SCSI. 

 
The SEP and iSCSI low-level drivers (explained in Chapter 5) are implemented to 
support the latest specification of the two protocols in this thesis work. The existing 
target emulator, developed by Ashish Palekar [9], is extended to support additional SEP 



 14 
 

and iSCSI protocol features. Also, the target emulator code is modified to support the 
latest version of the iSCSI draft. The target emulator is discussed in detail in Appendix A. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 15 
 

 
 

Chapter 3 
 

Session Layer Protocols  
 
In this chapter, we discuss the two SAN Session Layer Protocols used over TCP/IP. SCSI 
Encapsulation Protocol (SEP) and Internet SCSI (iSCSI) are the two proposed Internet 
drafts chosen for this thesis work. The two protocols have been discussed in detail in the 
next two sub-sections. 
 
3.1 SCSI Encapsulation Protocol (SEP) 
 
Adaptec Inc. has developed the SCSI Encapsulation Protocol (SEP) as their answer to 
operate SCSI on top of TCP [10]. The SEP protocol assumes an underlying reliable 
transport protocol such as TCP/IP.  It is a session layer protocol that encapsulates SCSI 
commands, status, and data for transmission over a transport layer protocol. The SEP 
architecture focuses on being able to provide a cost and performance competitive solution 
in those spaces. With typical server applications, CPU utilization by the host is a concern. 
The CPU utilization is relatively low in traditional storage adapters. To achieve similar 
CPU utilization metrics with host adapters using SEP, the SEP protocol envisages the 
processing of the entire TCP/IP protocol on the host adapter itself rather than burning 
CPU cycles. 
 
Connection establishment, authentication, security, etc. are the features to be handled by 
TCP and are beyond the scope of SEP. SEP requires that each SCSI LUN be represented 
by a unique TCP connection in order to enforce the host’s ordering between commands to 
that LUN. So, there is no LUN information included in the SEP header. This obviates 
keeping additional state information that is required if multiple LUNs are multiplexed on 
a single TCP connection. In SEP, multiple connections may be used when accessing 
different LUNs on the same target. 
 
Each SEP message starts with an 8-byte fixed format header followed by SCSI command, 
status, message or data information. The SEP header contains 1 or 2 byte fields that are 
aligned on corresponding byte boundaries for easy accessibility, as depicted in Fig. 3.1. 
The payload can go to a minimum of 1 byte and maximum of 65536 bytes. The data is 
always padded by trailing zeros to a multiple of 4 bytes to maintain 4 byte boundary 
alignment. The CRC is optional and is added to the end of the segment, after any required 
pad bytes. The segment length indicated by the SEP header does not include the pad 
bytes or the CRC. The Flags field in the SEP header is used to minimize the transmission 
of status messages to the host. 
 
 
 



 16 
 

The steps involved for a host to utilize SEP would be as follows: 
• Open a TCP connection to the desired target. The host has to know the IP address and 

port number of the desired target to make a TCP connection. The mechanism to find 
the IP address and port number is not specified. It is assumed that the port number 
will be a “well known port number” for SEP target servers. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.1 SEP Header. 
 
• The next step is to establish a connection for a LUN between the Initiator and the 

target by sending a ‘Connect and Negotiate’ message (type 0x10). This is the first 
message sent over a new connection, as it contains the LUN that identifies the SCSI 
device for all future operations on this TCP connection. This command also contains 
a number of flags to define options, and two unsigned 16-bit flow control values. The 
first is MWPS, the maximum number of data bytes sent by the host on a write 
operation without receiving a “Get SCSI Data” command from the target; and the 
second MRPR, the maximum number of data bytes sent by the target on a READ 
operation without receiving a “Get SCSI Data” command from the host. 

 
• The initiator receives a ‘Negotiation Response’ message (type 0x11) sent by the 

target. This is the first message sent by the target and indicates that a connection has 
been established. It contains the target’s flag and flow control values as determined 
by the target from its capabilities and those requested by the host in the previous 
“Connect and Negotiate” message. These values are valid for all the subsequent 
communication on this connection. 

FlagsType Tag

SEP Segment Length Reserved

0 32 

Type:
0x01 Simple Tagged Command 
0x02 Head of Queue Tagged Command 
0x03 Ordered Tagged Command 
0x04 SCSI Data 
0x05 SCSI Status 
0x06 SCSI Message 
0x08 SCSI Data Request 
0x09 SCSI Set Data Pointer 
0x10 Connect and Negotiate 
0x11 Negotiation Response 
0x12 Third Party Open 
0x13 Third Party Open Response 
0x14 Third Party Close 
0x15 Third Party Close Response 



 17 
 

• The host can then transmit any of the appropriate SCSI commands of type 0x01, 
0x02, and 0x03 to send SCSI Command Descriptor Blocks to the target, commands 
of type  
0x04 to send data, commands of type 0x06 to send a message, commands of type 
0x09 to reset the target’s current data pointer, commands of type 0x12 to open a third 
party session with a specified IP address and LUN, and commands of type 0x14 to 
close a previously opened third party session. The target will respond to these 
commands with commands of type 0x04 to send data, commands of type 0x05 to 
send status messages, commands of type 0x13 to respond to a request to open a third  
party session, and commands of type 0x15 to respond to a request to close a third 
party session. 
 

• There is no specified way to close a connection from either side. The only presumable 
way is to terminate the TCP connection. The EOF on READ and EPIPE error on 
write will be detected as a terminated connection on the other side. 

 
One of the issues that is not considered by SEP is error recovery in case of a dropped 
connection. This leads to a couple of issues regarding the file-system state on the target 
side, which is unknown, when a connection is lost. 
 
SEP is the approach used by Adaptec in their Ether-Storage Technology. Their web site 
states “This new technology enables block-based storage traffic to be efficiently and 
reliably transferred over existing IP and Ethernet-based networks, and is the result of over 
two years of research and development at Adaptec on the future storage fabric 
architectures” [11].   
 
3.2 Internet SCSI (iSCSI) 
 
The Internet SCSI (iSCSI) is another example that is a combined effort of a group of 
companies including IBM, Cisco Systems, Hewlett-Packard, SANGate, Adaptec, and 
Quantum. It is currently being developed under the aegis of the Internet Engineering Task 
Force [12]. The protocol is on its course to become an RFC and is currently an Internet 
Draft at version 7. The iSCSI protocol, like SEP, is a session layer protocol that assumes 
the presence of a reliable connection oriented transport layer protocol like TCP. It is a 
much more elaborate protocol than SEP, and includes considerations for naming, TCP 
connection establishment, security, and authentication.  
 
Communication between an Initiator and a Target occurs over one or more TCP 
connections. The TCP connections are used for SCSI commands, Task management 
commands, data, protocol parameters, and control messages within an iSCSI Protocol 
Data Unit (iSCSI PDU). All related TCP connections between the same initiator and the 
target are considered to belong to a session (referenced by a session ID).  
 
3.2.1 Steps involved in iSCSI Protocol to support I/O operation  
 
The steps involved for a host to utilize iSCSI (draft 7) would be as follows: 



 18 
 

• Open a TCP connection to the desired target. The host has to know the IP address and 
port number of the desired target to make the TCP connection. There have been 
mechanisms described in another Internet Draft [13] for naming and discovery of 
targets. For this thesis, it is assumed that the IP address and the port number of the 
target is known to the initiator. 

 
• The next phase is the Login phase, where an iSCSI session is established between 

initiator and target. It sets the iSCSI protocol parameters, security parameters, and 
authenticates initiator and target to each other.  
 
The login phase starts with a login request via a “login command” (opcode 0x03) 
from the initiator to the target (Fig. 3.3). This is the first message sent over a new 
connection. The login request includes the protocol version supported by the initiator 
(currently 01), session and connection IDs, security parameters (if security is 
requested), and protocol parameters.  
 
The initiator receives a “Login Response” (opcode 0x23) message from the target. 
This is the first message sent from the target on a new connection after receiving the 
“Login Command” from the host. The target can answer the initiator in the following 
ways:  

o Login response with “login reject” to reject the session establishment request. 
o Login response with “login accept” with the session ID, iSCSI parameters, 

and Final bit 1. In this case, the target does not support any security, 
authentication mechanism or parameter negotiation and starts the session 
immediately.  

o Login response with Final bit 0 indicating the start of the authentication/ 
negotiation sequence. The negotiation is done with the help of “Text” 
exchange (opcode 0x04 from initiator to target, opcode 0x24 for the response 
back) which allows for the exchange of information in the form of key=value 
pairs.  

 
• The host can now send any of the other types appropriate for a SCSI initiator and is 

said to be in the Full Feature phase. There are 8 opcode types that can be sent from 
the host to the initiator, and 10 opcode types that can be sent back to the host by the 
initiator. 

o The primary pair of opcode types for accomplishing SCSI data transfers is the 
“SCSI Command” (opcode 0x01) which encapsulates a SCSI command block 
from the host to target, and the “SCSI Response” (opcode 0x21) which is used 
to report the status of a SCSI command from target back to host. 

o A pair of opcodes for “Task Management” (opcode 0x02 from initiator to 
target, opcode 0x22 for the response back) that allows the initiator to 
explicitly control the execution of one or more tasks in the target. 

o A pair for “Text” exchange (opcode 0x04 from initiator to target, opcode 0x24 
for the response back) which allows for the exchange of information in the 
form of key=value pairs.  



 19 
 

o A pair for “NOP” exchange (opcode 0x00 from initiator to target, opcode 
0x20 for the response back) which is used to verify that a control connection 
is still active. 

o “SCSI Data” (opcode 0x05 from initiator to target for WRITE operation, 
opcode 0x25 from target to initiator for READ operation) which is used to 
transfer SCSI data between initiator and target. 

 
• There are 3 unpaired “unsolicited responses” which the target can send to the 

initiator. 
o “Ready to Transfer” (opcode 0x31) which is sent by the target to the host 

when the target is ready to receive data from the host. 
o “Asynchronous Event” (opcode 0x32) which is sent by the target to the host to 

indicate special conditions.  
o “Reject” (opcode 0x3f) which is sent by the target upon receiving from the 

host a message with an opcode that it doesn’t recognize. 
 

• There is 1 unpaired “unsolicited responses” which the initiator target can send to the 
initiator. 

o “SNACK” (opcode 0x10) which is sent by the initiator to request 
retransmission of numbered- responses, data or R2T PDUs from the target.   

 
• SCSI data is sent over the same TCP connection as the one used to transfer the SCSI 

command from the initiator.  
o To read data from a target, the host sends a “SCSI command” message with 

an encapsulated SCSI CDB that describes the data the host wants to read. The 
target then sends the requested data (opcode 0x25) followed by the status to 
the initiator on the same TCP connection that was used to deliver the SCSI 
command.  

o To write data to a target, the host sends a “SCSI command” message on the 
control connection, receives back the associated “SCSI command response”, 
and then waits to receive the “Ready to Transfer” (R2T) response from the 
target. This message contains parameters describing that portion of the total 
amount of data that should now be transferred. The data (opcode 0x05) is then 
transferred from the initiator to the target on the same TCP connection that 
was used to deliver the SCSI command.  

 
There is an exception to this sequence of exchanges for doing WRITE 
operation. The initiator can send “Immediate Data” which follows the “SCSI 
Command” as Command Data (Fig. 3.2) going to the target. Also, the initiator 
can send “Unsolicited Data” as separate Payload Data Units (PDUs) following 
the SCSI Command without waiting for an R2T from the target. The 
maximum size of Unsolicited Data and Immediate Data, that can be 
transferred, is negotiated during Login phase. 
 

• There are two ways that a session can be terminated between the initiator and the 
target devices: 



 20 
 

o Explicit mechanism: The initiator sends a Logout Command when it wants to 
end the session with the target. The target acknowledges the received Login 
Command by sending a Login Response. After the exchange of this iSCSI 
PDUs, the session is terminated. 

o Implicit mechanism: The implicit way is to terminate the TCP connection 
without any warnings. The EOF on READ and EPIPE error on write will be 
detected as a terminated connection on the other side. This is not 
recommended but is an option that an initiator or a target might choose to 
close a session. 

 
3.2.2 iSCSI PDU format 
 
An iSCSI PDU has one or more header segments and, optionally, a data segment. After 
the entire header segment group there may be a header digest. The first segment, and in 
many cases the only segment, (Basic Header Segment or BHS) is a fixed-length 48-byte 
header segment. It may be followed by Additional Header Segment (AHS). So, if we 
have only a BHS (no data or digests) the size of the iSCSI PDU is 48 bytes. All the PDU 
segments and digests are padded to an integer number of 4 byte words. The padding bytes 
should be 0. The different components are defined as follows: 
• Basic Header Segment (BHS): The Basic Header Segment is 48 bytes long. The 

Opcode, TotalAHSLength, and DataSegmentLength fields appear in all iSCSI PDUs. 
In addition, the Initiator Task Tag, Logical Unit Number, and Flag fields, when used 
always appear in the same location in the header (Fig. 3.3). 

• Header Digest and Data Digest:  Optional header and data digests protect the integrity 
and authenticity of header and data, respectively. The digests, if present, are located, 
respectively, after the header and PDU-specific data and include the padding bytes. 
The digest types are negotiated during the login phase.  

• Additional Header Segment(AHS): The AHS starts with 4 byte TLV (Type-Length-
Value) information. It is followed by the actual AHS, the length of which is specified 
by Length field in TLV (Fig. 3.4). 

 
3.2.3 Sequence Numbering 
 
The iSCSI protocol supports command, status, and data numbering schemes which are 
needed during flow control, error handling, and error recovery. Command numbering is 
session wide and is used for ordered command delivery over multiple connections. It can 
also be used as a mechanism for command flow control over a session. Status numbering 
is per connection and is used to enable recovery in case of connection failure. Data 
numbering is per command and is meant to reduce the amount of memory needed by a 
target sending unrecoverable data for command retry. The three numbering schemes are  
 
 
 
 



 21 
 

Byte 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 

0 Opcode Opcode-specific fields 

4 TotalAHSLength Length of the data following the 48 byte header 

8 Logical Unit Number (LUN) or Opcode-specfic fields 

16 Initiator Task Tag or Opcode Specific fields 

20 – 

48 

Opcode-specific fields 

 

Fig. 3.2 iSCSI Basic Header Segment (iSCSI draft ver 7). 
 

 

 

 

 

 

 

 

 

 

Opcode: 
 
0x00: NOP-Out Message 
0x01: SCSI Command 
0x02: SCSI Task Management 

Command 
0x03: Login Command 
0x04: Text Command 
0x05:  SCSI Data-out(for 

WRITEs) 
0x06: Logout Command 
0x10: SNACK Request 

Opcode: 
 
0x20: NOP-In message 
0x21: SCSI Response 
0x22: SCSI Task Management Response 
0x23: Login Response 
0x24: Text Response 
0x25: SCSI Data In(for READs) 
0x26: Logout Response 
0x31: Ready To Transfer 
0x32: Asynchronous Event 
0x3f: Reject 



 22 
 

Byte 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

0 X I Opcode (0x01) F R W 0 0 ATTR Reserved CRN or Reserved 

4 TotalAHSLength DataSegmentLength 

8 Logical Unit Number (LUN) 

16 Initiator Task Tag 

20 Expected Data Transfer Length 

24 CmdSN 

28  ExpStatSN or ExpDataSN 

32 SCSI Command Descriptor Block (CDB) 

Header Digest (if any) 

Command Data (if any) 

48+ 

Data Digest (if any) 

 

Fig. 3.3 iSCSI Basic Header Segment(BHS) for SCSI Command (iSCSI draft ver  7). 
 

Byte 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

0 AHSType AHSLength AHS-Specific  

4+ AHS-Specific  

 

Fig. 3.4 iSCSI Additional Header Segment(AHS) for SCSI Command (iSCSI draftr ver 7). 



 23   
 

as follows: CmdSN (Command Sequence Number), StatSN (Status Sequence Number), 
and DataSN (Data Sequence Number). 
 
3.2.4 Error Recovery 
 
The iSCSI protocol, unlike SEP, deals with error recovery in case of protocol errors. This 
section of the protocol is undergoing a lot of change currently. It is assumed that iSCSI in 
conjunction with SCSI is able to keep enough information to be able to rebuild the 
command Protocol Data Unit (PDU), and that outgoing data is available in host memory 
for retransmission while the command is outstanding. It is also assumed that at a target, 
iSCSI and specialized TCP implementations are able to recover unacknowledged data 
from a closing connection or, alternatively, the target has the means to re-read the data 
from a device server. The transmission of, or absence thereof, status and sense 
information is used by the initiator to decide which commands have been executed or not. 
 
iSCSI recovery for communication errors involves the following steps: 
• abort the offending TCP connection(s) (target and initiator) and recover at the target 

all unacknowledged read data. 
• create one or more new TCP connections (within the same iSCSI session) and 

associate all the outstanding commands from the failed connection to the new 
connection(s) created at the initiator and the target. 

• the initiator will reissue all outstanding commands with their original Initiator Task 
Tag and their original Command Sequence Number (CmdSN). The latter is needed 
only when the commands were not acknowledged. If acknowledged, a new CmdSN 
needs to be used. The Opcode will be set to indicate that the command is a retry. 

• The target then performs the operation either by recovering the old data (if possible) 
or re-doing the operation. 

 
Other issues concerning configurable options, security, error handling, and recovery are 
also addressed in the latest iSCSI draft.  
 
3.2.5 Important Operational Parameters  
 
There are operational parameters defined in the iSCSI protocol to support I/O operation 
between the initiator and the target. The operational parameters are negotiated with the 
help of ‘Text Commands’ (going from initiator to target) and ‘Text Responses’ (going 
from target to initiator), exchanged during the Login or Full Feature Phase. During 
operational parameter negotiation, the key in ‘key=value’ pair (which forms the payload 
of ‘Text exchanges’) stands for the operational parameter. Some of the important 
operational parameter keys defined in the protocol and implemented in the iSCSI low-
level driver (explained in Chapter 5) are explained as follows: 
InitialR2T: The InitialR2T key is used to specify if the target can/cannot  support of 
Unsolicited Data in Separate Data PDUs. A ‘key=value’ pair of ‘InititialR2T=no’ means 
that the target can support Unsolicited Data in separate Data PDUs. A value of ‘yes’ 
means that the target cannot support Unsolicited Data in separate Data PDUs. 



