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ABSTRACT 

 
 
 

DESIGN AND IMPLEMENTATION OF A SCSI TARGET 
FOR STORAGE AREA NETWORKS 

 
by 

 
Ashish A. Palekar 

University of New Hampshire, May 2001 
 
The Small Computer Systems Interface (SCSI) has been used to transmit data between 
applications (Initiators) and storage devices (Targets). One of the major limitations of SCSI has 
been the length of the SCSI bus. With the evolution of Storage Area Networks (SANs), several 
protocols have been proposed to extend the length of the SCSI bus e.g., Fibre Channel, SCSI 
Encapsulation Protocol (SEP), and Internet SCSI (iSCSI). The evaluation of these technologies 
requires the use of an Initiator and a Target that implement the said protocols. A large portion of 
what such Initiators or Targets need to do from a SCSI perspective can be isolated into a logical 
code unit referred to as a mid-level. While there exists in the Linux kernel a generic SCSI Initiator 
mid-level that drivers written for various Initiators can interface with, no corresponding facility 
exists for the Target side. This thesis involves the development of a Generic SCSI Target mid-
level for Linux along with implementing front-end drivers for Fibre Channel, SEP and iSCSI that 
can utilize the said Target mid-level. Other uses for the Target Emulator are as a bridge between 
two protocols and as an interface for SAN Management. 
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CHAPTER 1 

 
 

INTRODUCTION 
 
 
1.1 Motivation and Goals for this Thesis 
 
The past few years have seen a tremendous growth in the amount of traffic on the Internet. An 
increase in the number of people with access to the Internet has meant that the Internet has 
become a viable pathway for trade and related commerce activities. Increasingly, mission-critical 
applications are being put on the Internet. This increase in traffic over the Internet has meant an 
exponential growth in the data that needs to be stored. Access to this data has become a critical 
resource and traditional server-based approaches to data access indicate this as a potential 
bottleneck in the very near future. This has led to the emergence of the concept of Storage Area 
Networks (SANs) where SCSI (Small Computer System Interface) is used to exchange data 
between an application (Initiator) and the storage device (Target).  
 
Fibre Channel was one of the first protocols designed with the idea of SANs in mind. 
Interoperability issues and incompatibility with existing infrastructure has led to the 
development of several different protocols in place of Fibre Channel with the objective of 
transmitting SCSI data over existing TCP/IP networks. The evaluation of these protocols requires 
an Initiator and a Target that can transmit SCSI data using the said low-level protocols. A good 
way in which this can be achieved is by isolating the common portions of what these Initiators 
and Targets need to do in terms of a logical unit of code that is responsible for processing SCSI 
commands, data and responses. To adapt this unit of code to a specific SCSI Transport Protocol, a 
relatively simpler front-end driver can be written that handles the details of the SCSI Transport 
Protocol itself. Thus, an Initiator or a Target driver for a SCSI transport protocol would consist of 
two portions – a common SCSI processing portion which would be common to all SCSI Transport 
Protocols and a second portion specific to the SCSI Transport Protocol. The common SCSI 
processing portion is referred to as the SCSI mid-level (for reasons explained in Chapter 5) 
whereas the latter is referred to as the front-end driver. The Linux kernel has existing support for 
SCSI Initiators in terms of a SCSI Initiator mid-level (SIML). Such a mid-level does not exist for 
SCSI Targets. This thesis aims at developing a SCSI Target mid-level (STML) for the Linux kernel. 
Three front-end Target drivers will be written to interface with this SCSI Target mid-level 
implementing the SCSI Encapsulation Protocol (SEP), the Internet SCSI (iSCSI) and Fibre Channel 
SCSI Transport Protocols. 
 
1.2. Resources Used 
 
The major resource used for this project is a Fibre Channel card. For the purposes of this project, 
QLogic Corporation made two ISP2200 A cards available. The facilities to test the implemented 
code are available through the InterOperability Lab, University of New Hampshire. 
 
The ISP 2200 card is a 64-bit PCI to Fibre Channel card capable of operating at 33 and 66 MHz 
PCI. The cards support up to 200 MB/s Fibre Channel data transfer rates in full duplex. It 
supports the Class 2 and Class 3 service in all Fibre Channel topologies. The card supports SCSI 
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Initiator and Target operation. A description of the firmware support for the QLogic ISP 2200 A 
card is described in Appendix C. 
 