 24   
 

Immediate Data: Initiator and Target negotiate support for Immediate Data. If the 
‘ImmediateData’ key is set to ‘yes’, then the Initiator can send Data as payload in the 
SCSI “SCSI Command” PDU.  Key value of ‘no’ means that the Initiator cannot send 
Data as payload in the iSCSI “SCSI Command” PDU. 
DataPDULength: Initiator and target negotiate the maximum data payload supported by 
the iSCSI “SCSI command” or “SCSI Data” PDUs through this key. The value for this 
key is in units of 512 bytes. 
FirstBurstSize: Initiator and target negotiate the maximum length supported for  
(Immediate Data + Unsolicited Data in Separate Data PDUs) in units of 512 bytes. 
 
The Text parameter negotiation for Login Phase has been designed and implemented by 
Narendran Ganapathy (Graduate Student, CS Dept., UNH) as part of his thesis. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 25   
 

 
 

Chapter 4 
 

Fast Kernel Tracing    
 

Fast Kernel tracing (FKT) is a method for obtaining a precise, time-stamped trace of the 
dynamic activities of kernel-level code[13]. The basic motivation being that it is 
extremely difficult to know exactly what an operating system is doing, especially in a 
networked environment. 
 
The method consists of placing special software “probe” macros at various locations in 
the kernel source code. Placement of probes is controlled by the kernel programmer, as is 
the information recorded by the probe. Typically, one probe is placed at the entry to, and 
another at the exit from, every kernel function of interest to the programmer. The entry 
probe can record the parameters passed into the function, and the exit probe can record 
the function’s return value also. If any changes are made regarding any probe (added, 
deleted or relocated), the kernel must be rebuilt and rebooted.  
 
Probes record data and store it into a large buffer in the kernel. The buffer size available 
is limited and can get filled up before tracing is finished. Currently, probing is suspended 
whenever the buffer gets filled. However, traces that cover many tens of seconds of 
intense operating system activity can be obtained by the current version of FKT. After 
recording has been finished, a user-level program can obtain a copy of the probe data 
from the kernel buffer and write it to a file for later off-line analysis. There are 
permanently assigned probes that record every IRQ, exception, system call, and task 
switch handled by the kernel during the sampling interval. This data, together with that 
from the programmer assigned codes, can be presented in the form of the actual traces 
themselves, with time spent in each step of the trace. However, it is easy to obtain more 
detailed data, such as the minimum, maximum, and average amounts of time spent in 
each kernel function, the nesting characteristics of the functions, etc.  
 
4.1  FKT Setup 

 
A software probe is a call to a special routine that reads the processor’s cycle clock and 
stores it into a buffer. The pid of the process, which is an identification code passed to the 
probe, and any additional parameters passed to the probe are recorded in addition to the 
processor’s cycle clock. The format of a probe entry in the buffer is: 
 
1 low-order 32-bits of processor cycle clock  
2 pid of current process in low 16-bits, cpu number in high 16-bits 
3 code passed to probe 
4 Parameter 1 if present 



 26   
 

5 Parameter 2 if present 
…. 
3+N  Parameter N if present 
 
Each probe stores upto 3+N 32-bit unsigned integers into the buffer, where N is the 
number of parameters passed in the probe.  
 
A “code” is a unique number assigned by the kernel programmer that is used to identify a 
particular probe. There are two types of codes: 
• Unshifted codes: These codes are never accompanied by parameters. Therefore, the 

probe entry for these codes is always exactly the first 3 integers shown above. These 
codes are permanently assigned to system calls, exceptions, and IRQs. 

• Shifted codes: These codes may be accompanied by parameters. The kernel 
programmer chooses the assignment of shifted code values. 

 
The user-level programs actually control the kernel probing via system calls. The kernel’s 
probe recording buffer is allocated dynamically at the start of a measurement session. A 
set of probes is also enabled at that time, so that whenever control subsequently flows 
through one of the probe points in this set, the corresponding probe record will be stored 
in the probe buffer, as explained earlier. The user can selectively change the set of 
enabled probe points in order to limit tracing to only certain segments of a longer test. 
The user can also include additional probe records with appropriate parameters. Such 
probes help the user to correlate kernel activities with actions in the user-level code. After 
probing has been stopped, the user-level control program obtains a copy of the data from 
the kernel’s recording buffer and writes it to a file for later offline analysis. The 
measurement session ends with the release of all the pages allocated to the kernel 
recording buffer. 
 
4.2 Application Programmer Interface 
 
Any recording session is started when the fkt_setup() system call is invoked by a user-
level program with a 32-bit keymask passed as a parameter. This allocates the kernel’s 
recording buffer and enables those probes already compiled into the kernel whose 
keymasks contain a 1 that matches a 1 in the corresponding bit in the parameter. 
Whenever control flows through them these probes will write a record into that buffer. 
 
After the probe buffer has been set up, the user can invoke the fkt_keychange() system 
call to enable and/or disable sets of probes with the appropriate keymasks. This system 
call also inserts into the recording buffer a probe record having the code 
FKT_KEYCHANGE_CODE and the new keymask and current system clock as 
parameters. At any time a user program can insert its own probe records into the kernel’s 
recording buffer by making fkt_probe0(), fkt_probe1(), or fkt_probe2() system 
calls with the appropriate number of parameters. After a recording session has been 
stopped for the final time, the user invokes the fkt_getcopy() system call to copy the 
kernel’s probe buffer into a file in user space for later analysis. After data from a 
measurement session has been copied out of the kernel buffer and written to a file, the 



 27   
 

user can start another session by invoking the fkt_reset() system call. fkt_reset() 
takes the same parameter and has the same effect as fkt_setup(), except that it 
reutilizes an existing kernel recording buffer from a prior fkt_setup() rather than 
allocating a new one.  
 
After the probing is done, a user program makes a final system call sys_endup(), which 
will release all the pages allocated to the kernel recording buffer.  
 
4.3 Kernel Programmer Interface 
 
A number of macros have been defined that can be utilized within kernel code to cause 
probe data to be recorded when control flows through them. Their names are: 
 
 FKT_PROBEx(KEYMASK, CODE, …) 
 
where x is a digit in the range 0…5 that indicates the number of parameters whose values 
replace the ‘…’ in the macro. This gives a programmer the flexibility of passing different 
numbers of parameters to the probe depending on the need. The above macros are 
designed for use with shifted codes only.  
 
For unshifted codes, which are never accompanied by parameters, only one macro is 
necessary: 
 
 FKT_PROBE_NOSHIFT(KEYMASK, CODE) 
 
4.4 Recording and Printing 
 
As explained earlier, any program can be instrumented to set up and start probing, run a 
test, stop probing, and copy the data to a file. A general-purpose tool called 
fkt_record has been developed that will probe any “target” program. The 
fkt_record program starts by calling fkt_setup() to set up the probing. It then 
calls fork() to create a child process and that child process calls exec() to start 
running the target program. When the target program completes, fkt_record disables 
all probes, copies the kernel’s probe buffer to a file and then calls fkt_endup() to 
deallocate the buffer. The output file is written in binary. fkt_record takes two 
optional command-line switches: 

• -k bitmask 
The bitmask value is a number and determines which probes will be enabled 
while recording the trace. If this switch is omitted, a value of –1 is used as the 
initial key set parameter, which will enable all probes.  

• -f outputfile 
The outputfile value, which is a string, denotes the name of the file to which 
kernel buffer is written. The buffer is written to a file called ‘trace_file’ if the 
switch is not given. 

 



 28   
 

A second tool called fkt_print has been developed to analyze and print the file 
recorded by fkt_record. fkt_print takes the following optional command-line 
switches to modify the information being printed depending upon the specified switch. 

• -f inputfile 
The inputfile value, which is a string, denotes the kernel buffer file. The buffer is 
read from a file called ‘trace_file’ if the switch is not given. 

• -p 
If this switch is present, printing is forced for all the items found in the buffer. If it 
is not given, printing starts with the first item having the pid of the child process 
spawned by fkt_record. 

• -c 
If this switch is present, the time printed for each line of the trace is the 
cumulative time since the time of the first probe record. If it is not given, the time 
printed on each line is the time since the previous line printed, which is the time 
elapsed between those two probe points. 

• -d 
If this switch is present, debug printout to show stack nesting, etc. is written along 
with trace output. If not given, no debugging output is printed. 

• -a  
If this switch is present, statistics are accumulated for all trace items. If it is not 
given, statistics are accumulated only between the first and second probe records 
for the times() system call with the pid of the child process spawned by 
fkt_record. This means that the child process should call times()to time its 
own exection. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 29   
 

 
 
 

Chapter 5 
 

SCSI SubSystem in Linux 
 
In this chapter, we first discuss the layered architecture for SCSI support in the Linux 
Operating System. We then discuss the important data structures involved, followed by a 
discussion of the relationship between the different structures. Finally, the discovery 
process for the targets is explained. 
 
5.1 SCSI Layers in Linux 
 
The whole SCSI subsytem in the Linux kernel is divided into three levels: upper, middle, 
low-level drivers (Fig. 5.1). We discuss the functionalities of each layer as follows: 
 

 
 

 Fig. 5.1 SCSI SubSystem in Linux. 
 
5.1.1 Upper level 
 
The upper level of the SCSI subsystem has the task of taking requests that come from 
outside of the SCSI subsystem, and turning them into actual SCSI requests. The requests, 
in turn, are passed down to the middle level. Once the command processing is complete, 



 30   
 

the upper level receives the status from the middle level, and in turn the upper level will 
notify the external layer of the status.  
 
Requests originate from 3 different sources. For block devices, requests originate from 
the ll_rw_blk layer. For character devices, the requests effectively originate directly from 
the filesystem code as users attempt to operate on the devices. Finally, the third source of 
requests is via the ioctl system call - to a large degree this is similar to how character 
device requests are originated, however ioctls can also be issued to block devices. The 
basic tasks of the upper layer are:  

• Translate incoming requests into SCSI commands 

• Create scatter-gather lists for the request 

• Track usage counts as file descriptors are opened and closed 

• Maintain externally visible arrays for device size and block size 

• Finally, there is some amount of common glue that is required to make it possible 
for an upper level driver to be a module 

 
5.1.2 Middle level 
 
The SCSI middle level (SML) provides various functions that can be described as the 
following subcomponents:  the module-related glue itself (only used when SCSI is used 
as a module), Proc filesystem support, Bus scan support, Other miscellaneous 
initializations (both boot time and module related), Error handling, Queuing of 
commands, Bottom half handler, and Utility functions.  

 
5.1.3 Low-level drivers 
 
The low level drivers (LLD) actually transfer commands, data, status, messages etc. 
between the initiator and the target. Conventional Fiber Channel, SEP or iSCSI can be 
used as drivers to carry out SCSI requests from initiator from target.  
 
 
5.2 Important SCSI Data Structures 
 
There are three important data structures involved in the implementation of the LLDs: 
Scsi_Host_Template, Scsi_Host, and Scsi_Cmnd. We explain the three data 
structures in different sub-sections and then discuss the relationship among them and 
their involvement in communication between the SML and LLD.  
 
5.2.1 Scsi_Host_Template struct  
 
The Scsi_Host_Template struct is the most important data structure (Fig. 5.2), as it 
serves as a direct interface between the SML and the LLD (Fig. 5.3).  



 31   
 

 
typedef struct SHT 
{ 
 struct SHT * next; 
 struct module * module; 
 struct proc_dir_entry *proc_dir; 
 int (*proc_info)(char *, char **, off_t, int, int, int);  
 const char *name;  
 int (* detect)(struct SHT *);  
 int (*revoke)(Scsi_Device *);  
 int (*release)(struct Scsi_Host *);  
 const char *(* info) (struct Scsi_Host *);  
 int (*ioctl)(Scsi_Device *dev, int cmd, void *arg);  
 int (* command)(Scsi_Cmnd *);  
 int (* queuecommand)(Scsi_Cmnd *, void (*done)(Scsi_Cmnd *));  
 int (*eh_abort_handler)(Scsi_Cmnd *);  
 int (*eh_device_reset_handler)(Scsi_Cmnd *);    
 int (*eh_bus_reset_handler)(Scsi_Cmnd *);    
 int (*eh_host_reset_handler)(Scsi_Cmnd *);    
 int (* abort)(Scsi_Cmnd *);  
 int (* reset)(Scsi_Cmnd *, unsigned int);    
 int (* bios_param)(Disk *, kdev_t, int []);    
 void (*select_queue_depths) struct Scsi_Host *, Scsi_Device *);  
 int can_queue; 
 int this_id; 
 short unsigned int sg_tablesize;  
 short cmd_per_lun;  
 unsigned char present;  
 unsigned unchecked_isa_dma:1; 
 unsigned use_clustering:1;  
 unsigned use_new_eh_code:1; 
 char *proc_name; 
} Scsi_Host_Template; 

 
Fig. 5.2 Scsi_Host_Template struct Definition. 

 
The important fields for LLD implementation are discussed as follows: 
 
int (*proc_info)(char *, char **, off_t, int, int, int) 

Can be used to export driver statistics and other information to the world outside the 
kernel (i.e., userspace) through the /proc interface and it also provides an interface to 
feed information to the host bus adapter (HBA).               
int (* detect)(struct SHT *) 

The detect function returns non-zero on detection of a HBA, indicating the number of 
HBAs of this particular type were found.  It should also initialize all data necessary for 
this particular HBA.  It is passed the host number, so this host knows where the first entry 
is in the scsi_hosts[] array. 
const char *(* info)(struct Scsi_Host *) 

The info function will return whatever useful information the developer sees fit.  If not 
provided, then the name field will be used instead. 
int (* command)(Scsi_Cmnd *) 

The command function takes a target, a command (this is a SCSI command formatted as 
per the SCSI specification), a data buffer pointer, and data buffer length pointer.  The 



 32   
 

return value is a status field which is of integer type. The values of the field can be one of 
the following: 

0 SCSI status code 
1 SCSI 1 byte message 
2 host error return 
3 mid level error return 

int (* queuecommand)(Scsi_Cmnd *, void (*done)(Scsi_Cmnd *)) 
The queuecommand() function works in a similar manner to the command function.  It 
takes an additional parameter, void (* done)(int host, int code) which is passed the host 
number and exit result when the command is complete. Host number is the position in the 
hosts array of this HBA. The done() function must only be called after queuecommand() 
has returned. 
int (*eh_abort_handler)(Scsi_Cmnd *) 

Since the SML handles time outs, etc, we want to be able to abort the current command.  
Abort returns 0 if the abort was successful.  If non-zero, the code passed to it will be used 
as the return code, otherwise DID_ABORT (0) should be returned. 
int (* reset)(Scsi_Cmnd *, unsigned int) 

The reset function will reset the SCSI bus. Any executing commands should fail with a 
DID_RESET in the host byte. The Scsi_Cmnd struct (explained in Section 5.2.3) is 
passed so that the reset routine can figure out which HBA should be reset, and also which 
command within the command block was responsible for the reset in the first place.   
int (* bios_param)(Disk *, kdev_t, int []) 

This function determines the bios parameters for a given hard disk. These tend to be 
numbers that are made up by the HBA.  Parameters: size, device number, list (heads, 
sectors, cylinders). 
int can_queue 

It is set to the maximum number of simultaneous commands a given HBA will accept. 
int this_id  

This is the id of the host and is set to 7 in most cases. 
int sg_tablesize 

This determines the degree to which the HBA is capable of scatter-gather. The scatter-
gather list is discussed later. 
unsigned use_clustering 

If true, all the contiguous memory blocks in the scatter-gather list are clustered. 
 
 
 
 
 
 
 
 



 33   
 

 
 

Fig. 5.3 API between SCSI Mid-Level and Low-Level driver. 
 

 
 



 34   
 

5.2.2 Scsi_Host struct 
 
The Scsi_Host (Fig. 5.4) structure is used to describe each instance of a HBA on the 
system. For example, if there are two Adaptec cards in the system, then there are two 
instances of Scsi_Host structure, one for each. However, there will be only one instance 
of the Scsi_Host_Template struct. 
 
struct Scsi_Host 
{ 

struct Scsi_Host      * next; 
Scsi_Device           * host_queue;  
struct task_struct    * ehandler;   
struct semaphore      * eh_wait;   
struct semaphore      * eh_notify; 
struct semaphore      * eh_action;  
unsigned int            eh_active:1;  
wait_queue_head_t       host_wait; 
Scsi_Host_Template    * hostt; 
unsigned short host_no; 
unsigned long last_reset; 
unsigned int max_id; 
unsigned int max_lun; 
unsigned int max_channel; 
unsigned char dma_channel; 
unsigned int  irq; 
unsigned int unique_id; 
unsigned char max_cmd_len; 
int this_id; 
int can_queue; 
short cmd_per_lun; 
short unsigned int sg_tablesize; 

      unsigned use_clustering; 
      void (*select_queue_depths)(struct Scsi_Host *, Scsi_Device *);   
};        

 
Fig. 5.4 Scsi_Host struct Definition. 

 (Certain fields in the struct have been excluded for the sake of brevity) 
 
The important fields for LLD implementation are discussed as follows: 
 
unsigned int host_no 

This is the host number for this HBA. 
unsigned int max_id 

This is the maximum SCSI ID for targets/disks accessible through the HBA. The default 
value is 8.  
unsigned int max_lun 

This is the maximum SCSI LUN for targets/devices accessible through the HBA. 
unsigned int max_channel 

This is the maximum channels for targets/disks accessible through the HBA. 
int this_id, int can_queue, int sg_tablesize, unsigned use_clustering 

All these fields have been discussed in Section 5.2.1 
 



 35   
 

 
5.2.3 Scsi_Cmnd struct 
 
The Scsi_Cmnd struct (Fig. 5.5) contains all the information associated with a SCSI 
Command. This structure represents a single command that is queued to the LLD. All the 
context associated with the actual running command is stored in this structure. As the 
task accomplishment for a command progresses, the state of the command is maintained 
in this data structure.   
 
struct Scsi_Cmnd{ 
 struct Scsi_Host *host; 

unsigned short state; 
Scsi_Device *device; 
Scsi_Request *sc_request; 
struct scsi_cmnd *next;  
int eh_state; 
void (*done) (struct scsi_cmnd *);      
int retries; 
int allowed; 
int timeout_per_command; 
unsigned volatile char internal_timeout; 
struct scsi_cmnd *bh_next; 
unsigned int target; 
unsigned int lun; 
unsigned int channel; 
unsigned char cmd_len; 
unsigned char sc_data_direction;  
unsigned char cmnd[MAX_COMMAND_SIZE]; 

      struct timer_list eh_timeout; 
      void *request_buffer; 

unsigned char data_cmnd[MAX_COMMAND_SIZE]; 
unsigned short use_sg; 
unsigned short sglist_len; 

      unsigned short abort_reason; 
unsigned bufflen; 
void *buffer; 
unsigned underflow; 

 unsigned transfersize; 
int resid; 
struct request request; 
unsigned char sense_buffer[SCSI_SENSE_BUFFERSIZE]; 
unsigned flags; 

      void (*scsi_done) (struct scsi_cmnd *); 
Scsi_Pointer SCp; 

 int result; 
}; 

Fig. 5.5 Scsi_Cmnd struct Definition.  
 (Certain fields in the struct have been excluded for the sake of brevity) 
 

The important fields for LLD driver implementation are discussed as follows: 
 
struct Scsi_Host *host 

This is a pointer to the Scsi_Host associated with the device. 
 



 36   
 

unsigned short state 

This indicates the current status of this command. It can take the following values:  
SCSI_ STATE_TIMEOUT, SCSI_STATE_FINISHED, SCSI_STATE_FAILED, 
SCSI_STATE_QUEUED, SCSI_STATE_UNUSED, 
SCSI_STATE_DISCONNECTING, SCSI_STATE_INITIALIZING, 
SCSI_STATE_BHQUEUE, SCSI_STATE_MLQUEUE 
void (*done) (struct scsi_cmnd *) 

This is a pointer to a function for command completion implemented in the SML. This 
function is called by the LLD, after it receives a SCSI Response from the Target (Disk).  
int retries 

This variable denotes the number of times a command has been retried by the SML.  
int timeout_per_command 

This variable denotes the time (in jiffies), the SML waits before it decides that a 
command has timed out. If a SCSI Command is not satisfied within this time interval, the 
SCSI command is aborted by calling the abort() function defined in 
Scsi_Host_Template struct.  
unsigned int target 

This is the unique id used to refer to the SCSI target (disk) to which the SCSI Command 
has to be sent.  
unsigned int lun 

This refers to the logical unit (LUN) within the SCSI target (disk). If the target supports 
only a single LUN, then this number is 0.  
unsigned char cmd_len 

This variable gives the length of the Command Descriptor Block (CDB). It can be 6, 10, 
12 or 16 bytes in length.  
unsigned char sc_data_direction 

This variable is a boolean and is used to denote if the SCSI Command associated is for a 
READ or WRITE operation. 
unsigned char cmnd[MAX_COMMAND_SIZE] 

This is the actual Command Descriptor Block (CDB) associated with a SCSI Command. 
unsigned request_bufflen    
This variable specifies the total number of bytes of data transfer involved with the SCSI 
Command. 
void *request_buffer  
This is the data buffer associated with the SCSI Command. For a READ operation, this 
buffer has to be filled in by the Target (disk) and for a Write operation, this buffer has to 
be written to the Target (disk). 
unsigned short use_sg 

This variable is used to denote the number of scatter-gather buffers associated with the 
SCSI Command. use_sg=0 denotes presence of a single char buffer. 
unsigned short abort_reason 

This variable is set when a SCSI Command has to be aborted by the SML. The reason is 
specified by this variable. 
unsigned char sense_buffer[SCSI_SENSE_BUFFERSIZE]  

This buffer is used for sense data by the LLD. The sense data is received by the target 
and is filled before making a call to the done() function. 
int result  

The LLDs fill in this field with the status of the command prior to calling the SML 
completion routine. The status consists of status_byte, the msg_byte, and the driver_byte. 



 37   
 

• The status byte is the status that is returned from the device.  
• The driver_byte is the status returned by the LLD. 
• The msg_byte is the message byte that comes back from the device. 
 
5.3 Discovery Process for SCSI Targets  
 
The LLD in the SCSI subsystem is software code and drives the HBA, the physical entity 
present on the system to access the targets (Fig. 5.1). When an LLD is loaded, the 
corresponding HBA is registered with the system. The registration happens through the 
register() function implemented in the LLD. The register() function has to specify 
the number of targets and LUNs per target  available through the particular HBA. The 
SCSI Upper-Level will give target IDs to all the targets available through the HBA. The 
SML will then try to get basic information about the different targets (disks) by sending 
SCSI Commands through the queuecommand() function implemented in the LLD. The 
SCSI Commands sent to the target are of types INQUIRY, TEST_UNIT_READY and 
DISK_CAPACITY (different SCSI Command types/opcodes are explained in Appendix 
B). It will then try to READ block 0 which is the superblock for the SCSI device. After 
successful completion of these commands, the Operating system assigns device names 
/dev/sdx (compliant with SCSI naming convention for the Linux Operating system) to the 
discovered SCSI targets/disks. The discovered SCSI targets/disks can be accessed like 
any normal disk for I/O operation, making partitions, making a filesystem, etc.  
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 



 38   
 

 
 

Chapter 6 
 

SEP Initiator Design And Implementation 
 
In this chapter, we first give an overview of the SEP Low-Level Driver design. The 
configuration tool ‘sep_config’, which is used to make a TCP connection and break the 
TCP connection with the target, is explained next. The important data structures for 
book-keeping with the SEP Low-Level Driver are also discussed. Finally, we discuss the 
Scsi_Host_Template Interface Implementation in the SEP Low-Level Driver.  
 
6.1 Overview of SEP Low-Level Driver (LLD) Design 
 
When the SEP low-level driver (LLD) is loaded, it registers itself with the SCSI Mid-
level (SML). The SEP LLD provides to the SML, through the Scsi_Host_Template 
struct, a list of functions that enable the SML to pass commands to the SEP LLD.  As 
soon as the SML is registered, it tries to get basic information about the targets(disks) by 
passing SCSI commands INQUIRY, TEST_UNIT_READY,  DISK_CAPACITY. The 
SML then attempts to send a READ Command (to read superblock of the target/disk) to 
the SEP LLD.  The TCP connection to the target is not made at the time of registration of 
SEP LLD, so the SML is not able to get this information. 
 
The ‘sep_config’ configuration tool, explained in Section 6.2, is used to make a 
connection to the target through the /proc filesystem interface. After a TCP connection 
is made, the LLD enters the Login Phase and does Text Parameter negotiation. After a 
socket is created, a kernel thread sep_thread (Fig. 6.1) is generated which is responsible 
for communication with the target. The SEP LLD supports multiple targets and for each 
target, a separate sep_thread is created for an established TCP connection. The 
sep_thread sends and receives SEP packets to/from a particular target (disk). As soon as 
a thread is spawned, it sends a ‘Connect and Negotiate’ message to the target which is 
responded to by a ‘Negotiation Response’ message from the target. After this sequence of 
communication messages between the initiator and target has been exchanged, the LLD 
notifies the SML that it is ready to send SCSI commands to the target. The current 
implementation of the SEP LLD does not negotiate the flow parameter values (specified 
by the SEP protocol) with the target. The SEP LLD then waits on a queue to get 
commands from the SML.  



 39   
 

 
Fig. 6.1 SEP Low-Level Driver (LLD) Design. 

 
Each WRITE request by the SML results in the sep_thread sending two SEP Payload 
Data Units (PDUs) to the target: the first is the SEP ‘Simple Tagged Command’ PDU 
(opcode 0x01), which contains the SCSI CDB as the payload; the second is the SEP 
‘SCSI Data’ PDU (opcode 0x04), which is the WRITE Data itself. The sep_thread then 
waits for a SEP ‘SCSI STATUS’ PDU (opcode 0x05) from the target to know if the data 
was written correctly or not. After this write request, the sep_thread again waits on a 
wait queue to get the next SCSI command from the SML. 
 
Each READ request, on the other hand, will just result in the sep_thread  sending to the 
target a single SEP ‘Simple Tagged Command’ PDU (opcode 0x01), which contains the 
SCSI CDB. The sep_thread then waits for the data from the target to be read into the 
data buffers provided by the SML. After this, the sep_thread again sits on a wait queue 
to get the next SCSI command from the SML. 
 
As required by the SEP protocol, fragmentation of SEP packets has been implemented, 
which means that if the amount of data is greater than 65535 bytes, then more than one 
SEP packet is used to send it. The other side (initiator or target) receives all the SEP data 
packets till it gets the last one, which is denoted by the 0x80 flag in the SEP header. 
 
When there is a huge amount of data to be written or read, the SML passes an array of 
data buffer pointers (instead of single data buffer pointer) to the SEP LLD, which is 
referred to as ‘scatter-gather list’. The scatter-gather list is used when the requested 



 40   
 

amount of memory is not available contiguously to the SML. The SEP LLD can handle a 
scatter-gather list, that is, if it gets an array of data pointers, it will pass all the pointers to 
the TCP/IP socket functions appropriately.   
 
6.2 sep_config  
 
sep_config is a user-level program application which brings the SEP protocol support 
up/down in the initiator. The program can be used to bring up the initiator only if the 
scsi_sep module is loaded. The sep_config program can be invoked by the following 
syntax from the shell command prompt: 
 
sep_config up/down [ip_address or hostname] [host number]  
                   [lun number] 

 
up/down - bring up/down the SEP initiator protocol support in the Linux O/S. 
ip_address - ip_address or hostname of the target. 
host number - SCSI host number which is entered in the /proc filesystem.  

It specifies the SCSI Host Bus Adapter number assigned by the 
kernel. 

lun number - specifies the LUN on a specific target device.  
 
When the sep_config interface is brought up, the sep_config initiates a TCP connection 
by calling SEP LLD functions and writes the ip_address and LUN number of the target in 
the /proc/scsi/scsi_sep/host_number file. To cause a disconnect, one brings down the 
sep_config interface which, as a result, breaks the TCP connection with the target. 
Connection/Disconnection is done by specifying ‘up’/‘down’ as the first parameter when 
invoking the sep_config program. sep_config emulates the ifconfig up/down interface 
provided for Ethernet drivers on Linux. 
 
6.3 Data structures involved in SEP LLD 
 
There is one data structure involved in keeping state information with the LLD: 
sep_control_block (Fig. 6.2). The sep_control_block struct keeps specific 
information for a single active target.  



 41   
 

 
Fig. 6.2 Organization of Data Structures in SEP LLD. 

 
The fields in sep_control_block struct (Fig. 6.3) are explained as follows: 
 
struct socket * sock; 

This variable stores the socket information about a TCP connection.  
sruct task_struct * sep_thread;           

This thread is used to transmit/receive SEP PDUs from/to the target. 
Scsi_Cmnd *Cmnd; 
This is a pointer to the Scsi_Cmnd struct maintained by the SML.  
struct iovec iov_tx[SGLIST+2];  
This struct stores the buffer pointers and is used by the TCP routines to send data through 
the TCP socket. 
struct msghdr tx_msghdr;  
This struct is passed as a parameter to the TCP function, sock_sendmsg(). It contains 
information about the TCP buffers that are involved in sending data through the TCP 
socket. 
 
 



 42   
 

struct sep_control_block { 
  struct socket * sock;   
  struct semaphore rx_sem; 
  struct semaphore tx_sem;   
  struct task_struct * sep_thread; 
  Scsi_Cmnd *Cmnd;      
  struct msghdr msg_tx; 
  struct msghdr msg_rx;      
  struct iovec iov_tx[SG_LIST+2];   
  struct iovec iov_rx[SG_LIST+1];       
  struct sep_header sephdr_tx;   
  struct sep_header sephdr_rx;   
  void   (*global_done) ( Scsi_Cmnd *); 
  wait_queue_head_t global_wait_queue; 
  int scsi_sep_ip_address;       
} 

Fig. 6.3 sep_control_block struct Definition. 
 
struct iovec iov_rx[SGLIST+1];  
This struct stores the buffer pointers and is used by the TCP routines to receive data 
through the TCP socket. 
struct msghdr rx_msghdr;  
This struct is passed as a parameter to the TCP function, sock_recvmsg(). It contains 
information about the TCP buffers that are involved in receiving data through the TCP 
socket. 
struct sep_header sephdr_tx;  
This struct stores the SEP header that is to be sent to the target. 
struct sep_header sephdr_rx;   
This struct stores the SEP header that is received from the target. 
wait_queue_head_t global_wait_queue;  

This is the wait queue where the SML queues up SCSI Commands for the sep_thread to 
process them. 
void   (*global_done) ( Scsi_Cmnd *); 

This is a function pointer to the done() function implemented by the SML, and is called 
by the SEP LLD whenever a SCSI Command has been processed.  
int scsi_sep_ip_address; 

This variable stores the IP address of the target and is used when making a TCP 
connection to the target. 
 
6.4 The SCSI_Host_Template Implementation  
 
The SEP initiator code which forms the LLD in the SCSI Initiator subsystem, has 
implemented the functions described in the SCSI_Host_Template struct in Chapter 5. 
The following function definitions and field values are defined in the jump table present 
in scsi_sep.h (Fig. 6.4). 
 
 
 
 
 
 
 



 43   
 

#define SCSI_SEP {                                                                 
 
detect:  scsi_sep_detect, 
release:  scsi_sep_release, 
proc_info:  scsi_sep_proc_info, 
info:   scsi_sep_info, 
ioctl:  scsi_sep_ioctl, 
queuecommand: scsi_sep_queuecommand, 
eh_abort_handler: scsi_sep_abort, 
reset:  scsi_sep_reset, 
bios_param:  scsi_sep_bios_param, 
can_queue:  1,   
this_id:  7,  
sg_tablesize: 64,     
cmd_per_lun: 1,  
unchecked_isa_dma:0, 
use_clustering: ENABLE_CLUSTERING, 
use_new_eh_code: 1 
} 

Fig. 6.4 SCSI_Host_Template struct Definition.  
 
 
The API functions implemented in the SEP LLD (Fig. 6.5) are described as follows: 
 
int scsi_sep_detect(Scsi_Host_Template * tmpt) 

This function is called when the SEP LLD is loaded. This function calls the 
scsi_register function, which is implemented in the SML, in order to register the SEP 
initiator.  The LUN and target fields in the tmpt struct specify the number of targets and 
number of LUNs in each target that are accessible through this initiator. The hostdata 
struct (containing SEP LLD specific information) is registered with the SML that keeps 
the state information about all the targets. The pointer to the global_hostdata struct is 
saved as a field in Scsi_Host struct (returned when SML scsi_register() function is 
called). 
int scsi_sep_release(Scsi_Host_Template * tmpt) 

This function is called when the sep initiator driver module is unloaded. This function 
unregisters the initiator by calling the scsi_unregister function implemented in the 
SCSI Mid-level. The socket connection with the target is released and the sep_thread is 
terminated.  
int scsi_sep_proc_info(char *buffer, char **start, off_t offset, int 
length, int inode, int inout)   

This function is called when the user level configuration tool ‘sep_config’ (explained in 
Section 6.2) is executed. It can also be called from the /proc interface.  
const char *scsi_sep_info(struct Scsi_Host *host) 

This function is called whenever the SEP initiator driver module is loaded. This function 
returns a buffer denoting the SEP initiator driver name in string format.  
 

 



 44   
 

  
Fig. 6.5 API between SCSI Mid-Level and SEP Low-Level Driver. 

 
 
 
 
 



 45   
 

 
int scsi_sep_queuecommand(Scsi_Cmnd * Cmnd, void (*done) (Scsi_Cmnd *)) 

This function is called whenever the SCSI Initiator Mid-level has to pass any SCSI 
Command to the SEP initiator driver.  This function is called in the context of a global 
lock called io_request_lock, so there is a requirement that we limit processing that is to 
be done in this function. This function calls the do_command() function implemented in 
the SEP Initiator driver which queues up the SCSI command for the sep_thread. The 
sep_thread is responsible for transmitting the SCSI command encapsulated in the 8 byte 
SEP header to the target. 
int scsi_sep_abort(Scsi_Cmnd * Cmnd) 

This function is called whenever the SML has to abort any SCSI Command after a time-
out is reached. This function is also called in the context of a global lock called 
io_request_lock, so there is a requirement that we that we limit processing that is to be 
done in this function. There are no error recovery mechanisms in the SEP 
implementation, so we just break the socket connection and kill the sep_thread.  
int scsi_sep_reset(Scsi_Cmnd * Cmnd) 

This function is exactly the same as the function scsi_sep_abort. 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 



 46   
 

 
 

Chapter 7 
 

iSCSI Initiator Design And Implementation 
 
In this chapter, we first give an overview of the iSCSI Low-Level Driver design. The 
important data structures for book-keeping with the iSCSI Low-Level Driver are also 
discussed. The Scsi_Host_Template Interface Implementation in the iSCSI Low-Level 
Driver is explained next. Finally, step-by-step procedures to handle READ, WRITE, and 
TASK MANAGEMENT Requests are described.  
 
7.1 Overview of iSCSI Low-Level Driver (LLD) Design 
 
When the iSCSI low-level driver (LLD) is loaded, it registers itself with the SCSI Mid-
level (SML). The iSCSI LLD provides to the SML, through the Scsi_Host_Template 
struct, a list of functions that enable the SML to pass commands to the iSCSI LLD.  As 
soon as the SML is registered, it tries to get basic information about the targets(disks) by 
passing SCSI commands INQUIRY, TEST_UNIT_READY,  DISK_CAPACITY. The 
SML then attempts to send a READ Command (to read superblock of the target/disk) to 
the iSCSI LLD.  The TCP connection to the target is not made at the time of registration 
of iSCSI LLD, so the SML is not able to get this information. 
 
The ‘iscsi_config’ configuration tool, developed by Narendran Ganapathy (Appendix C), 
is used to make a connection to the target through the /proc filesystem interface. After a 
TCP connection is made, the LLD enters the Login Phase and does Text Parameter 
negotiation. After successful Login Phase Parameter Negotiation, the iSCSI LLD spawns 
two threads.  A transmit thread (tx_thread) is started that can transmit iSCSI PDUs of 
type ‘SCSI Command’ (opcode 0x01), ‘Task Management Command’ (opcode 0x02) and 
‘SCSI DataOut’ (opcode 0x02) to the target. A receive thread (rx_thread) is started that 
can receive iSCSI PDUs of type ‘SCSI Response’ (opcode 0x21), ‘Task Management 
Response’ (opcode 0x22), ‘SCSI Data-In’ (opcode 0x25), ‘Ready to Transfer’ (opcode 
0x31), and ‘Reject’ (opcode 0x3f) from the target.  