The SCSI Initiator driver for the ISP 2200 A card was written by Chris Loveland, University of 
New Hampshire. This driver was used as a basis for developing the Fibre Channel Target driver. 
This Target driver interfaces with the SCSI Target Mid-Level. Xyratex Corporation has 
implemented a Target Emulator using the QLogic 2200 card for the Windows Operating system 
with the intent of using it as a testing tool. No access is currently available to this testing tool. 
Matthew Jacob of Feral Inc. (http://www.feral.com), has written an Initiator and Target driver 
for ISP 2100/2200/2200 A for various flavors of Unix. The Target driver written by him has a 
section of code that can be isolated as a SCSI Target mid-level. This code has been looked at and it 
is not functional on Linux. No attempt has been made at debugging this Target driver. 
 
The drafts of the relevant SCSI ([1], [13], [14], [16]) and Fibre Channel ([2], [3], [15]) standards are 
available at the IOL. In addition, access to the draft standards is provided via the websites of the 
respective standards bodies (http://t10.org and http://www.t11.org). The relevant SEP draft [9] 
and the corresponding iSCSI draft [7] are available at the IETF (http://www.ietf.org) website. 
 
1.3 Organization of the Thesis 
 
Chapter 2 explains the SCSI protocol, detailing the issues involved with special emphasis on the 
operational details necessary from the point of view of a SCSI Target. Chapter 3 of this Thesis 
explains the concept of Storage Area Networks, the emergence of this concept and the enabling 
factors. Chapter 4 deals with SCSI Transport Protocols such as Fibre Channel, SEP and iSCSI. 
This chapter tries to detail the aspects that make these protocols unique and in conjunction with 
Chapter 2 helps to isolate the needs of a SCSI Target mid-level and any front-end driver. Chapter 
5 details the design of a SCSI Target Emulator. It starts with the design of the SIML in the Linux 
kernel, rationalizes the design of a Target Emulator based on the inferences from the previous 
chapters and finally presents applications relevant to a SCSI Target Emulator. Chapter 6 deals 
with the user space implementation of the SCSI Target Emulator whereas Chapter 7 deals with 
the corresponding kernel space implementation along with the implemented front-ends. Chapter 
8 presents basic testing and performance analysis performed on the three implementations and 
the corresponding front-ends more with an objective to get an “order of magnitude” idea about 
I/O rates. Chapter 9 summarizes the work done, and the conclusions drawn along with work 
that can be done in the future. 

http://www.feral.com/
http://t10.org/
http://www.t11.org/
http://www.ietf.org/
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CHAPTER 2 
 
 

SMALL COMPUTER SYSTEM INTERFACE 
 
 
2.1 Introduction 
 
Small Computer System Interface (SCSI) originated from the Selector Channel on IBM-360 
computers, and was later scaled down by the Shugart Associates Company to make a universal, 
intelligent disk drive interface. It was called the Shugart Associates Systems Interface (SASI). 
SCSI became an ANSI standard in 1986. SCSI is an intelligent, parallel peripheral bus, with 
medium-to-high performance. SCSI is both a bus hardware specification and a command set to 
optimize the use of that bus. Over time, the SCSI standards have grown to recognize several 
devices - magnetic disks drives, tape drives, printers, scanners, processors, communications  
devices among several others. SCSI speeds now range from 1 MB/s to 160 MB/s. 
 
2.1.1 Reasons for SCSI 
 
Prior to the development of SCSI, for each new peripheral that was added to a given computer 
system, the computer had to be specially configured to manipulate the hardware in order to 
accomplish the task of reading and writing data to and from the device. This implied that more 
often than not, by the time the hardware and software design of the computer was complete, a 
new generation of peripherals was usually available. Thus, the peripherals attached to a 
computer were often a generation or more behind the computer itself. 
 
The basic premise of SCSI is to give the computer complete device independence. In other words, 
all magnetic devices appear identical to the system except for their total capacity. All printers are 
identical as are all CD-ROMs. With SCSI, the system should not need any modification when 
replacing a device from one manufacturer with that from another manufacturer. The major 
implication for the development cycle therefore, is that the developer no longer has to write a 
new I/O driver for a brand new peripheral. The onus of being able to manipulate the peripheral 
specific hardware shifts from the host system to the peripheral device. As a result, development 
cycles are significantly reduced. 
 
2.1.2 SCSI Terminology 
 
There are two kinds of devices on the SCSI bus: the SCSI Initiators – which start the I/O process 
and the Targets - which respond to a request to perform an I/O process. The traditional ‘master’ 
and ‘slave’ functions switch back and forth between Initiators and Targets. The single-byte 
(Narrow) SCSI bus supports up to eight devices whereas the 16-bit Wide SCSI bus supports 16 
devices. For any given set of interconnected devices, there must be at least one device capable of 
providing the functionality of an Initiator and at least one other capable of providing the 
functionality of a Target. 
 
The Initiator starts arbitration and selects a Target. The corresponding Target then requests a 
command from the Initiator. The Initiator then sends a Command Descriptor Block (CDB) over to 
the Target. The Target then executes the received CDB and returns the appropriate response. 
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Each Target device can also be subdivided into several Logical Units (LUNs – explained later). A 
representation of a SCSI system is shown in Figure 2-1. It is also possible to connect several 
computers, each with one or more SCSI host adapters, to a shared peripheral, such as a SCSI 
scanner. The maximum number of SCSI devices (each of these devices having a SCSI_ID) on a 
single-byte SCSI is eight. In addition to this, each of the devices, except the Initiator, can have up 
to eight logical units (LUNs). This brings the theoretical maximum number of devices/LUNs on 
the eight-bit SCSI bus to 57 (1 Initiator + 7 Targets x 8 LUNs). 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-1: Representation of a typical SCSI system 
 
A further level of abstraction is achieved in SCSI with the introduction of the concept of Logical 
Block Addressing. If a computer needs access to data, it is addressed in terms of a certain Logical 
Block Address (LBA). The Initiator does not need knowledge about the physical geometry or 
details about the layout of the drive in question. In this sense, a logical address is very similar to 
the concept of a virtual address. In other words, an Initiator issues commands directed to a 
specific set of LBAs. The Target upon receiving commands converts the LBAs into actual 
information about the track, cylinder head and the sector address. With some loss of efficiency, 
LBAs provide a uniform means for the Initiator to refer to the Targets. The mechanism of 
addressing is made device-independent. The Initiator uses the READ CAPACITY command in 
order to determine the maximum LBA on a magnetic disk as well as the size of one Logical Block. 
 
2.1.3 SCSI Commands and their format 
 
A SCSI command is generated by the Initiator (on the host) and is sent to the Target during the 
command phase (described later). A command and its parameters are sent as a block several 
bytes long called the Command Descriptor Block (CDB). SCSI commands can be classified into 
three types of commands based on the length of their CDBs: 
 
 Group  – 0 uses 6-byte CDBs 
  - 1, 2 uses 10-byte CDBs 
  - 5 uses 12-byte CDBs 
Command groups 3 and 4 are reserved, whereas command groups 6 and 7 are vendor-specific. 
 
SCSI was initially designed for magnetic disks which in the late seventies had relatively small 
capacities compared with those available today. Thus, transfer sizes could be adequately 
expressed in one byte - as a result, the Group-0 commands were sufficient. The 10-byte and 12-
byte CDBs were added for the vastly expanded capacities of present day devices. 
 
An example of a SCSI command is the READ(6) command [14]. The CDB for the READ(6) 
command is shown in Figure 2-2. The first byte of the CDB is the Operation Code (OP Code). A 

INITIATOR
Host

TARGET 

Magnetic disk

LUN 0 LUN 1 LUN 2 LUN 3

ID 7 ID 0

SCSI busINITIATOR
Host

TARGET 

Magnetic disk

LUN 0 LUN 1 LUN 2 LUN 3

ID 7 ID 0

SCSI bus
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list of OP Codes and the corresponding command names is shown in the Appendix A. It is 
followed by the LUN in the upper three bits of the second byte, and by the LBA and transfer 
length fields (READ and WRITE commands) or other parameters. The last byte of each CDB is 
the Control byte. This byte contains two important bits, the LINK and the Normal ACA. The 
LINK bit is used to continue a Task across multiple commands whereas the Normal ACA bit is 
used to control the rules for handling error conditions created by the failure to execute a 
command. 
 