 47   
 

 
Fig 7.1 iSCSI Low-Level driver (LLD) Design. 

 
After starting the two threads (Fig. 7.1), the iSCSI LLD enters the Full Feature Phase and 
notifies the SML that a target with a particular target number is accessible for I/O 
operations. The SML again passes the SCSI commands INQUIRY, 
TEST_UNIT_READY, DISK_CAPACITY, and READ (to read the superblock of the 
target/disk) to the iSCSI LLD. The iSCSI LLD is able to get all the relevant information 
from the Target as it has an established TCP connection and is in the Full Feature Phase.  
 
When a new command is passed to the LLD through the Scsi_Host_template API, the 
LLD sets up the TCP buffers to send the iSCSI PDU of type ‘SCSI Command’ (opcode 
0x01). The tx_thread is woken up to send the PDU to the target. Data handling for any 
SCSI Command by the LLD depends on the operation involved: READ or WRITE. We 
discuss data handling by the iSCSI LLD in two separate cases: 

• For a READ request, the LLD receives the ‘SCSI Data-In’ PDUs through the 
rx_thread. It fills the data buffers provided by the SML. 



 48   
 

• For a WRITE request, the LLD sends the ‘SCSI Data-Out’ PDUs as ‘Unsolicited 
Data’ or in response to ‘Ready to Transfer’ PDUs received by the rx_thread 
from the target. 

 
After all the Data has been transferred between the initiator and the target, the iSCSI LLD 
waits for a iSCSI ‘SCSI Response’ PDU (0x02) to be received from the target. On receipt 
of iSCSI ‘SCSI Response’ PDU in the rx_thread, the LLD delivers status and sense 
data, if present, to the SML. The LLD then frees up the resources allocated for the 
particular SCSI command. 
 
When a SCSI command passed to the iSCSI LLD has to be aborted, the LLD checks if 
the command has been sent to the target or not. These two cases are discussed separately:  

• If the SCSI command to be aborted was sent to the target, the LLD sets up the 
TCP buffer with the iSCSI ‘Task Management Command’ (opcode 0x02) PDU 
and wakes up the tx_thread. The tx_thread sends the PDU to the target. The 
LLD waits for a iSCSI ‘Task Management Response’ PDU (opcode 0x22) to be 
received from the target. After receiving the iSCSI ‘Task Management Response’ 
PDU,  the SML is notified of the abort command’s success or failure. In either 
case, the LLD frees up the resources allocated for the abort command and the 
command that had to be aborted. 

• If the command to be aborted was not sent to the target, the LLD just frees up the 
resources allocated for the command that had to be aborted and returns. 

 
The iSCSI LLD design supports multiple sessions and multiple connections within a 
session as specified by the iSCSI protocol. A separate rx_thread receives iSCSI PDUs 
from each connection in a session from the target. A separate tx_thread is used to send 
iSCSI PDUs on each connection in a session to the target. 
 
When there is a huge amount of data to be written or read, the SML passes an array of 
data buffer pointers (instead of single data buffer pointer) to the iSCSI LLD, which is 
referred to as ‘scatter-gather list’. The scatter-gather list is used when the requested 
amount of memory is not available contiguously to the SML. The iSCSI  LLD can handle 
a scatter-gather list, that is, if it gets an array of data pointers, it will pass all the pointers 
to the TCP/IP socket functions appropriately.   
 
7.2 Data structures involved in iSCSI LLD 
 
There are three data structures involved in keeping state information about sessions, 
connections and pending commands with the iSCSI LLD: session, connection and 



 49   
 

 
Fig. 7.2 Organization of data structures in iSCSI LLD. 

 

command struct (Fig. 7.2). The session struct maintains session specific information for 
each active target. For each connection in a session, a unique connection struct is 
required for bookkeeping of connection specific information. The pending commands on 
each connection are maintained in the command struct. The hostdata struct registered 
with the SML has a field pointing to the head of the session struct linked list. 
 
7.2.1 session struct 
 
The fields in session struct (Fig. 7.3) are explained as follows: 
 
__u8 *tx_buf;  

This pointer points to the buffer that is to be sent to the target. 
__u32 scsi_target_id; 

This is the SCSI ID assigned by the SML. 
__u32 cur_cmd_sn;  

This variable maintains the command sequence numbering for each session and is 
updated whenever a new iSCSI PDU (SCSI Command, SCSI Task Management 
Command, Login Command, Text Command or Logout Command) is sent to the target.  
 



 50   
 

struct session 
    { 

__u8    *tx_buf; 
__u32   scsi_target_id; 
__u32   session_state; 
__u32   cur_cmd_sn; 
__u32   max_cmd_sn; 
struct connection *connection_head; 
sruct session *next; 
sruct task_struct * tx_thread;           
struct semaphore tx_sem; 
struct semaphore task_mgt_sem; 
unsigned int text_param_len; 
void *text_param; 
struct parameter_type (*session_params)[MAX_CONFIG_PARAMS];  

    };             
 

Fig. 7.3 session struct Definition. 
 
__u32 session_state;  

The session_state values (Table 7.1) are explained in the following table:  
 

STATE MEANING 
STATUS_NOT_PRESENT Session has not entered the Login Phase 
STATUS_CONNECTED Session is in the Login Phase 
STATUS_LOGGED_IN Session is in the Full Feature Phase 

Table 7.1 Session State Table.  
 

__u32 max_cmd_sn; 

This variable stores the maximum value of command sequence number that any iSCSI 
PDU can have. It is updated from the iSCSI PDUs received from the target. 
struct connection *connection_head; 

This pointer points to the head of the connection struct linked list.  
sruct task_struct * tx_thread;           

This thread is used to transmit iSCSI PDUs to the target. 
struct semaphore tx_sem;  

The tx_thread waits on this semaphore and if there is any iSCSI PDU to be sent from 
the initiator to the target, it is woken up from this semaphore. 
struct semaphore task_mgt_sem;  

The abort() function, defined in Scsi_Host_Template structure and called by the 
SML, waits on this semaphore after sending iSCSI ‘Task Management Command’ PDU 
to the target. When the Task Management Response is received from the target, the 
rx_thread wakes up the abort() function waiting on this semaphore. 
struct parameter_type (*session_params)[MAX_CONFIG_PARAMS];  

This pointer points to the session specific operational parameters. 
 
 
 
 



 51   
 

7.2.2 connection struct 
 
The fields in connection struct (Fig. 7.4) are explained as follows: 
 
struct connection 

{ 
__u8        *rx_buf; 
__u32   target_address; 
__u32   target_port; 
__u32   exp_stat_sn; 
struct socket *sock; 
struct task_struct * rx_thread; 
struct semaphore rx_sem; 
struct session *my_session; 
struct command *pending_commands; 
struct connection *next; 
struct parameter_type (*connection_params)[MAX_CONFIG_PARAMS]; 

      };              

Fig. 7.4 connection struct Definition. 
 
__u8 *rx_buf;  

This pointer points to the buffer in which we receive data from the target. 
__u32   target_address;  

This variable stores the IP address of the target and is used whenever a new TCP 
connection is to be made to the target. 
__u32   target_port;  

This variable stores the TCP Port Number of the target and is used whenever a new TCP 
connection is to be made to the target. 
__u32   exp_stat_sn;  

This variable stores the Expected Status Number for an iSCSI PDU received on a 
connection. Status numbering is unique for each connection.  
struct socket *sock;  

This variable stores the socket information about a TCP connection. 
struct task_struct * rx_thread;  

This thread is used to receive iSCSI PDUs from the target. 
struct session *my_session;  

This pointer points to the session struct to which this connection belongs. 
struct command *pending_commands;  

This pointer points to the head of the command struct linked list for this particular 
connection. This list stores the pending commands on this connection. 
struct parameter_type (*connection_params)[MAX_CONFIG_PARAMS];  

This pointer points to the connection specific operational parameter struct.  
 

7.2.3 command struct 
 
The fields in command struct (Fig. 7.5) are explained as follows: 
 
__u32 target_xfer_tag; 
This variable has a unique number and is assigned by the target. 
 
 
 



 52   
 

__u32 init_task_tag; 
This variable has a unique number and is assigned by the iSCSI LLD. It is used for 
searching commands through the command struct linked list whenever an iSCSI PDU is 
received from the target. 
 
struct command 

{ 
__u8    task_mgt_response; 
__u8    task_mgt_function; 
__u32   target_xfer_tag; 
__u32   init_task_tag; 

      __u32   data_offset; 
__u32   r2t_xfer_length; 
__u32   tx_size; 
Scsi_Cmnd *SCpnt; 
struct iscsi_init_scsi_data_out data; 
struct iovec iov[66]; 
struct msghdr tx_msghdr; 
struct iscsi_init_scsi_cmnd iscsi_cmd; 
struct command * next; 
};            

Fig. 7.5 command struct Definition. 
 
__u8 task_mgt_response; 
This field is used only for command struct maintained for task management functions. It 
stores the Task Management Response received from the target and it can take the 
following values (Table 7.2): 

Value Meaning 
0 Function Complete 
1 TASK was not in the task set 
2 LUN does not exist 

255 Function Rejected 
 

Table 7.2 Task Management Response Values. 
 
__u8 task_mgt_function; 
This field is used only for command struct maintained for task management functions. It 
stores the Task Management Function value (Table 7.3) depending on the functionality 
required by SML: 

Function  Value 
ABORT_TASK 1 

ABORT_TASK_SET 2 
CLEAR_ACA 3 

CLEAR_TASK_SET 4 
LOGICAL_UNIT_RESET 5 
TARGET_WARM_RESET 6 
TARGET_COLD_RESET 7 

 
Table 7.3 Task Management Function Values. 

 



 53   
 

__u32 r2t_xfer_length; 
When an R2T is received for any command, the transfer length for it is stored by this 
variable. 
__u32 tx_size; 
This variable stores the total number of bytes that has to be transmitted for a single iSCSI 
PDU.  
Scsi_Cmnd *SCpnt; 
This is a pointer to the command’s corresponding Scsi_Cmnd struct maintained by the 
SML. Every command struct, maintained by the LLD, has a unique Scsi_Cmnd struct. 
struct iscsi_init_scsi_data_out data; 
The iSCSI ‘SCSI Data_Out’ header is stored in this struct. Whenever a iSCSI ‘SCSI 
Data_Out’ PDU has to be sent to the target, this struct is filled and the iovec buffer 
pointer is pointed to this struct.  
struct iovec iov[66];  
The iovec struct store the buffer pointers and is used by the TCP routines to send/receive 
data from the TCP sockets. 
struct msghdr tx_msghdr;  
This struct is passed as a parameter to the TCP functions, sock_recvmsg() and 
sock_sendmsg(). It contains information about the TCP buffers that are involved in 
sending/receiving data from the TCP socket. 
struct iscsi_init_scsi_cmnd iscsi_cmd;  
The iSCSI ‘SCSI Command’ header is stored in this struct. Whenever a iSCSI ‘SCSI 
Command’ PDU has to be sent to the target, this struct is filled and the iovec buffer 
pointer is pointed to this struct.  
 
7.3 The SCSI_Host_Template Implementation  
 
The iSCSI initiator code, which forms the LLD in the SCSI Initiator subsystem, has the 
implemented functions that are described in the SCSI_Host_Template struct in Chapter 
5. The following function definitions and field values (Fig. 7.6) are defined in the jump 
table present in iscsi_initiator.h (Refer to README in Appendix C). 
 
#define ISCSI_INITIATOR {\ 
        proc_info:              iscsi_initiator_proc_initiator, \ 
        detect:                 iscsi_initiator_detect,\ 
        release:                iscsi_initiator_release,\ 
        info:                   iscsi_initiator_info,\ 
        queuecommand:           iscsi_initiator_queuecommand,\ 
        eh_abort_handler:       iscsi_initiator_abort,\ 
        reset:                  iscsi_initiator_reset,\ 
        bios_param:             iscsi_initiator_biosparam,\ 
        can_queue:              8,\ 
        this_id:                -1,\ 
        sg_tablesize:           64,\ 
        cmd_per_lun:            8,\ 
        present:                0,\ 
        unchecked_isa_dma:      0,\ 
        use_clustering:         ENABLE_CLUSTERING\ 
}              

Fig. 7.6 Scsi_Host_Template  struct Definition. 
 



 54   
 

The API functions (Fig. 7.7) implemented in the iSCSI LLD are described as follows: 
 
int iscsi_initiator_detect(Scsi_Host_Template * tmpt) 
This function is called when the iSCSI LLD is loaded. The scsi_register() function, 
which is implemented as SML code, is called to register the iSCSI LLD. The LUN and 
target fields in the tmpt struct are set to number of targets and number of LUNs per 
target respectively that are accessible through the LLD or HBA. The hostdata struct 
(Fig. 7.2) is registered with the SML that maintains the iSCSI LLD specific information. 
Then init_initiator() is called that initializes the members session_head pointer, 
cur_task_tag, param_table array in hostdata struct. The last step is to initialize the 
jumbo_sem semaphore that is used to lock iSCSI specific data structures for mutual 
exclusion. 



 55   
 

 
Fig. 7.7 API between SCSI Mid-Level (SML) and iSCSI  Low-Level Driver (LLD). 

 
 
 
 
 



 56   
 

int iscsi_initiator_release(struct Scsi_Host *host)  

This function is called when the iSCSI LLD is unloaded. The primary goal of this 
function is to unregister the iSCSI LLD and do cleanup of data structures and threads 
involved. The tasks accomplished by this function are as follows: 

• close_session() function, implemented in the LLD, is called to clean-up the 
session data structure. The call to different functions involved is explained here:  

o close_connection() function, implemented in the LLD, is called which 
kills the rx_thread, releases the socket sock and clears all the pending 
commands command struct linked list. 

o tx_thread is killed and the oper_param data structure is freed. 
• scsi_unregister() function, implemented in the SML, is called which 

unregisters the iSCSI LLD. 
int scsi_sep_proc_info(char *buffer, char **start, off_t offset, int 
length, int inode, int inout)   

This function is called when the user level configuration tool ‘iscsi_config’ is executed. 
The  ‘iscsi_config’ is explained in detail in Appendix C. 
const char *scsi_sep_info(struct Scsi_Host *host) 

This function is called whenever the iSCSI LLD module is loaded. It returns a buffer 
containing the iSCSI LLD name in string format.  
iscsi_initiator_queuecommand(Scsi_Cmnd *Cmnd, void(*done)(Scsi_Cmnd*)) 

This function is called whenever the SML has to pass a SCSI Command to the iSCSI 
LLD. This function is called in context of a global lock called io_request_lock, so 
there is a requirement that processing in this function is limited. The steps taken in this 
function are as follows: 

• session struct having the same target_id as the Cmnd’s target_id for the target is 
searched through the session struct linked list. The session struct linked list is 
accessed through host->hostdata struct (Fig. 7.2) which is one of the fields in 
Cmnd struct.  

• Memory for a new command struct is allocated and initialized with a unique 
initiator task tag.  

• iSCSI ‘SCSI Command’ header (opcode 0x01) is filled. The datasegmentlength 
field in the iSCSI ‘SCSI Command’ header is set to appropriate length looking at 
the DataPDULength, FirstBurstSize and ImmediateData fields in the 
oper_param struct for a WRITE Command. The CDB from the Cmnd struct is 
copied into the iSCSI ‘SCSI Command’ header. The F_BIT in the iSCSI header is 
set if no Unsolicited iSCSI ‘Data-Out’ PDUs is to be sent. This depends on the 
negotiated InitialR2T Operational Parameter value.  

• The TCP iovec buffers are set to send the iSCSI ‘SCSI Command’ PDU which 
includes the iSCI header and Immediate Data, if present. 

• The tx_thread waiting on tx_sem is woken up to send the set TCP iovec 
buffers. 

• The new command struct created is added to the linked list of all the pending 
commands for the connection. 

 
 
 
 



 57   
 

int iscsi_initiator_abort(Scsi_Cmnd * Cmnd) 

This function is called whenever the SML has to abort any SCSI Command after a time-
out or due to some error. This function is called in context of a global lock called 
io_request_lock, so there is a requirement that processing in this function is limited. 
The steps taken in this function are as follows: 

• session struct having the same target_id as the Cmnd’s target_id for the target is 
searched through the linked list of session struct. The session struct linked list 
is accessed through host->hostdata struct which is one of the fields in Cmnd 
struct.  

• Memory for a new command struct is allocated and initialized with a unique 
initiator task tag.  

• iSCSI Task Management Command header (opcode 0x02) is filled. 
• The TCP iovec buffers are set to send the iSCSI ‘Task Management Command’ 

PDU. 
• The tx_thread waiting on tx_sem is woken up to send the set TCP iovec 

buffers. 
• The new command struct created is added to the linked list of all the pending 

commands for the connection. 
int iscsi_initiator_reset(Scsi_Cmnd * Cmnd) 

This function is not implemented in the current implementation. 
 

7.4 Low-level iSCSI Driver Design  
 
This section presents a more detailed view of the functionality of the STML using the 
functions that have been defined above. The interaction between various code pieces and 
how they interact with each is dealt with. 
 

7.4.1 Processing a WRITE SCSI Command 
 
After the Login Phase is complete, the SML passes SCSI Commands to the iSCSI LLD 
through queuecommand() (Steps 1 & 2 in Fig. 7.8) as defined in the 
SCSI_Host_Template implementation. The value of sc_data_direction helps 
determine if the SCSI Command is a READ or WRITE request.  The session struct 
having the same target_id as the Cmnd’s target_id for the target is found in the session 
struct linked list. The session struct linked list is accessed through the host->hostdata 
struct which is one of the fields in SCSI_Cmnd struct. Memory for a new command struct 
is allocated and initialized with a unique initiator task tag.  The iSCSI ‘SCSI Command’ 
header (opcode 0x01) is then filled. The datasegmentlength field in the iSCSI ‘SCSI 
Command’ header is set to the appropriate length by looking at the DataPDULength, 
FirstBurstSize, and ImmediateData fields in the oper_param struct for the WRITE 
Command. The CDB from the Cmnd struct is copied into the iSCSI SCSI Command 
header. The F_BIT in the iSCSI ‘SCSI Command’ header is set if no Unsolicited iSCSI 
Data PDUs is to be sent. This depends on the negotiated InitialR2T Operational 
Parameter value. The TCP iovec buffers are set to send the iSCSI ‘SCSI Command 
PDU’ that includes the header and Immediate Data, if present. The tx_size field in  
command struct is set to the iSCSI PDU Length to be sent. The tx_thread waiting on 



 58   
 

tx_sem is woken up to send the set TCP iovec buffers. The new command struct created 
is added to the linked list of all the pending commands for the connection (Step 3 in Fig. 
7.8). 
 