Bit 
Byte 

7 6 5 4 3 2 1 0 

0 Operation Code (08h) 
1 Logical Unit Number Logical Block Address (MSB) 
2 Logical Block Address 
3 Logical Block Address 
4 Transfer Length 
5 Vendor Unique Reserved NACA Obsolete Link 

 
Figure 2-2: The READ(6) CDB 

 
The READ(6) command requests that the Target transfer data to the Initiator. The current data 
values contained in the addressed logical block on the Target’s storage device, shall be returned 
to the Initiator that transmitted the READ(6) command. 
 
The Logical Block Address field specifies the logical block at which the READ operation shall 
begin. The transfer length field specifies the number of contiguous logical blocks of data to be 
transferred. A transfer length of zero indicates that 256 logical blocks shall be transferred. Any 
other value indicates the number of logical blocks that shall be transferred. The typical size of a 
logical block is 512 bytes, although it can be any multiple of 512 bytes (This value is obtained 
from the response to the READ CAPACITY command – described earlier). 
 
The execution of SCSI commands can be thought of in terms of phases. The SCSI architecture 
includes eight distinct phases: 
 

a. BUS FREE phase: 
The BUS FREE phase indicates that there is no current I/O process and that the SCSI bus is 
available for a connection 

 
b. ARBITRATION phase 
The ARBITRATION phase allows one SCSI device to gain control of the SCSI bus so that it 
can initiate or resume an I/O process. Priority is given in accordance with device IDs. Higher 
IDs have higher priority. On the WIDE SCSI bus in SCSI-3, the low-byte Ids have higher 
priority over high-byte IDs. This is to allow the 8-bit devices to be always recognized by all 
other devices. 
 
c. SELECTION phase 
The SELECTION phase allows an Initiator to select a Target to initiate some Target function 
(e.g., READ or WRITE command). 
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d. RESELECTION phase 
The RESELECTION phase is an optional phase that allows a Target to reconnect to an 
Initiator for the purpose of continuing some operation that was previously started by the 
Initiator but was suspended by the Target (i.e, the Target disconnected by allowing a BUS 
FREE phase to occur before the operation was complete). 
 
e. COMMAND phase 
The COMMAND phase allows the Target to request command information from the 
Initiator. 
 
f. DATA phase 
The DATA phase consists of both the DATA IN and the DATA OUT phase. The DATA IN 
phase allows the Target to request that data be sent to the Initiator from the Target. The 
DATA OUT phase allows the Target to request that data be sent from the Initiator to the 
Target. 
 
g. STATUS phase 
The STATUS phase allows the Target to request that status information be sent from the 
Target to the Initiator. 
 
h. MESSAGE phase 
The MESSAGE phase consists of both a MESSAGE IN, and a MESSAGE OUT phase. Multiple 
messages can be sent during either phase. The first byte transferred in either of these phases 
shall be either a single-byte message or the first byte of a multiple-byte message. Multiple-
byte messages shall be wholly contained within a single message phase. The MESSAGE IN 
phase allows the Target to request that messages be sent from the Target to the Initiator. The 
MESSAGE OUT phase allows the Target to request that messages be sent from the Initiator to 
the Target. The Target invokes this phase when the ATN (Attention) condition is invoked by 
the Initiator. 
 

The last four phases are collectively referred to as the Information Transfer phases. The SCSI bus 
can never be in more than one phase at any given time. Typically, the Information Transfer 
phases are implemented in software whereas the first four are implemented in hardware. 
Furthermore, these hardware phases can be implemented in an interconnect-specific manner. 
Thus, SCSI leaves open to the protocols used by the low-level interconnect the method for how to 
select a Target and how to decide if the Target and the Initiator are ready for data transfer. 
 
In addition to these phases, SCSI also defines two conditions: the Attention condition and the 
Reset condition. 
 