As mentioned in Section 7.1, there is a unique tx_thread for every connection in a 
session. When the tx_thread is woken up, it searches through the linked list of command 
struct for the involved connection struct (Step 4 in Fig. 7.8).  The tx_size > 0 field in 
the command struct determines that there is iSCSI ‘SCSI Command’ PDU to be sent to the 
target. The socksendmsg(), TCP routine,  is called to send the iSCSI ‘SCSI Command’ 
PDU to the target (Step 5 in Fig. 7.8).   
 
The send_subsequent_PDU() function is called by the tx_thread if the F_BIT in the 
iSCSI ‘SCSI Command’ PDU is not set (Step 6 in Fig.7.8), which means there is 
unsolicited data to be sent to the target. The send_subsequent_PDU() function will set 
up the iSCSI ‘Data-Out’ PDUs based on the FirstBurstSize and DataPDULength fields 
in the parameter_type struct. The F_BIT is set if this is the last iSCSI ‘Data-Out’ PDU 
to be sent to the target. It will set up the TCP buffers, iov and tx_msghdr fields in the 
command struct, for the tx_thread to send the iSCSI Data PDU (Step 7 in Fig. 7.8).  The 
send_subsequent_PDU() function is called by the tx_thread till the data_offset 
field is less than the FirstBurstSize field in the oper_param struct. After the last Data-
Out PDU (with F_BIT set) is sent to the target, the tx_thread waits on the tx_sem.  
 

 
Fig. 7.8 Processing of SCSI Command. 

 



 59   
 

If there is more WRITE data to be sent involved with the SCSI Command, the LLD 
expects iSCSI ‘Ready To Transfer’ (R2T) PDU from the target. The rx_thread receives 
the iSCSI ‘R2T’ PDU (Step 1 in Fig. 7.9) and then calls the rx_r2t() function (Step 2 
in Fig.7.9). The rx_r2t function finds the relevant command struct from the linked list by 
comparing the initiator task tag of the received iSCSI ‘R2T’ PDU with that of the 
command struct (Step 3 in Fig. 7.9). It will set up the iSCSI ‘Data-Out’ PDU based on the 
DataPDULength field in operational parameters. The F_BIT is set if this is the last iSCSI 
‘Data-Out’ PDU to be sent in response to the iSCSI R2T PDU. The function will then 
update the data_offset, r2t_xfer_length fields in the command struct that is used by 
the setup_subsequent_PDU() function. The rx_r2t() function will set up the TCP 
buffers, iov and tx_msghdr fields in command struct, for the  tx_thread to send the 
iSCSI Data PDU. The tx_thread is then woken up from the tx_sem. 
 
The tx_thread, after waking up, will search the command struct linked list (Step 5 in 
Fig. 7.9) and send the iSCSI ‘Data_Out’ PDU for the command whose field tx_size >0 
(Step 6 in Fig.7.9). The tx_thread will call setup_subsequent_PDU() function for 
setting up the subsequent iSCSI ‘Data-Out’ PDUs to be sent to the target (Step 7 in 
Fig.7.9). The setup_subsequent_PDU() function will update the data_offset and 
r2t_xfer_length fields in the command struct. The send_subsequent_PDU() function 
is called by the tx_thread till the r2t_xfer_length field is greater than 0. After the last 
iSCSI ‘Data-Out’ PDU (with F_BIT set) is sent to the target, the tx_thread waits on the 
tx_sem.  
 
After sending the WRITE data to the target, the LLD expects the iSCSI ‘SCSI Response’ 
PDU from the target. The rx_thread receives the iSCSI ‘SCSI Response’ PDU (Step 1 
in Fig. 7.10) and then calls the rx_rsp() function (Step 2 in Fig. 7.10). The rx_thread  
finds the relevant command struct from the linked list. The rx_rsp() function will get the 
global io_request lock for mutual exclusion from the abort() and queuecommand() 
functions for accessing the command struct linked list. The done() function, implemented 
by the SCSI Mid-level, is called (Step 3 and 4 in Fig. 7.10) and the relevant command 
struct is removed from the command struct linked list (Step 5 in Fig. 7.10). The processing 
of this WRITE SCSI Command is finished. 
 
 
 
 



 60   
 

 
Fig. 7.9 Data Processing for WRITE Command. 

 
 
 
 



 61   
 

 
Fig. 7.10 Culmination of SCSI Command.   

 
7.4.2 Processing a READ SCSI Command 
 
The SCSI Command Processing is the same as described in Section 7.4.1.  After the 
iSCSI ‘SCSI Command’ PDU has been sent to the target, the iSCSI LLD expects iSCSI 
‘Data-In’ PDUs from the target for this command. The rx_thread receives the iSCSI 
‘Data_In’ PDU (Step 1 in Fig. 7.11) and then calls the rx_data() function (Step 2 in 
Fig. 7.11). The rx_data function finds the relevant command struct from the linked list by 
comparing the initiator task tag of the received iSCSI ‘Data-In’ PDU with that of the 
command struct (Step 3 in Fig.7.11). The payload of the iSCSI ‘Data-In’ PDU is copied to 
the SCSI Mid-level data buffers using the data_offset and datasegmentlength fields 
in the received iSCSI ‘Data-In’ header. As the iSCSI ‘Data-In’ PDUs are received, the 
data_offset field is updated in the command struct to keep track of the amount of data 
read from the target. The rx_thread receives all the subsequent iSCSI ‘Data-In’ PDUs 
from the target and the last PDU is expected to have the F_BIT set. 
 



 62   
 

 
Fig. 7.11 Data Processing for READ Command.   

 
After receiving the READ data from the target, the LLD expects an iSCSI ‘SCSI 
Response’ PDU from the target. The rx_thread receives the iSCSI ‘SCSI Response’ 
PDU and then calls the rx_rsp() function. The iSCSI ‘SCSI Response’ PDU processing 
is the same as for WRITE SCSI Command explained in the previous section (Fig. 7.10).  
 
7.4.3 Processing an ABORT Command 
 
The SML can abort any SCSI Command passed earlier to the iSCSI LLD through the 
abort() function (Step 1 in Fig. 7.12) as defined in the SCSI_Host_Template 

implementation. The session struct having the same target_id as the Cmnd’s target_id for 
the target found in the linked list of session struct. The command struct linked list is 
searched to find out the initiator task tag of the command that has to be aborted. If the 
command to be aborted is found, then the state field of the command struct is checked 
to see if the command has been sent to the target or not. There are two possibilities for 
the command state: 
• COMMAND_NOT_SENT: The command struct entry for the command to be aborted 

is freed from the linked list, and the abort() function returns (Step 10 in Fig. 7.12). 
• COMMAND_SENT: A new command struct is allocated and initialized with a 

unique initiator task tag. The iSCSI ‘Task Management Command’ PDU (opcode 
0x02) is filled in and the TCP iovec buffers are set to send the iSCSI PDU. The 
tx_thread waiting on tx_sem is woken up to send the set TCP iovec buffers (Step 3 



 63   
 

 
  Fig. 7.12 Processing an ABORT Command. 

 
• & 4 in Fig.7.12). After waking up the tx_thread, the abort() function waits on a 

tx_sem semaphore for a finite time. If a iSCSI ‘Task Management Response’ PDU 
(opcode 0x22) is received (through the rx_thread) within that finite time (Step 5 in 
Fig. 7.12), the rx_task_mgt_rsp() function processes the received iSCSI PDU and 
wakes up the abort() function waiting on the tx_sem semaphore (Step 7 & 8 in Fig. 
7.12). The two command struct entries (one for abort command and the other for 
command to be aborted) are freed before the abort() function returns (Step 10 in 
Fig. 7.12). The Response field from the received iSCSI ‘Task Management 
Response’ PDU decides the return value for the abort() function. 



 64   
 

 
 
 

Chapter 8 
 

Performance Analysis  
 
This chapter describes the Test Set-Up Details for doing performance analysis. The 
Performance Metrics (variables to quantify performance) and Variables (parameters that 
affect performance) are discussed next. The Performance Analysis for SEP and iSCSI 
Protocol is discussed in the final two subsections.  
 
8.1 Test Set-Up  
 
The test set-up involves two computer systems: an initiator and a target. The two 
computer systems are high speed PCs running the Linux operating system. The initiator 
and target emulator code are loaded as kernel modules. The details for initiator and target 
modules installation are explained in Appendix B. 
 
8.1.1 CPUs 
 
• Initiator System 

Intel Pentium III 
455 MHz Processor. 
128 Mbytes RAM. 

• Target System 
Intel Pentium III 
667 MHz Processor. 
128 Mbytes RAM 

 
8.1.2 Ethernet Technologies 
 
The tests were run on Fast Ethernet and Gigabit Ethernet as two Link Layer 
Technologies. The following are the NICs that are used for each technology. 
• Fast Ethernet 

Card: 3 Com Vortex 
Driver: linux/drivers/net/3c59x.c 
             V1.102.2.38H 9/02/00 Donald Becker and others 

• Gigabit Ethernet 
Card: 3 Com Acenic 
Driver: linux/drivers/net/acenic.c 
        V0.33a 08/16/99 Jes Sorensen 

 
 



 65   
 

 
8.1.3 Fiber_Channel Technologies 
 
The Fiber Channel driver for the Host Bus Adapter (HBA) is used to access a Fiber 
Channel on the target emulator system. The details of the Fiber Channel driver are as 
follows: 
 
Card: Qlogic Corporation ISP2200 A 
Driver: linux/drivers/net/qlogicfc.c 
 
8.1.4 Version of Linux Operating System 
 
The Linux kernel version used is 2.4.0-test9 
 
8.2 Performance Metrics 
 
The Performance metrics give a measure of how well or how poorly a system is 
behaving. The common performance Metrics are as follows:  
 
Bandwidth 
The bandwidth measurement gives the data transfer rate between the initiator and the 
target during Disk I/O operation. This metric is measured for the SEP and iSCSI 
Protocol, as discussed in Section 8.6 and 8.7. 
 
CPU utilization 
CPU utilization is an important parameter that should be monitored on the initiator and 
the target side during data transfer. The measurement unit gives the % CPU used by 
different routines in the Operating System while performing Disk I/O operation. This 
metric is measured for the SEP and iSCSI Protocol, as discussed in Section 8.6 and 8.7. 
 
Latency 
The latency measurement gives the delay (in secs) to perform any request given by the 
initiator. In other words, it gives the time required to perform any I/O operation requested 
by the initiator. This metric is not measured in this thesis. 
 
For each of the performance parameters, measurements produce a distribution, a 
minimum, a maximum, an average, a standard deviation and confidence intervals. 
 
 
8.3 Performance Variables 
 
The performance variables are the parameters that affect the performance metrics. This 
section lists the performance parameters and elaborates on the effect of each parameter 
on the performance metrics. 
 
 



 66   
 

 
Target Domain 
Ashish Palekar [9], in an effort to develop a target emulator for linux platforms, has 
implemented versions of the SEP front-end for the user space and the kernel space. The 
kernel space and the user space target can affect all the performance metrics considered. 
This test cannot be performed on iSCSI Target Emulator as there is no user space 
implementation. 
 
Block size  
The block size is the portion, or sector, of a disk that stores a group of bytes that must all 
be read or written together. The target specifies the block size for data storage at the time 
of inquiry by the initiator. Disk I/O rate will be affected by the number of blocks 
transferred per unit time which in turn depends on the block size. The block size in the 
target emulator, which is used in testing the SEP/iSCSI Implementations, is a constant 
and can be changed at compile time.  
 
Scatter-gather list size on Initiator 
The scatter-gather list, as explained in Chapter 5, is an array of data buffer pointers 
passed on by the SCSI Mid-level to the low-level SCSI disk drivers/session layer 
protocols. The size of the list is controlled by the low-level driver’s session layer 
protocols and is a variable that can be changed to see performance variation. 
 
Link Layer Protocol 
The underlying Link Layer technology used is Ethernet. The performance tests can be 
performed on the different Ethernet interfaces: Fast Ethernet (100 Mbps) and Gigabit 
Ethernet (1 Gbps). The performance metrics should be affected by the link layer 
interconnect used. 
 
Ethernet Driver Tuning parameters 
Coalescing interrupts: The Ethernet driver generates interrupts during packet 
transmission using a manufacturer-specific strategy. The Alteon Acenic Gigabit Ethernet 
driver uses one of the following two criteria to generate interrupts: when the rings are 
close to getting full; or after a fixed time interval. The default criteria for the Acenic 
driver has been set to generate interrupts after a fixed time interval, which is defined by 
the constants DEF_TX_COAL for transmitting data and DEF_RX_COAL for receiving 
data. Coalescing Interrupts produced by the Ethernet driver will affect performance, as 
interrupt servicing involves a lot of CPU overhead. It is a tuning parameter to test for 
performance. 
 
Ethernet Packet size: The standard packet size for Ethernet, Fast Ethernet, and Gigabit 
Ethernet is 1500 bytes. However, there is an option of increasing the packet size to 9000 
bytes when the Gigabit Ethernet interface is brought up on Linux O/S.  The Ethernet 
packet size is changed to analyze the effect on Performance metrics.  
 
I/O on Target Side 
The following possibilities are considered for I/O on the target side: 



 67   
 

• I/O to and from memory directly – this will performance-test the session layer 
protocol (SEP or iSCSI) under test. This is the target mode used for most of the 
performance tests in this Chapter.   

• I/O to and from a file – this will test the performance of SCSI over the 
interconnect in question. 

• I/O to and from a disk without going through the file system– this will test the 
performance of the protocol in a real world system. 

 
Queuing Length of commands to low-level driver on Initiator 
The queuing length of commands to the low-level driver is specified by the field can_queue 
in the Scsi_Host_Template struct. This value can be changed to observe the effect of 
queuing length on the performance metrics. This performance test is valid for the iSCSI 
initiator only, as it has a multi-threaded design which can support multiple commands at 
a given time. The SEP initiator cannot support multiple commands at a time. 
 
Size of the Data PDU in the Session Protocol 
When data is exchanged between the Initiator and the Target for the SEP and iSCSI 
Protocols, the actual READ/WRITE Data is transferred in SEP/iSCSI Data PDUs. The 
iSCSI Protocol provides an option of changing the Maximum Data PDU Length for any 
I/O operation. A change in Maximum Data PDU Length for the iSCSI Protocol can affect 
the Performance Metrics, as discussed in Section 8.2. This variable cannot be used to test 
the SEP protocol because SEP does not provide any option to change the Maximum Data 
PDU Length.  
 
8.4 Accuracy of Data 
 
8.4.1 Side Effects of Adding Probes 
 
The probe recording routines mentioned in Chapter 4 have been optimized so that they 
require minimum time for recording the probes. However, it does take a few dozen cycles 
to record the probe data. It was observed that a probe requires an average of 80 cycles for 
recording data. This makes an overhead of 160 cycles for every function being probed 
because two probes, one at entry and the other at exit, are required to find out the number 
of cycles utilized.  
 
8.4.2 Confidence Level of Data 
 
It is necessary to have a small confidence interval to have value in the observations made. 
In order to calculate the confidence interval, each SEP and iSCSI test was run 10 times 
[14]. The average number of cycles required by READ/WRITE requests were noted and 
the confidence interval for a 95 % confidence level were calculated for each function. 
The following formulae were used.  

Standard Deviation (σ)    =    
)1(

)( 22

−
− ∑∑

nn
xxn

    Equation 8.1 

where n = number of samples (10 in our case), x = value of sample 



 68   
 

Confidence Interval = 1.96 * 
n

σ      Equation 8.2 

Error Margin = 100 *(Confidence Interval / Average)  Equation 8.3 
 
The constant 1.96 in Equation 8.2 is fixed for a confidence level of 95 % which can be 
looked up in a mathematical table called the normal distribution table.  
   
8.5 Ethernet Payload 
 
It is known that the maximum payload of an Ethernet packet is 1500 bytes, i.e., it can 
carry a maximum of 1500 bytes of data. Out of those 1500 bytes, if the TCP/IP stack is 
involved, 52 bytes are used by the TCP (32 bytes) and IP (20 bytes) headers. Effectively, 
the packet contains only 1448 bytes of actual data. Fig. 8.1 illustrates a typical Ethernet 
frame.  
 
 

 
 

Fig. 8.1 Ethernet Frame for a TCP. 
 
Standard TCP uses a fixed 20 byte header which would allow for 1460 bytes of actual 
data. However, running a trace on SEP and iSCSI tests, it was observed that the SEP or 
iSCSI header started at the 53rd byte in the Ethernet payload. The TCP header, found in 
Linux, uses an extra 12 bytes to convey the timestamp option.  
 

 
 
 

Fig. 8.2 TCP TimestampOption. 
 
The timestamp option (Fig. 8.2) is used to measure the roundtrip time (RTT) and also for 
protection against wrapped sequence numbers (PAWS). Accurate and current RTT 
estimates are necessary to adapt to changing traffic conditions and instabilities in a busy 
network. The timestamp option carries two four-byte timestamp fields. The PAWS 
mechanism uses timestamp values to reject old duplicate segments that can corrupt an 
open TCP connection. The TimeStamp value field (TSval) contains the current value of 
the timestamp clock of the TCP stack sending the option. The Timestamp Echo Reply 
field (Tsecr) is only valid if the ACK bit is set in the TCP header. If it is valid, the 
timestamp value was sent by the remote TCP in the TSval field of a Timestamp option. If 
it is invalid, its value must be zero.  
 
8.6 Performance Results for SEP 
 
The performance tests are performed for WRITE requests between the initiator and the 
target. The WRITE operation requested by the user application on the initiator are raw, 
which means that the filesystem on the initiator system is bypassed. This is done to avoid 

Preamble 
 

(8 bytes) 

Frame 
Header 

(14 bytes) 

IP 
Header 

(20 bytes) 

TCP 
Header 

(32 bytes) 

User 
Data 

(0-1448 bytes) 

Checksum
 

(4 bytes) 

Kind 
(8 bytes) 

Length 
(10 bytes)

TS value 
(TSval) 

TS Echo Reply 
(Tsecr) 



 69   
 

buffering, caching effect and possible asynchronous I/O operation due to filesystem 
presence on the initiator system. In order to measure the speed of the transport network 
between the initiator and the target, the data is written/read out of memory on the target 
side. This section discusses the performance results for the SEP implementation.  
 
8.6.1 Effect of Target Domain on Bandwidth for SEP 
 
In Fig. 8.3, the WRITE Request size plotted on the X-axis represents the amount of 
WRITE Data (in MB) requested by a user application on the initiator to write from the 
initiator to the target emulator. The WRITE Data Requests range from 10 MB to 1500 
MB. For each WRITE Request size, the Data Rate (in MB/s) recorded is plotted on the 
Y-axis. Each bandwidth value plotted on the Y-axis is the average value for 10 sample 
runs.  
 
The target domain does not significantly affect the bandwidth (~21 MB/s) when doing 
WRITE operation to the target.  It might be expected that the User Mode Target Emulator 
should be slower than the Kernel Mode Target Emulator, as it involves extra switching 
from kernel space to user space during I/O operation. However, the indifference to 
bandwidth in switching domains means that the switching overhead is too small 
compared to other contributions.  

0

5

10

15

20

25

0 200 400 600 800 1000 1200 1400 1600 1800

Write request size(MB)

B
an

dw
id

th
(M

B
/s

)

kernel domain

user domainBlock size:                                             4096 B
sg_list size:                                                   64
Link Layer :                                   Gig. Ethernet
Ethernet Packet Size                              1500 B
Target Mode:                            to/from Memory
LLD Queuing Length                                         1
Max Data PDU Size                               65536 B     

 
Fig. 8.3 Effect of Target Domain on Bandwidth for SEP. 

 
The above chart is obtained when the Nagle Algorithm [15] is turned OFF on both the 
initiator and the target emulator. The Nagle Algorithm has the following set of rules to 
decide when to send data:  

• If a packet is equal to or larger than the segment size (or MTU), and the TCP 
window is not full, send an MTU size buffer immediately. 

• If the interface is idle, or the TCP_NODELAY flag is set, and the TCP window is 
not full, send the buffer immediately.  



 70   
 

• If there is less than 1/2 of the TCP window in outstanding data, send the buffer 
immediately.  

• If the amount to be sent is less than a segment size buffer, and if more than 1/2 the 
window is outstanding, and if TCP_NODELAY is not set, wait up to 200 msec 
for more data before sending the buffer.  

 
When the Nagle Algorithm is turned ON, the bandwidth for the above operation is 
observed to be only 3 MB/s. The delivery of small iSCSI PDUs is delayed because TCP 
will wait for the window to be at least half-full. The PDUs are delivered only after a 200 
msec time-out. This delay in delivery of small iSCSI PDUs is avoided by turning OFF the 
Nagle Algorithm when doing I/O operation. Hence, the bandwidth for the discussed 
WRITE operation increased from 3 to 21 MB/s. 
 
Statistics on Bandwidth with Target in Kernel Mode 
The Standard Deviation, Confidence Interval and Error Margin values are calculated 
using Equation 8.1, 8.2 and 8.3 respectively, for Target in Kernel Mode  
(shown in Fig. 8.3). Table 8.1 lists the statistical values for different WRITE requests 
(from 10 to 1500 MB). 10 sample runs are used to perform calculation for each WRITE 
request. It is observed that the Standard Deviation, Confidence Interval and Error Margin 
values are the highest for 10 MB WRITE request.  
  
Write Request 

Size (MB) 
Average 

Bandwidth 
(MB/s) 

Standard 
Deviation 

(σσσσ) 

Confidence 
Interval 

(C.I.) 

Error  
Margin  

10 20.884 0.173 0.108 0.516 
50 21.441 0.004 0.003 0.011 

100 21.191 0.011 0.007 0.033 
200 21.281 0.007 0.005 0.022 
300 21.203 0.008 0.005 0.023 
400 21.222 0.011 0.007 0.033 
500 21.086 0.028 0.017 0.083 
600 20.981 0.037 0.023 0.110 
700 21.029 0.028 0.018 0.084 
800 21.126 0.024 0.015 0.070 
900 21.071 0.022 0.014 0.064 

1000 21.068 0.024 0.015 0.070 
1100 21.140 0.001 0.006 0.029 
1200 21.137 0.010 0.006 0.003 
1300 21.119 0.015 0.009 0.044 
1400 20.856 0.105 0.065 0.313 
1500 20.928 0.071 0.044 0.212 

 

Table 8.1 Statistics on Bandwidth with Target in Kernel Mode.  
 
 
 



 71   
 

CPU Utilization for Initiator system with Target in Kernel Mode 
The FKT probes discussed in Chapter 4 are used to find CPU utilization on the initiator 
while recording bandwidth for the above experiment. The fkt_print program produces 
the following analysis on the trace data recorded by the fkt_record program. It precisely 
attributes every cycle that elapsed during the trace to a specific system call, IRQ, kernel 
function or user-level process. The analysis for the SEP initiator system is shown in 
Table 8.2. 
 
Table 8.2 gives the name of the various IRQs, system calls and routines that are called 
during WRITE Data test explained in Section 8.6.1. The Performance Parameter values 
corresponding to Table 8.2 are as follows: 

Target Domain:  Kernel  
Block Size:   4096 B 
sg_list size:    64 
Link Layer:    Gig. Ethernet 
Ethernet MTU Size:  1500 B 
Coal. Interrupt Interval: 400 clock ticks 
Target Mode:   to/from Memory 

 LLD queuing length  1 
 Max PDU size   65536 B 
 
The column ‘code’ gives the probe identification code for the probes present in those 
routines. The ‘Cycles’ column lists the total number of cycles that are spent in each 
routine. ‘Count’ gives the number of times the routines are called. The average number of 
cycles (Cycles/Count) that are spent in each routine are shown in the column ‘Average’. 
Finally, the last column shows the percentage of time spent in each routine. 
 
Table 8.2 indicates that most of the cycles are spent in the idle process (62.44 %). The 
idle process time can be attributed to the time spent in NIC processing [15] (on both 
initiator and target emulator [9]) and in I/O request processing by the Operating System 
in the Target Emulator. The Target Emulator, when processing the I/O request from the 
initiator, involves the network stack including TCP, IP, and Gigabit Ethernet driver in the 
Linux Operating System. The other components involved are SCSI Target Mid-Level 
(STML) and iSCSI Front-End Target Driver (FETD).  
 
The other major component that contributes to CPU utilization is the sep_thread 
(29.31%). The sep_thread code involves calls to TCP, IP, and Gigabit Ethernet Driver 
routines on the initiator before the WRITE request is passed to the Gigabit Ethernet 
Firmware.  
 
 
 
 
 
 
 
 
 
 



 72   
 

******************************************************************************** 
                            Name  Code       Cycles   Count     Average  Percent 
******************************************************************************** 
sys_call               sys_write  0004      3633201       9   403689.00    1.77% 
sys_call               sys_times  002b         1130       1     1130.00    0.00% 
sys_call              sys_select  008e         9185       1     9185.00    0.00% 
     IRQ                   timer     0       443360      45     9852.44    0.22% 
     IRQ                keyboard     1         9851       1     9851.00    0.00% 
     IRQ AceNIC Gigabit Ethernet    10     12778812    1534     8330.39    6.23% 
     IRQ                    ide0    14        12746       1    12746.00    0.01% 
   other           other process   319        11663                        0.01% 
    idle            idle process     0    128049490                       62.44% 
   other              sep_thread   866     60103164                       29.31% 
    user            user process   870        20139                        0.01% 
   Total            Total cycles          205072741                      100.00% 
                                                                                             
 

Table 8.2 Analysis Table produced by fkt_print for SEP Low-Level driver.  
 
The sys_write() system call takes 1.77 % of the total time. This is the time taken by the 
SCSI Upper-Level and Mid-level routines to process the WRITE request. It is 
comparitively less than the time taken by the sep_thread (29.31%).   
 
Processing of the Gigabit Ethernet card interrupts takes 6.23 % and other processes 
running on the initiator take 0.25 % of the time during WRITE operation.  
 
The total % CPU utilization on the initiator system is calculated from the FKT Analysis: 
= 100 – (idle process % CPU utilization)   Equation 8.4   
= 100 – 62.44%  
= 37.56 % 
 
CPU utilization comparison 
The total % CPU utilization on the initiator system is compared for Target Domain 
change using Equation 8.4: 
 

Target Domain Total % CPU utilization 
Kernel  37.56 
User 37.53 

 
Table 8.3 % CPU utilization comparison for Target Domain change. 

 
As shown in Table 8.3, the % CPU utilization on the initiator system is not affected by 
the Target Domain change. 

 
8.6.2 Effect of Target Block Size on Bandwidth for SEP 
 
The bandwidth increases from 18.5 MB/s for 512 KB block size to 21 MB/s for 4096 KB 
block size (Fig. 8.4). Each bandwidth value plotted on the Y-axis is the average value for 
3 sample runs. The improvement in bandwidth can be attributed to the fact that the block 
size increment increases the number of bytes per I/O request passed to the SEP Low-



 73   
 

Level Driver (LLD).  This decreases the number of I/O requests that SCSI Mid-Level 
(SML) has to pass to the SEP LLD. It can be inferred that the number of I/O requests 
overhead is a major contributor to the cost.  

0

5

10

15

20

25

0 200 400 600 800 1000 1200 1400 1600

Write requests (MB)

B
an

dw
id

th
( M

B
/s

)

4096 B

2048 B

1024 B

512 B

Target Domain:                                       Kernel
sg_list size:                                                   64
Link Layer :                                   Gig. Ethernet
Ethernet Packet Size                              1500 B
Target Mode:                            to/from Memory
LLD Queuing Length                                        1
Max Data PDU Size                               65536 B     

 
 

Fig. 8.4 Effect of Target Block Size on Bandwidth for SEP. 
 
An interesting observation made is that the scatter-gather list entry size is equal to the 
block size of the data that is used for storage on the target. This implies that the SCSI 
Mid-level is using the Target block size information in generating scatter-gather list 
entries.  
 
CPU utilization comparison 
The total % CPU utilization on the initiator system is compared for Target Block Size 
change using Equation 8.4: 
 

Target Block Size Total % CPU utilization 
512 B  44.62 

1024 B 40.61 
2048 B 39.03 
4096 B 37.56 

 
Table 8.4 % CPU utilization comparison for Target Block Size change. 

 
As shown in Table 8.4, the % CPU utilization on the initiator system decreases with 
increase in Target Block size. The initiator allocates the SCSI scatter-gather buffers with 
each buffer size same as the Target Block Size. The initiator has to allocate more buffers 
if the Target Block Size is small (for writing constant amount of data to the target). This, 
in turn, utilizes more CPU cycles on the initiator. It is due to this reason that the % CPU 
utilization decreases from 44.62 % to 37.56 % when the Target Block Size increases from 
512 B to 4096 B. 



 74   
 

 
8.6.3 Effect of Initiator Scatter Gather List Size on Bandwidth for SEP 
 
The Initiator Scatter-Gather (sg) list size change does not affect the bandwidth when 
increasing the scatter-gather list size from 16 to 64 on the initiator (Fig. 8.5). Each 
bandwidth value plotted on the Y-axis is the average value for 3 sample runs.  

0

5

10

15

20

25

0 200 400 600 800 1000 1200 1400 1600 1800

Write request size(MB)

B
an

dw
id

th
(M

B
/s

)

sg-list size=64

sg-list size=16

Target Domain:                                        Kernel
Block size:                                              4096 B
Link Layer :                                   Gig. Ethernet
Ethernet Packet Size                              1500 B
Target Mode:                            to/from Memory
LLD Queuing Length                                       1
Max Data PDU Size                              65536 B     

 
Fig. 8.5 Effect of Initiator Scatter-Gather List Size on Bandwidth for SEP. 

 
The constant sg_tablesize, a field defined in the Scsi_Host_Template struct (in file 
iscsi_initiator.h), denotes the sg list size. The indifference to observed bandwidth by a sg 
list size change suggests that the bottleneck is in some other involved component, maybe 
in the network stack on the initiator and the target system. 
 
CPU utilization comparison 
The total % CPU utilization on the initiator system is compared for Scatter-gather list 
Size change on the initiator using Equation 8.4: 
 

Scatter-Gather List Size Total % CPU utilization 
16  37.39 
64 37.56 

 
Table 8.5 % CPU utilization comparison for Scatter-gather list size change. 

 
As shown in Table 8.5, the % CPU utilization on the initiator system does not change 
with Scatter-gather list change on the initiator. 



 75   
 

8.6.4 Effect of Ethernet Link Speed on Bandwidth for SEP 
 
As shown in Fig. 8.6, on a Fast Ethernet Link, the bandwidth for a WRITE operation is 
10.2 MB/s, using 86 % of the maximum bandwidth possible at 11.9 MB/s. On a Gigabit 
Ethernet link, the bandwidth for a WRITE operation is 21 MB/s, using only 19 % of the 
maximum bandwidth possible at 119 MB/s. Each bandwidth value plotted on the Y-axis 
is the average value for 3 sample runs.  
 
It can be concluded that for I/O operations, the Link Speed in Fast Ethernet Connection is 
a limiting factor, because increasing the link speed results in an absolute increase in 
bandwidth. However, this is not the case with Gigabit Ethernet link - the bottleneck in 
this case must be some other involved components, since the absolute increase in 
available bandwidth is actually accompanied by a significant decrease in link speed 
utilization.  

0

5

10

15

20

25

0 200 400 600 800 1000 1200 1400 1600

Write request size(MB)

B
an

dw
id

th
(M

B
/s

)

Gig. Ethernet Fast Ethernet

86 % of
max. possible
bandwidth

19 % of 
max. possible 
bandwidth

Target Domain:                                        Kernel
Block size:                                             4096 B
sg_list size:                                                   64
Ethernet Packet Size                              1500 B
Target Mode:                            to/from Memory

 
Fig. 8.6 Effect of Ethernet Link Speed on Bandwidth for SEP. 

 
CPU utilization comparison 
The total % CPU utilization on the initiator system is compared for Ethernet Link Speed 
change using Equation 8.4: 
 

Ethernet Technology  Total % CPU utilization 
Fast (100 Mbps) 27.77 

Gigabit (1000 Mbps) 37.56 
 

Table 8.6 % CPU utilization comparison for Ethernet Link Speed Change. 
 



 76   
 

As shown in Table 8.6, the % CPU utilization on the initiator system for Fast Ethernet is 
comparatively less than that for Gigabit Ethernet. The reason for this can be that the 
available bandwidth on Fast Ethernet link is utilized completely (86 % of maximum 
theoretical bandwidth), so the initiator CPU is idle for more time compared to that for 
Gigabit Ethernet Link. The Link speed in Fast Ethernet is the bottle-neck in doing 
WRITE I/O operation. 
 
8.6.5 Effect of Ethernet Packet Size on Bandwidth for SEP 
 
As shown in Fig. 8.7, the Bandwidth increases from 21 to 30 MB/s when the Ethernet 
Packet size increases from 1500 to 9000 bytes on both the initiator and the target systems. 
Each bandwidth value plotted on the Y-axis is the average value for 3 sample runs.  

0

5

10

15

20

25

30

35

0 200 400 600 800 1000 1200 1400 1600

Write request size(MB)

B
an

dw
id

th
(M

B
/s

)

MTU=9000 B

MTU=1500 B

Target Domain:                                        Kernel
Block size:                                             4096 B
sg_list size:                                                   64
Link Layer :                                   Gig. Ethernet
Target Mode:                            to/from Memory
LLD Queuing Length                                        1
Max Data PDU Size                               65536 B     

 
Fig. 8.7 Effect of Ethernet Packet Size on Bandwidth for SEP. 

 
CPU utilization comparison 
The total % CPU utilization on the initiator system is compared for Ethernet Packet Size 
change using Equation 8.4: 
 

Ethernet Packet Size  Total % CPU utilization 
1500 bytes 37.56 
9000 bytes 35.67 

 
Table 8.7 % CPU utilization comparison for Ethernet Packet Size change. 

 
TCP allocates buffers whose maximum size is equivalent to the Ethernet Maximum 
Payload Size. The number of TCP buffer allocated, for a given amount of data, decreases 
when the Ethernet Packet size increases (from 1500 to 9000 bytes). The TCP processing 
on the initiator system is less for 9000 bytes TCP packets than for 1500 bytes TCP 



 77   
 

packets, justifying the decrease in % CPU utilization when using 9000 byte Ethernet 
Frames.  
 
8.6.6 Effect of Coalescing Interrupt Time Interval on Bandwidth for SEP 
 
The default value for Coalescing Interrupt Time Interval (CITI) in the Alteon Acenic 
driver is 400 (constants DEF_TX_COAL and DEF_RX_COAL in acenic.c). The 
Bandwidth (~21 MB/s) does not change when the CITI is decreased from 400 to 30 clock 
ticks (for both the initiator and target system). Also, when the CITI is increased from 400 
to 3000 clock ticks (for both the initiator and the target systems), the Bandwidth remains 
unchanged. (Fig. 8.8). The CITI constant value does not seem to have any effect on 
coalescing interrupts in the Firmware. Each bandwidth value plotted on the Y-axis is the 
average value for 3 sample runs.  
 

0

5

10

15

20

25

0 200 400 600 800 1000 1200 1400 1600 1800

Write request size(MB)

B
an

dw
id

th
(M

B
/s

)

CITI=030

CITI=400

CITI=1000

CITI=3000

Target Domain:                                        Kernel
Block size:                                             4096 B
sg_list size:                                                   64
Link Layer :                                   Gig. Ethernet
Ethernet Packet Size                              1500 B
Target Mode:                            to/from Memory
LLD Queuing Length                                        1
Max Data PDU Size                               65536 B    

 
 Fig. 8.8 Effect of CITI on Bandwidth for SEP. 

 
CPU utilization comparison 
The total % CPU utilization on the initiator system is compared for CITI change using 
Equation 8.4: 
 

CITI Total % CPU utilization 
30 37.00 

400 37.56 
1000 36.79 
3000 36.49 

 
Table 8.8 % CPU utilization comparison for CITI change. 

 
As shown in Table 8.8, the % CPU utilization on the initiator system does not change 
with CITI change on the initiator. 