The Attention condition allows an Initiator to inform the Target that the Initiator has a message 
ready. The Target may get this message by performing a MESSAGE OUT phase. 
The Reset condition is used to clear all SCSI devices from the bus. This condition shall take 
precedence over all other phases and conditions. Any SCSI device may create the reset condition. 
The BUS FREE phase always follows the Reset condition. The effect of the Reset condition on the 
I/O processes that have not completed, SCSI device reservations, and the operating mode of SCSI 
device is determined by whether the SCSI device has implemented the hard reset alternative or 
the soft reset alternative (one of which shall be implemented). The hard and soft reset alternatives 
are mutually exclusive within a system. 
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A SCSI device that implements the hard reset alternative, upon detection of the Reset condition 
shall: 

a. Clear all I/O processes including queued I/O processes. 
b. Release all SCSI device reservations. 
c. Return any SCSI device operating modes to their appropriate original conditions (similar 

to those conditions that would have been found after a power-on). MODE SELECT 
conditions shall be restored to their saved values if there have been saved values. In the 
absence of saved values, the default values are used. 

d. Unit attention condition shall be set. 
 
A SCSI device that implements the soft reset alternative, on the other hand, shall: 

a. Attempt to complete any I/O processes that have not completed, and that were fully 
identified. 

b. Preserve all SCSI device reservations. 
c. Preserve any SCSI device operating modes (MODE SELECT, PREVENT/ALLOW 

MEDIUM REMOVAL commands, etc) 
d. Preserve all information required to continue normal dispatching of I/O processes 

queued prior to the reset condition. 
The order in which phases are used on the SCSI bus follows a prescribed sequence. The Reset 
condition can abort any phase. It is always followed by the BUS FREE phase. In addition, any 
other phase can be followed by the BUS FREE phase but quite a few such transitions are the 
results of error conditions. The normal sequence of phases as described by the standards is 
depicted in Figure 2-3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-3: SCSI Phase Sequences 
 
 

BUS FREE

MESSAGE

MESSAGE

STATUS

COMMAND

DATA IN 
OR 

DATA OUT 

RESELECTION

ARBITRATION

SELECTION
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2.2 SCSI Target Model 
 
A Target is composed of a Target Identifier, a Task Manager, and one or more Logical Units. A 
Target Identifier is a field containing up to 64 bits that is a SCSI device identifier for the device. 
Every Initiator references a Target using the Target Identifier. The process of assignment of a 
Target Identifier is beyond the scope of SCSI. A Task Manager is a server that controls one or 
more tasks in response to task management requests (discussed in a following section). There is 
one Task Manager per SCSI Target device. A basic Logical Unit consists of a Logical Unit 
Number, a Device Server and one or more Task Sets (see Figure 2-6). 
 

Figure 2-4: SCSI Client-Server Model 
 
The basic structure of a SCSI sub-system is as shown in Figure 2-4. Each SCSI Target device 
provides two types of services, device services executed by the LUNs under the control of the 
Device Server and Task Management functions performed by a Task Manager. The abstract 
model of a SCSI Target is shown in Figure 2-5. 

 
Figure 2-5: SCSI Target Hierarchy 
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Figure 2-6: Structure of a Logical Unit 

 
The structure of the Logical Unit is depicted in Figure 2-6. A basic Logical Unit consists of a 
Logical Unit Number, a Device Server and one or more Task Sets. A Logical Unit may contain a 
dependent Logical Unit (such as the one shown in Figure 2-6). The Logical Unit Number serves 
as an external identifier used by an Initiator to identify a Logical Unit within the Target. All SCSI 
Targets shall accept LUN 0 as a valid address to execute SCSI CDBs. The Device Server is 
responsible for executing the SCSI commands and manages a Task Set according to the rules 
established by SCSI. A Task Set is composed of at most one Untagged Task or a combination of 
zero or more Tagged Tasks. A Tag is an identifier (assigned by the Initiator) to uniquely identify 
a Task within a Task Set. Accordingly, a Task with a Tag assigned to it is referred to as a Tagged 
Task; otherwise, it is referred to as an Untagged Task. The composition of a Task includes a 
definition of the work to be performed by the Logical Unit in the form of a command or a group 
of linked commands. Each Task is uniquely identified by a Task Identifier. 
 
2.3 Basics of SCSI Target Operation 
 
Between a power-on and the time that it is selected, SCSI Targets should be able to respond with 
appropriate status and sense data to the TEST UNIT READY, INQUIRY, and REQUEST SENSE 
commands. All SCSI Targets are required to support, in addition to the above commands, the 
SEND DIAGNOSTIC command. These commands are used to configure the system, to test 
devices, and to return important information concerning errors and exception conditions. 
 
The Target model [16] (Section 2-2) tries to minimize the amount of state information resident in a 
Target. The ideal Target model emphasizes maintaining information with respect to outstanding 
commands only. The Initiator-Target pair can be thought of in terms of a client-server pair in 
which the Initiator client makes requests which are responded to by the Target server. There are 
significant benefits in trying to minimize the amount of information that resides on the server. 
The most obvious one is that of trying to prevent the Device Server on the SCSI Target from 
becoming the bottleneck device. Furthermore, maintaining the state information almost entirely 
on the Initiator enables SCSI Targets to rely on the Initiator to initiate the recovery process when 
the execution of a SCSI command has failed. Although there are a large number of commands 
which are a part of SCSI, there is a smaller sub-set which represents commands that are required. 
This thesis aims at supporting the required set of commands. 
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The SCSI Architecture Model ([1], [16]) describes the transmission, processing and completion of 
SCSI commands in terms of remote procedure calls. Thus, for example, an application client 
invokes the following remote procedure in order to execute a SCSI command: 
Service response =  Execute Command (Task Address, CDB, [Task 

Attribute], [Data-Out Buffer], [Command Byte 
Count], [Autosense Request] || [Data-In 
Buffer], [Sense Data], Status); 

where: 
INPUT PARAMETERS: 
Task Address: A representation of the Initiator port responsible for this command along 

with the Target id and LUN to which this command is transmitted 
CDB: The SCSI command which is to be executed 
Task Attribute: Nature of the Task (Simple, Ordered, Head of Queue, ACA) 
Data-Out Buffer: Buffer containing command specific information such as data or 

parameter lists needed to execute the command 
Command Byte Count: The maximum number of bytes to be transferred by the command 
Autosense Request: Argument requesting the return of automatic sense data when the 

execution of the SCSI command fails 
OUTPUT PARAMETERS: 
Data-In Buffer: Buffer containing command specific information returned by the LUN 
Sense Data: A buffer containing sense data returned by the LUN by means of an 

autosense mechanism 
Status: A one-byte field containing command completion status 
 
Service Response assumes one of the following values: 
TASK COMPLETE: indicating that the command was completed 
LINKED COMMAND COMPLETE: LUN response indicating that a Linked Command was 
successfully completed 
SERVICE DELIVERY or TARGET FAILURE: Command execution has been ended because of a 
device malfunction or a service delivery failure 
 
The SCSI protocol is thus specified in terms of function calls. The specifics of how these 
functional calls are implemented are not specified. For example, the Execute Command 
function call is specified. However, SCSI does not specify the actual mechanism to get the 
corresponding command and data (if any) to the Target. This has interesting implications. 
Foremost amongst these is that SCSI can be easily adapted to any interconnect (referred to as the 
low-level interconnect) since SCSI leaves it up to the interconnect and the protocol used by the 
interconnect (referred to as the low-level protocol) to decide how it (the low-level interconnect) 
provides the functionality requested by the remote procedure. Furthermore, SCSI only specifies 
the commands and the expected responses to those commands. This implies that the low-level 
interconnect has a great amount of freedom about how it chooses to get the required information 
across from the Initiator to the Target and vice versa (depending on the direction of data flow 
required by the command). 
 