 78   
 

8.6.7 Effect of Old (Alteon) and New (3-Com) Acenic Cards on Performance 
 
The results presented in Section 8.6 are for New (3 Com) Acenic Card used on the 
initiator and the target emulator (mentioned in Section 8.6.2). The performance analysis 
was done on an old Acenic Card (From Alteon) for SEP.  The results from the old Acenic 
Card are compared with that for the new Acenic Card. The Performance Parameter values  
corresponding to Table 8.9 are as follows: 

 
Target Domain:  Kernel  
Block Size:   4096 B 
sg_list size:    64 
Link Layer:    Gig. Ethernet 
Ethernet MTU Size:  1500 B 
Coal. Interrupt Interval: 400 clock ticks 
Target Mode:   to/from Memory 
WRITE Request Size:  1700 MB 

 LLD queuing length  1 
 Max PDU size   65536 B 
 

Performance Metric New Acenic Gig. Ethernet 
NIC (3 Com) 

Old Acenic Gig. Ethernet 
NIC (Alteon) 

Bandwidth 21 MB/s 24 MB/s 
sep_thread, % CPU util 29.31 % 33.12 % 

Total, % CPU util. 37.56 % 41.63 % 
 

Table 8.9 Effect of Old (Alteon) and New (3-Com) Acenic Cards on Performance. 
 
As shown in Table 8.9, the Bandwidth attained with the old card (~24 MB/s) is higher 
than that for the new card (~21 MB/s). Also, the total % CPU utilization when using the 
old card (~41.63 %) is more than that for the new card (~37.56 %). The possible reason 
for this behavior can be that the NIC processing overhead in the Old Card might be less 
than that for the new card, thus resulting in higher bandwidth. The less NIC processing 
overhead in the old card also results in less % CPU utilization for the idle process (= 100 
– 41.63  = 58.37 %) compared to that for the new card (=100 – 37.56 = 62.44 %). The 
NIC processing is included in the idle process for initiator system as shown in Table 8.2.  
 
8.7 Performance Results for iSCSI 
 
The performance tests are performed for WRITE requests between the initiator and the 
target. The WRITE operation requested by the user application on the initiator are raw, 
which means that the filesystem on the initiator system is bypassed. This is done to avoid 
buffering, caching effect and possible asynchronous I/O operation due to filesystem 
presence on the initiator system. In order to measure the speed of the transport network 
between the initiator and the target, the data is written/read out of memory on the target 
side. This section discusses the performance results for the iSCSI implementation. The 
tests performed are exactly the same as for the SEP implementation.  



 79   
 

 
The performance parameters, analyzed for SEP, are also tested for iSCSI implementation. 
The effect of parameters on the Bandwidth during WRITE operation for SEP 
implementation is the same as that for iSCSI implementation. Also the Bandwidth 
attained by the iSCSI implementation is the same as that for SEP implementation. The 
results are summarized as follows: 
 
Parameters actually affecting Bandwidth 

• Block Size 
• Ethernet Link Speed 
• Ethernet Packet Size 

Parameters not affecting Bandwidth 
• Target Domain 
• Scatter-Gather List Size 
• Coalescing Interrupt Time Interval 

 
The other performance parameters tested on the iSCSI implementation is discussed in 
Section 8.7.1 and 8.7.2. 
 
8.7.1 Effect of LLD Queuing Length on Bandwidth for iSCSI 
 
As shown in Fig. 8.9, increase in the queuing length for the iSCSI LLD from 1 to 8 does 
not affect the bandwidth for the WRITE operations. Each bandwidth value plotted on the 
Y-axis is the average value for 3 sample runs. The queuing length increase increases the 
number of pending commands that the Low-level Driver can handle. However, the target 
emulator cannot process multiple commands in parallel. Due to this reason, the 
bandwidth remains unchanged when the queuing length of commands on the initiator is 
increased.

0

5

10

15

20

25

0 200 400 600 800 1000 1200 1400 1600 1800

Write request size(MB)

B
an

dw
id

th
(M

B
/s

)

queuing length =1

queuing length=8

Target Domain:                                       Kernel  
Block size:                                             4096 B
sg_list size:                                                   64
Link Layer :                                   Gig. Ethernet
Ethernet Packet Size                              1500 B
Target Mode:                            to/from Memory
Max Data PDU Size                            524288 B     

 
Fig. 8.9 Effect of LLD Queuing Length on Bandwidth for iSCSI. 

 



 80   
 

CPU utilization for LLD Queuing Length=1 
The FKT software probes are used to calculate the % CPU utilization on the initiator 
system. Table 8.10 gives the name of the various IRQs, system calls and routines that are 
called during WRITE Data test explained in Section 8.6.1. The Performance Parameter 
values corresponding to Table 8.10 are as follows: 
 
Target Domain:                                         Kernel 
Block size:                                                4096 B 
sg_list size:                                                      64 
Link Layer :                                    Gig. Ethernet 
Ethernet Packet Size                                 1500 B 
Target Mode:                            to/from Memory 
LLD Queuing Length:                                        1 
Max PDU Size:          524288 bytes 
 
As shown in Table 8.10, the idle process takes 63.62 % of the total time to do the WRITE 
operation. The idle process % CPU utilization for iSCSI initiator is almost the same as for 
that SEP initiator (4.32 %).  
 
The % CPU utilization for the tx_thread (24.35 %) is more than that for the rx_thread 
(4.32 %) because for a WRITE operation, data is transferred from the initiator to the 
target which involves call to the tx_thread. The rx_thread involvement during WRITE 
operation is very less.   
 
Processing of the Gigabit Ethernet card interrupts takes 6.23 %. The sys_write() system 
call  takes 1.85 % of the CPU. Other processes running on the initiator take 0.25 % of the 
time during WRITE operation. These % values are similar to that for the SEP initiator. 
 
The total % CPU utilization on the initiator system is calculated to be = 100 – 63.62%  

    =  36.38 % 
 
******************************************************************************* 
                            Name  Code       Cycles   Count     Average Percent 
******************************************************************************* 
sys_call               sys_write  0004      3714345       9   412705.00   1.85% 
sys_call               sys_times  002b         1199       1     1199.00   0.00% 
sys_call              sys_select  008e         8733       1     8733.00   0.00% 
     IRQ                   timer     0       448768      45     9972.62   0.22% 
     IRQ                keyboard     1         8806       1     8806.00   0.00% 
     IRQ AceNIC Gigabit Ethernet    10     11245407    1291     8710.62   5.61% 
     IRQ                    ide0    14        13596       1    13596.00   0.01% 
   other           other process   319        11996                       0.01% 
   other               rx_thread   857      8661692                       4.32% 
    idle            idle process     0    127618013                      63.62% 
   other               tx_thread   858     48838371                      24.35% 
    user            user process   862        20966                       0.01% 
   Total            Total cycles          200591892                     100.00% 
 

Table 8.10 Analysis Table produced by fkt_print for iSCSI Low-Level driver.  
 
 



 81   
 

CPU utilization comparison 
The total % CPU utilization on the initiator system is compared for LLD queuing length 
change using Equation 8.4: 
 

LLD Queuing Length Total % CPU utilization 
1 36.58 
8 36.36 

 
Table 8.11 % CPU utilization comparison for CITI change. 

 
As shown in Table 8.11, the % CPU utilization on the initiator system does not change 
with LLD queuing length on the initiator. 
 
 
8.7.2 Effect of Max PDU Size on Bandwidth for iSCSI  
 
The Maximum PDU size for the iSCSI Protocol is changed to see the effect on 
Bandwidth for WRITE operation. When the Maximum PDU size is decreased from 
524288 bytes to 1024 bytes, the bandwidth decreases from 21 MB/s to 19 MB/s. Each 
bandwidth value plotted on the Y-axis is the average value for 3 sample runs. When the 
maximum Data PDU size is decreased, the number of iSCSI PDUs required to transfer 
same amount of data increases. It is due to this reason that the bandwidth decreases when 
the Maximum PDU size decreases.  
 
As a note, the Maximum iSCSI PDU size of 524288 bytes is chosen so that all the 
WRITE data involved with a SCSI Command fits into a single iSCSI PDU.  

0

5

10

15

20

25

0 200 400 600 800 1000 1200 1400 1600 1800

Write request size(MB)

B
an

dw
id

th
(M

B
/s

) Max Data PDU
Size=524288 B

Max Data PDU
Size=1024 B

Target Domain:                                       Kernel
Block size:                                             4096 B
sg_list size:                                                   64
Link Layer :                                   Gig. Ethernet
Ethernet Packet Size                              1500 B
Target Mode:                            to/from Memory
LLD Queuing Length                                        1

 
Fig. 8.10 Effect of Max Data PDU Size on Bandwidth for iSCSI. 

 
 
 



 82   
 

CPU utilization comparison 
The total % CPU utilization on the initiator system is compared for LLD queuing length 
change using Equation 8.4.  
 

Max PDU Size  Total % CPU utilization 
1024 bytes  44.26 

524288 bytes 36.58 
 

Table 8.12 % CPU utilization comparison for LLD queuing length. 
 
As shown in Table 8.12, the % CPU utilization on the initiator system increases with a 
decrease in Max PDU size. When the Maximum PDU size is 1024 bytes, the initiator 
makes more iSCSI PDUs than when the Max PDU size is 524288 bytes. So, more CPU 
cycles are consumed when the initiator has Maximum PDU size set to 1024 bytes. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 83   
 

 
 

Chapter 9 
 

Conclusions and Future Work 
 
9.1 Conclusions 
 
Design and Implementation 
 
This thesis presents a general architecture for implementing Session Layer Protocols on 
the initiator complaint with their latest draft versions. The existing target emulator is 
modified and extended to support the additional features specified in the latest iSCSI 
draft. 
 
The SEP initiator follows a synchronous model where the Low-Level Driver (LLD) can 
handle a single command at a given time. The SEP LLD processes the command 
completely before accepting the next command. A single thread is used for sending and 
receiving SEP PDUs.  The iSCSI initiator follows an asynchronous model. Unlike the 
SEP LLD, the iSCSI LLD can handle multiple commands at a given time. Two threads, 
one for receiving and the other for transmitting, are used to communicate with the target. 
  
Performance Analysis 
 
The Performance Parameters that affect the bandwidth for WRITE operations are: 

• Block Size 
• Ethernet Link Speed 
• Ethernet Packet Size 
• Maximum PDU size for iSCSI Protocol 

 
The Performance Parameters that do not affect the bandwidth for WRITE operations are: 

• Target Domain 
• Scatter-Gather List Size 
• Coalescing Interrupts 
• Queuing Length for Initiator Low-Level Driver 

 
On a Fast Ethernet Link, the recorded bandwidth for WRITE operation is 10 MB/s, using 
86 % of the maximum bandwidth possible at 11.2 MB/s. On a Gigabit Ethernet link, the 
absolute bandwidth increased to 21 MB/s but the percentage bandwidth utilization is only 
19 %, of the maximum possible bandwidth at 112 MB/s. 
 
The Nagle Algorithm should be turned OFF when doing READ/WRITE operations in 
order to gain high bandwidth and low latency. 



 84   
 

 
The Performance comparison between the old (Alteon) Gigabit Ethernet Card and the 
new (3 Com) Acenic Gigabit Ethernet Card suggests that the NIC processing overhead is 
high. The high NIC processing overhead results in higher idle process % CPU utilization 
on the initiator system. The idle process takes 62.44 % of the total CPU cycles involved 
during WRITE operation. 
 
9.2 Future Work 
 
The future work involves support of additional features for the iSCSI Protocol on the 
initiator and the target emulator.  The features to be added in the current implementations 
are as follows: 

• Test and Support Multiple Connections in a Session 
• Test Multiple Sessions on the initiator and the target emulator. 
• Header and Data Digests 
• Security  
• TCP Markers 

 
Also, the iSCSI Protocol support should be extended to the latest IETF draft versions as 
they are made available.  
 
The performance analysis is done only on the initiator system as part of this thesis work. 
The target system should also be analyzed with the software probes to find out the 
bottlenecks affecting the performance metrics. Also, a similar analysis should be done for 
READ operations (on both the initiator and the target emulator). 
 
A detailed analysis is required to be done for each network stack component involved in 
the I/O operations. The latency measurements, not performed in this thesis, should be 
done for each component to find the actual bottlenecks affecting performance. 
 
From the performance analysis section, it is observed that the % CPU utilization on the 
initiator is low. Also, the bandwidth utilization on Gigabit Ethernet link is just 19 %. It is 
suggested to run multiple simultaneous applications on the initiator system in an attempt 
to increase the % CPU utilization of the systems and the available bandwidth on the wire. 
This is to get a better test of how well we can use the available bandwidth.      
 
The performance analysis should also be done on Gigabit Ethernet NICs from different 
manufacturers to compare NIC processing time on each NIC. 
 
Finally, hardware implementation for TCP/IP and iSCSI, if available, should be tested 
and compared with Fibre Channel technology for bandwidth, latency and CPU 
utilization. 
 
 
. 
 



 85   
 

 
 
 

References 
 

1. G. Field and P. Ridge, The Book of SCSI, 2nd ed., No Starch Press, March 2000.  
2. J. Dedek, Basics of SCSI, 3rd ed., Ancot Corporation, March 1992. 
3. S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler, and D. 

Noveck, “NFS version 4 Protocol”, IETF RFC 3010, December 2000. 
4. R. Snively, “Information Technology – dpANS Fiber Channel Protocol for SCSI 

(SCSI-FCP)”, Proposed Draft (ANSI X2.269-1995, Revision 12), December 1995. 
5. R.O.Weber, “Information Technology - SCSI Architecture Model –2 (SAM-2)”, 

Working Draft (T10 Project 1157D, Revision 15), November 2000. 
6. M. Reardon, “Blaze Breaks Gig Ethernet Distance Barrier”, Technical Article, 

Data Communications, 3 May, 1999.  
7. R.D. Russell, B.B. Reinhold, Chris Loveland, “Options for Storage Area 

Networks”, Preliminary Report, InterOperability Lab, University of New 
Hampshire, 21 June, 2000. 

8. Sun Microsystems Inc., “RPC Remote Procedure Call Protocol specification”, 
IETF RFC 1057, April 1988.  

9. A. Palekar, “Design and Implementation of the SCSI Target Mid-level for the 
Linux Operating System”, M.S. Thesis, Dept. of Computer Science, University of 
New Hampshire, May 2001. 

10. “The SCSI Encapsulation Protocol (SEP)”, IETF Internet Draft¸ May 2000; 
http://www.ietf.org/internet-drafts/draft-wilson-sep-00.txt. 

11. Borison, Adaptec, Inc., February 2001;  
http://www.adaptec.com/worldwide/company/pressrelease.html. 

12. J. Satran et al., “Internet SCSI (iSCSI)”, IETF Internet Draft, July 2000;  
http://www.haifa.il.ibm.com/satran/ips/draft-ietf-ips-iSCSI-07.txt. 

13. M. Bakke et al., “iSCSI Naming and Discovery”, IETF Internet Draft, August 
2001; http://www.haifa.il.ibm.com/satran/ips/draft-ietf-ips-iscsi-name-disc-02.txt. 

14. R.D. Russell, “FKT: Fast Kernel Tracing”, Technical Report 00-02, Dept.of 
Computer Science, University of New  Hampshire, March 2000. 

15. M. Chavan, “Performance Analysis of Network Protocol Stacks Using Software 
Probes”, M.S. Thesis, Dept. of Computer Science, University of New Hampshire, 
September 2000. 

16. J. Nagle, “Congestion Control in IP/TCP Internetworks”, IETF RFC 896, 
http://www.ietf.org/rfc/rfc0896.txt?number=896, January 1984. 

 
 
 
 
 

 
 



 86   
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDICES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 87   
 

 
 
 

APPENDIX A 
 

MODIFICATIONS TO THE TARGET EMULATOR 
 

This Chapter explains the existing target emulator functionality in the first two sub-
sections. In the final sub-section, the modifications made to the Target Emulator are 
discussed. 
 
A.1. Target Emulator Overview 
 
The Target Emulator provides the software Target functionality to be accessed by the 
Initiator. It is implemented in the Linux kernel, and its design parallels that of the SCSI 
Mid-level (SML) and Low-Level Driver (LLD) in the initiator.  The Target Emulator is 
designed and implemented by Ashish [9]. 
 
The SCSI Target Emulator receives SCSI Commands from an Initiator. Command, Data, 
and Response transfer between the Initiator and the Target is handled by the interconnect-
specific low-level front-end Target driver (FETD). The FETD strips off headers 
introduced by the protocol (SEP or iSCSI) used on the interconnect and hand off the 
SCSI command and data to the SCSI Target Mid-Level (STML). The STML processes 
and executes this command and hands back the responses (data and/or status) back to the 
FETD so that it can transmit them back to the Initiator. The STML is also able to respond 
to the error handling facilities provided by SCSI. The overview is presented in Fig. A.1 
 

 
Fig A.1 Overview of API between STML and FETD. 



 88   
 

A.2. Design of Target Emulator 
 
This section provides a more detailed view of the functioning of the STML using the 
functions that are shown in Fig. A.2. The organization of the Data structures in the FETD 
is the same as shown in Fig. 7.for LLD in initiator. The FETD has two threads, one for 
transmitting and the other for receiving, to communicate with the initiator. This design is 
similar to that of LLD on the initiator system. 
 
A.2.1. Processing a READ-type Command 
 
The FETD registers itself with the STML by calling the function 
register_target_front_end() in the STML (Fig. A.2). Upon receiving a SCSI 
command from an Initiator in the form of iSCSI ‘SCSI Command’ PDU, the FETD calls  
the rx_cmnd function in the STML. The STML executes the command and if it is READ 
command fills the READ buffers. The STML then calls the xmit_response function in 
the Scsi_Target_Template (Fig. A.2), implemented by the FETD. The 
xmit_response function sends the iSCSI ‘Data-In’ PDU to the initiator followed by the 
iSCSI ‘SCSI Response’ PDU. When the Response is actually transmitted, the FETD calls 
the scsi_target_done function in the STML. This function allows the STML to free up 
resources that are allocated for a SCSI command.  
 