The Client/Server mechanism used by SCSI affects the mode of functioning of Initiators and 
Targets. When an Initiator (the Client) issues a command, the data buffers required by the 
command are already allocated (for a READ or for a WRITE – typically by the user space 
application on the Initiator that is responsible for the READ or WRITE) when the command is 
transmitted to the Target. As a result, before the Initiator issues a READ to the Target, the buffer 
to receive the data corresponding to the READ is already allocated. An Initiator thus, does not 
need flow control mechanisms for READ or WRITE type commands. 
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A SCSI Target, on the other hand, has to be prepared to receive commands at any point in time. 
For a SCSI Target, SCSI READs are not a problem. The READ command is received by the Target, 
the buffers are allocated, the command is executed and the buffers are filled. Since the Initiator 
already has the buffer space allocated to receive the data for this command, the Target is free to 
send the buffers across to the Initiator. Thus, a Target does not need any flow control 
mechanisms for READ type commands (similar to an Initiator). In the case of a SCSI WRITE, the 
situation is a lot different. The Target receives the WRITE command. The direction of the data 
flow is from the Initiator to the Target. The Target does not have know the size of the data buffer 
it should expect to receive from the Initiator until it receives the WRITE command. In other 
words, the buffers to receive this data are not pre-allocated. This implies that the Initiator cannot 
automatically send the data associated with the WRITE command until the Target has allocated 
the necessary buffer space and informed the Initiator about it. Most low-level interconnects 
recognize this and provide a flow-control mechanism for the transfer of SCSI data from Initiator 
to the Target. For example, in the Fibre Channel protocol, the Target transmits a XFER_RDY 
(discussed later) to inform the Initiator about what portion of the data to send (The XFER_RDY 
frame gives a starting LBA and the number of bytes to be sent). Thus, transmitting a response to a 
WRITE command involves three steps on the Target: 
1. Allocating the data buffers, which is independent of the low-level protocol 
2. Informing the Initiator about what data it should send, which is specific to the low-level 

protocol 
3. The execution of the command when the data arrives, which is again independent of the 

low-level protocol. 
This imposed order has to be accounted for in the design of a SCSI Target. 
 
2.4 Task Management Functions 
 
Task Management functions provide an Initiator with a way to explicitly control the execution of 
one or more tasks. Each Task Management function represents a service requested by the 
Initiator, typically used to recover a Target from what an Initiator perceives as an error condition 
with the Target. The SCSI Target returns a response which signifies either that the requested 
function was completed, or that the function was rejected or that there was a service 
delivery/Target failure causing the command not to be delivered. Each SCSI protocol standard 
defines the actual events comprising each of the above service responses. The following are the 
Task Management functions that have to be provided by SCSI Targets: 

1. Abort Task 
2. Abort Task Set 
3. Clear ACA 
4. Clear Task Set 
5. Logical Unit Reset 
6. Target Reset 

These are described below. The symbol ‘||’ in the expressions below implies that the parameter 
is required only if relevant. 
 
2.4.1 Abort Task 
 

Service Response = Abort Task (Task Address ||); 
This function is required to be supported by a LUN if it supports tagged tasks and is optional for 
LUNs that do not support tagged tasks. The Task Manager shall abort the specified task if it 
exists. Previously established conditions (such as Auto Contingent Alliance, reservations etc.) 
shall not be affected. The Target, if it supports Abort Task, guarantees that no further responses 
from the Task are sent to the Initiator. 
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2.4.2 Abort Task Set 
 

Service Response = Abort Task Set (Logical Unit Identifier ||); 
This function is required to be supported by all LUNs. The Task Manager, upon receiving the 
Abort Task Set, shall terminate all the Tasks in the Task Set created by the Initiator. This is 
equivalent to performing a series of Abort Task requests. Previously established conditions as 
well as Task Sets created by other Initiators shall not be affected. 
 
2.4.3 Clear ACA 
 

Service Response = Clear ACA (Logical Unit Identifier ||); 
This function is only to be implemented by those LUNs that accept a Normal ACA (NACA) bit 
value of 1 in the CDB Control Byte (Refer to Section 2.1.3 and Figure 2-2). The Initiator invokes 
Clear ACA to clear an auto contingent allegiance condition from the Task Set serviced by the 
LUN. 
 
2.4.4 Clear Task Set 
 

Service Response = Clear Task Set (Logical Unit Identifier ||); 
This function is required to be supported by all LUNs that support Tagged Tasks and is optional 
for those that do not. All tasks in the appropriate task shall be aborted. No status shall be sent for 
any task affected by this request. A Unit Attention command shall be generated for all Initiators 
with aborted tasks (if any). When reporting the Unit Attention condition, the additional sense 
code shall be set to “Commands Cleared by Another Initiator”. 
 