A.2.2. Processing a WRITE-type Command  
 
Upon receiving a SCSI command from an Initiator in the form of an iSCSI ‘SCSI 
Command’ PDU, the FETD calls the rx_cmnd function in the STML. The STML 
processes the command and if it is WRITE command, allocates the necessary buffers. 
The STML then calls the rdy_to_transfer function (Fig. A.2) in the FETD.  A call to 
the rdy_to_transfer function means that the buffers required for the execution of the 
SCSI command have been allocated. The rdy_to_transfer function transmits the iSCSI 
‘Ready to Transfer’ PDU to the initiator indicating that it can send the WRITE data. Once 
data has been received from the initiator, the FETD calls the scsi_rx_data function 
(Fig. A.2) in the STML. The STML calls the xmit_response function after SCSI 
command processing is complete. When the Response is actually transmitted, the FETD 
calls the scsi_target_done function in the STML. This function allows the STML to 
free up resources that are allocated for a SCSI command.  
 
 
 
 



 89   
 

 
Fig A.2 API between STML and FETD. 

 
 
 
 



 90   
 

A.3. Modifications Made to the Target Emulator 
 
A.3.1. Support to Receive Immediate Data PDUS and Unsolicited Data-Out PDUs 
 
Upon receiving a SCSI command from an Initiator, the FETD calls the rx_cmnd function 
in the STML. If there is Immediate Data present with the iSCSI ‘SCSI Command’ PDU, 
the rx_thread waits on a unsolicited_data_sem semaphore. After processing the 
command, the STML calls the rdy_to_transfer function (Fig. A.2) in the FETD. The 
rdy_to_transfer function will wake up the rx_thread waiting on the 
unsolicited_data_sem semaphore. The rx_thread will receive the Immediate Data by 
calling handle_immediate_data function. After receiving the Immediate Data, this 
function will wake up the tx_thread to send an iSCSI ‘R2T’ PDU to the initiator if more 
WRITE data is to be transferred from the initiator. 
 
When Unsolicited Data PDU is received from the initiator, the rx_thread waits on the 
unsolicited_data_sem semaphore. The rdy_to_transfer function, called by STML, 
will wake up the rx_thread waiting on the unsolicited_data_sem semaphore. The 
rx_thread will then receive all the Unsolicited iSCSI PDUs. After receiving the last 
Unsolicited Data PDU, the rx_thread checks if more WRITE data has to be transferred  
from the initiator. If more data is required, the rx_thread wakes up the tx_thread to 
send an iSCSI ‘R2T’ PDU.  
 
 A.3.2. Implementation of Task Management function in the iSCSI FETD 
 
When an FETD receives a Task Management function in form of a iSCSI ‘Task 
Management Command’ PDU, it informs the STML about the received Task 
Management function by calling the rx_task_mgmt_fn function in the STML. The 
STML aborts the relevant SCSI command and calls the task_mgmt_fn_done function in 
the FETD. The task_mgmt_fn_done function sends the iSCSI ‘Task Management 
Response’ PDU to the initiator.  
 
A.3.3. Support of Multiple Data-In PDUs in the iSCSI FETD 
 
As mentioned before, the Data Structure Organization in the iSCSI FETD is the same as 
LLD in the initiator (Fig.7.2). The parameter_type struct, mentioned in Fig. 7.3, is 
added to the session struct in the FETD to support use of operational parameters in the 
iSCSI FETD. The ‘DataPDULength’ key in the parameter_type struct is used by the 
xmit_response function for sending multiple iSCSI ‘Data-In’ PDUs to the initiator.  
 
 
 

 
 
 
 



 91   
 

 
 
 

APPENDIX B 
 

SCSI COMMAND OPCODES FOR DIRECT ACCESS DEVICES 
 

The SCSI Command opcodes can be one of the following: 
 
OP 
Code 

Command Name OP 
Code

Command Name 

00h TEST UNIT READY 32h SEARCH DATA LOW 
01h REZERO UNIT 33h SET LIMITS 
03h REQUEST SENSE 34h PRE-FETCH 
04h FORMAT UNIT 35h SYNCHRONIZE CACHE 
07h REASSIGN BLOCKS 36h LOCK/UNLOCK CACHE 
08h READ (6) 37h READ DEFECT DATA 
0Ah WRITE (6) 39h COMPARE 
0Bh SEEK (6) 3Ah COPY AND VERIFY 
12h INQUIRY 3Bh WRITE BUFFER 
15h MODE SELECT (6) 3Ch READ BUFFER 
16h RESERVE (6) 3Eh READ LONG  
17h RELEASE (6) 3Fh WRITE LONG 
18h COPY 40h CHANGE DEFINITION 
1Ah MODE SENSE (6) 41h WRITE SAME 
1Ch RECEIVE DIAGNOSTIC 

RESULTS 
4Ch LOG SELECT 

1Dh SEND DIAGNOSTIC  4Dh LOG SENSE 
1Eh PREVENT/ALLOW MEDIUM 

REMOVAL 
55h MODE SELECT (10) 

25h READ CAPACITY 56h RESERVE (10) 
28h READ (10) 57h RELEASE (10) 
2Ah WRITE (10) 5Ah MODE SENSE (10) 
2Bh SEEK (10) 5Eh PERSISTENT RESERVE IN 
2Eh WRITE AND VERIFY 5Fh PERSISTENT RESERVE OUT 
2Fh VERIFY A0h REPORT LUNS 
30h SEARCH DATA HIGH A7h MOVE MEDIUM ATTACHED 
31h SEARCH DATA EQUAL  B4h READ ELEMENT STATUS 
 

 
 
 
 
 
 



 92   
 

 
 

APPENDIX C 
 

README for iSCSI Initiator & Target Implementations 
 

The reference iSCSI initiator and target are implemented as dynamically loadable 
modules in the linux 2.4.0-test9 kernel. The iSCSI initiator and target emulator 
implementations are available from the iSCSI Consortium, IOL web-page  
(http://www.iol.unh.edu/consortiums/iscsi) under “iSCSI Implementations”. The 
README for the implementations are organized into following sub-sections. 
1. Draft Version Compliance 
2. Operational Parameters Used in the Full Feature Phase 
3. Known Limitations 
4. Testing done on the Reference Implementations 
5. PDU support 
6. How to Install 
7. OS support 
8. Default Mode of Reference Initiator and Target 
9. Use of ISCSI_CONFIG Tool   
10. Use of ISCSI_MANAGE tool 
 
1. Draft Version Compliance 
 
The reference implementations comply to iSCSI draft 7 (dated July 20,2001) which is 
available at http://www.ietf.org/internet-drafts/draft-ietf-ips-iscsi-07.txt. 
  
2. Operational Parameters Used in the Full Feature Phase 
 
All the operational parameters are negotiable in the login phase. However, in the full 
feature phase operation, the reference initiator and target make use of the following 
negotiated operational parameters only. 

• DataPDULength 
• FirstBurstSize 
• InitialR2T 
• ImmediateData 
 

The other negotiated security/operational parameters values are ignored (or not used) by 
the reference initiator or target during Full Feature phase. Such parameters are explained 
here: 

• MaxConnections value is ignored. The initiator and the reference target support 
only single connection for a single session. 

• FMarker, RFMarkInt, SFMarkInt, and IFMarkInt are not supported and 
hence, the negotiated operational parameters are not used. 



 93   
 

• BidiInitialR2T is not supported and hence its value is not used. 
• MaxOutstandingR2T is not supported. The initiator always has one outstanding 

R2T at any instant. Hence, the MaxOutstandingR2T value is not used. 
• DataOrder value is ignored as the reference initiator and target expect incoming 

data to be in order and send the outgoing data in order. 
• Header and Data Digests are not supported.  
• Security is not supported. 

 
The use/unuse of the iSCSI parameters have been elaborated through the following 
examples. 
Example 1: For any Write SCSI Command, the initiator will look in the negotiated 
operational parameter table for ‘ImmediateData’ value. It will then decide whether to 
send ‘ImmediateData’ or not based on that value.  
Example 2: When a new session is started, there is only 1 connection supported for that 
session. The initiator will just make one connection to the target even if the 
‘MaxConnections’ value in the negotiated operational parameter table is different than 1.  
 
3. Known Limitations 
 

• The Reference Initiator and Target implementations just support ABORT TASK 
functionality in the set of Task Management Commands. The other Task 
Management Commands ABORT_TASK_SET, CLEAR ACA, CLEAR TASK 
SET, LOGICAL UNIT RESET, TARGET WARM RESET, and TARGET COLD 
RESET are not supported. 

• The Reference Target always sends a separate SCSI Response PDU when a 
READ/WRITE request sent by the initiator is satisfied. The Piggybacking of 
Status in the Last DataIn PDU on the initiator has not been tested.  

• The Target emulator expects the commands from the initiator in CmdSN order. 
The Data Sequence Numbering for Data PDUs is not supported. 

• No error recovery mechanisms are implemented.   
• Parameter negotiation is only restricted to the Login Phase. 

 
4. Testing done on the Initiator and Target Implementations 
 
The initiator and the target have been tested fairly well for the following functionalities: 

• Single connection for a single session between the reference initiator and the 
target. 

• Unsolicited Data(as Immediate Data as well as separate Data PDUs) 
• Support of multiple pending commands in the reference initiator and target. The 

maximum queuing length (i.e., number of pending commands) for which the 
initiator and the target code has been tested is 8. 

• Number of scatter gather list entries =16, 32, and 64, on the reference initiator. 
 
 
 



 94   
 

 
5. PDU support 
 
The reference initiator and target only understand the following iSCSI PDUs: 
 
0x01   SCSI Command (encapsulates a SCSI Command Descriptor Block) 
0x02   SCSI Task Management Command 
0x03   Login Command 
0x04   Text Command 
0x05   SCSI Data-out (for WRITE operations) 
  
0x21   SCSI Response (contains SCSI status and possibly sense information or 

another response information) 
0x22   SCSI Task Management Response 
0x23   Login Response 
0x24   Text Response 
0x25   SCSI Data-in (for READ operations) 
0x31   Ready To Transfer (R2T - sent by target to initiator when it is ready to  

receive data from initiator) 
0x3f   Reject 
 
The reference initiator and the target will not understand the following iSCSI PDUs: 
 
0x00   NOP-Out (from initiator to target) 
0x06   Logout Command 
0x10   SNACK Request                  
0x1c-0x1e Vendor specific Codes 
 
0x20   NOP-In (from target to initiator) 
0x26   Logout Response 
0x32   Asynchronous Message  
0x3c-0x3e Vendor specific Codes 
 
6. How to Install 
 
This section gives the location of all the files and directories. It also gives information on 
how to run the initiator and target implementations. The iSCSI implementation is divided 
into the following three directories: 
 
iscsi_initiator_ver_6.08 
This directory contains the initiator-specific files. The initiator can be 
compiled by running Makefile in this directory. The initiator can be installed 
by running the script 'iscsi_initiator_install' on shell prompt. 
 
The script will first insert the iscsi initiator driver as a module by executing the following 
command: 



 95   
 

 
insmod iscsi_initiator.o 

 
The script will then bring up the iscsi interface by executing the following command: 
 
./iscsi_config up ip=<hostname> port=<port number> target=0 

 
The use of iscsi_config tool is explained in Appendix A. 
 
iscsi_target_emulator_ver_6.08 
This directory contains the target specific files. The target can be compiled by running 
Makefile in this directory.  
 
The target can be installed by running the script 'iscsi_target_install' residing in this 
directory. The script will first insert the SCSI target mid-level by writing the following 
command: 
 
insmod scsi_target.o 

 
The script will then insert the iSCSI Target front-end by writing the following command: 
 
insmod iscsi_target.o 

 
The target listens at port 4000, which can be changed at compile time. The value is 
specified by the constant ISCSI_PORT in file common/iscsi_common.h.  
 
common 
This directory contains the common files used by both the initiator and the target.         
 
7. OS used 
 
Linux 2.4.0-test9 on Intel platform. 
 
8. Default Mode of Operation of Initiator and Target 
 
Default Mode is the mode in which the reference initiator and target modules operate 
when the modules are compiled and loaded. The default mode can be changed with the 
help of management  tools called ‘iscsi_manage’ and  ‘iscsi_config’ explained in 
Appendix A and B. The default mode has the following features: 

• Well known port that the target listens on is 4000. 
• Reference Initiator and Target don’t do parameter negotiation (except the 

parameters mentioned in 2) and accept the default operational parameters values 
as specified in Appendix E of iSCSI draft 7. 

• The KERNEL_DIR constant defined in Makefile (present in directories 
iscsi_initiator_ver_6.08, iscsi_target_emulator_ver_6.08 and common) are 
defined as /home/iol/ng3/linux-2.4.0-t9. This can be changed to the referred linux 
2.4.0-test9 source tree on the system where the loadable modules are compiled.  



 96   
 

• The Target mode operates in FILEIO mode. This is a constant defined in file 
iscsi_target_emulator_ver_6.08/scsi_target.h. Different Target modes are 
explained in Appendix C.  

• The debug messages are turned ON because constant CONFIG_ISCSI_DEBUG 
is defined during compile time in the initiator and target Makefiles. The debug 
messages can be turned OFF if we don’t define the constant 
CONFIG_ISCSI_DEBUG during compile time.  

 
9. ISCSI_CONFIG Tool   
 
iscsi_config is a tool, developed by Narendran Ganapathy,  to specify iSCSI targets to the 
kernel initiator and initiate iSCSI protocol operations. 
 
iscsi_config is invoked with at least one mandatory argument and five optional arguments 
as given below. 
 
iscsi_config <what-to-do> [host=number] [ip=address_or_name] 
[port=number] [target=number] [lun=number] | 

 
what-to-do  
what-to-do determines whether an iSCSI session has to be established between an iSCSI 
initiator and an iSCSI target or whether an existing iSCSI session needs to be closed. 
It can be one of the following: 
"up"    an iSCSI session needs to be established. 
"down"  an iSCSI session needs to be closed.       
 
host=number  
This is an optional field. If omitted assumes a value of 0. Format is 
 
    host=<number> 

 
This specifies the SCSI Adapter number assigned by the kernel to the iSCSI initiator. 
 
ip=address_or_name  
This is an optional field that specifies the IP address of the iSCSI target to which a 
connection has to be established. If omitted assumes the local IP address. Format is 

 
ip=name  (or) ip=address 

 
where  

“name” is the hostname of the machine in which the iSCSI target is waiting for 
 requests from the iSCSI initiator. 
“address” is the IP address in dotted decimal notation.      

 
port=number  
This is an optional field that specifies the port on which the iSCSI target is listening. If 
omitted assumes the port number of 4000. 



 97   
 

 
target=number  
This is an optional field that specifies the target number(in other words, ID in SCSI 
addressing scheme). When the iSCSI initiator module ‘iscsi_initiator.o’ is loaded, 
iscsi_initiator_detect function is called which specifies the number of targets a particular 
initiator(host) has access to. All these targets are given numbers by the kernel which 
corresponds to Target ID in [Host, Channel, ID, LUN] SCSI addressing scheme.  
   
10. ISCSI_MANAGE tool 
 
iscsi_manage is a tool, developed by Narenedran Ganapathy, to configure iSCSI 
parameters on the iSCSI initiator and iSCSI target implementations. The iSCSI initiator 
and iSCSI target are implemented as dynamically loadable modules in the linux 2.4.0-
test9 kernel. 
 
iscsi_manage uses the table of parameters that has been configured with default values on 
the iSCSI initiator and iSCSI target modules at compile time. iscsi_manage can change 
the default values associated with parameters and can set the type of negotiation allowed 
for the parameter. Each parameter falls into exactly one of the following categories for 
negotiation. 
 
Category                                                Description 
------------------------------------------------------------------------------------------------------------ 
        1   Parameter that has to be negotiated and whose value can be 

changed on negotiation. 
        2   Parameter that has to be negotiated and whose value can not be 
    changed on negotiation. 
        3   Parameter whose default value has to be changed but not to be 

negotiated. 
 
It is invoked with at least three mandatory arguments and an optional argument from the 
command line as given below.          
 
iscsi_manage <role> <what-to-do> <parameter-value-list>  

   <optional-host> 
                                                                             
role 
role determines the device that is being configured. It can be one of the following: 
                "init"          the device that is configured is an iSCSI initiator 
                "target"        the device that is configured is an iSCSI target 
 
 
 
what-to-do  
what-to-do specifies the operation to be performed on the parameter. It can be one of the 
following: 



 98   
 

“set”            sets the parameter's type to category 1. 
“setr”           sets the parameter's type to category 2.             
“setp”          sets the parameter's type to category 3. 
“restore”      restores the type of all parameters with the default set of values  

(set of values the parameters took when the module was first installed) 
 
parameter-value-list  
parameter-value-list specifies the parameter that is configured with the value-list. It is of 
the form 

 
<Parameter>=<value_list> 

 
where <Parameter> can take the following values: "MaxConnections",                 
"TargetName", "InitiatorName", "TargetAlias", "InitiatorAlias",               
"TargetAddress", "SendTargets", "AccessID", "FMarker", "RFMarkInt",                
"SFMarkInt", "IFMarkInt", "InitialR2T", "BidiInitialR2T", "ImmediateData",                 
"DataPDULength", "FirstBurstSize", "LogoutLoginMinTime",                
"LogoutLoginMaxTime", "EnableACA", "MaxOutstandingR2T", "DataOrder",                
"BootSession", "HeaderDigest", "DataDigest", "AuthMethod",         
"SecurityContextComplete", and <value_list> is an UTF-8 string. 
 
<Parameter> and <value_list> are separated by a '=' character.        
 
optional-host 
This is an optional field. If omitted assumes a value of 0. Format is 

 
host=<number> 

 
If the role is initiator this specifies the SCSI Adapter number assigned by the kernel to the 
iSCSI initiator. If the role is target this specifies the target number assigned by the SCSI 
Target Mid-Level to the iSCSI target.   
 
Examples  
 
1. If the target can accept just a single connection it has to set the MaxConnections 
parameter's value to 1. 
      iscsi_manage target setr MaxConnections=1 
setr is used because the target cannot support value other than 1 for MaxConnections 
parameter. 
 
2. If the initiator supports both the options (yes/no) but likes the no value as the default 
for InitialR2T, then we might want to configure the initiator like this 
            iscsi_manage init set InitialR2T=no             
 
3. If the initiator just wants to change the default behavior of the key InitialR2T (setting 
InitialR2T=no) but did not want to negotiate for it, then 



 99   
 

iscsi_manage init setp InitialR2T=no 
 
4. If the initiator wants to restore the default values of all the parameters to its original 
state (state when the module was initially loaded), 

iscsi_manage init restore 
             