2.4.5 Logical Unit Reset 
 

Service Response = Logical Unit Reset (Logical Unit Identifier ||); 
This function shall be supported by all LUNs that support hierarchical Logical Units (Refer to 
Section 2-2) and is optional for non-hierarchical Logical Units. To execute a Logical Unit Reset, 
the LUN shall: 

1. Abort all tasks in its task set(s) 
2. Clear an auto contingent allegiance (NACA = 1) or contingent allegiance (NACA = 0) 

condition, if one is present. 
3. Release all reservations established using the reserve/release management method 

(persistent reservations shall not be affected) 
4. Return the operating mode of the device to the appropriate initial conditions, similar to 

those conditions that would be found following a device power-on. 
5. Set a Unit Attention condition 
6. Initiate a Logical Unit Reset for all dependent LUNs 

 
2.4.6 Target Reset 
 

Service Response = Target Reset (Target Identifier ||); 
This function shall be supported by all Target devices. Upon receiving a Target Reset Task 
Management Function, the Target device executes a Target hard reset. The definition of Target 
Reset events is protocol and interconnect-specific. Each SCSI Transport protocol is required to 
define the response to a Target Reset and the conditions under which it shall be executed. To 
execute a hard reset, a Target shall initiate a Logical Unit Reset for all attached LUNs (Refer to 
Section 2.4.5). 
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2.5 SCSI Error Reporting 
 
In the event a command completes with a Check Condition status or other error conditions, SCSI 
requires that a Logical Unit make sense data available to the Initiator. The format, content and 
conditions under which sense data shall be prepared by a LUN are specified by the SCSI 
Architecture Model-2 (SAM-2), SCSI Primary Commands-2 (SPC-2), SCSI Block Commands-2 
(SBC-2) and applicable SCSI Transport protocol standard. 
 
Sense data may be transferred to an Initiator through one of the following methods: 

1. The REQUEST SENSE command 
2. An asynchronous event report 
3. Autosense delivery 

These three methods are discussed below. 
 
2.5.1 The REQUEST SENSE command 
 
The REQUEST SENSE command (shown in Figure 2-7) requests that the device server transfer 
sense data to the application client. The details of the appropriate response to the sense command 
are described in SPC-2 and have not been presented here for reasons of brevity. 
 

Bit 
Byte 

7 6 5 4 3 2 1 0 

0 Operation Code (03h) 
1 Reserved 
2 Reserved 
3 Reserved 
4 Allocation Length 
5 Control 

 
Figure 2-7: The REQUEST SENSE command 

 
2.5.2 Asynchronous Event Reporting 
 
Asynchronous Event Reporting is used by a LUN to signal another device that an asynchronous 
event has occurred. The mechanism automatically returns sense data associated with the event. 
Each SCSI Transport protocol is required to define a mechanism for Asynchronous Event 
Reporting, including a procedure whereby an Initiator can selectively enable or disable 
asynchronous event reports from being sent to it by a specific Target. Support for Asynchronous 
Event Reporting is optional for a LUN. 
 
Asynchronous Event Reporting is used to signal another device (usually an Initiator) that one of 
the following events has happened: 

a. An error condition has occurred after command completion 
b. A newly initialized device is available 
c. Some other type of Unit Attention condition has happened 
d. An asynchronous event has occurred 

Sense data accompanying the Asynchronous Event Report identifies the condition. 
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2.5.3 Autosense 
 
Autosense is the automatic return of sense data to the application client coincident with the 
completion of a SCSI command. The return of sense data in this manner is equivalent to an 
explicit command from the application client requesting sense data immediately after being 
notified that an ACA condition has occurred. Although inclusion of autosense support in a SCSI 
Transport protocol is optional, most protocols support it, primarily as it eliminates one additional 
transaction between an Initiator and a Target. The application client may request autosense 
service for any SCSI command and provided it is supported by the protocol and the LUN, the 
device server shall return sense data if the command completes with a status of Check Condition. 
If autosense is requested and the protocol or the LUN do not support autosense, the device server 
should indicate that no sense data was returned. The application client may then issue a 
REQUEST SENSE command to retrieve sense data. 
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CHAPTER 3 
 
 
 

STORAGE AREA NETWORKS 
 
 
 

3.1 Introduction 
 
The last decade has seen a change in the way data is perceived. Data is now viewed as a 
commodity, access to which, in many cases, determines the success or failure of a business. 
Compounded by changing computing technologies and the globalization of business via the 
Internet, there has been a tremendous increase in storage requirements. In addition, because of 
the desired economies of scale achieved by 24 x 7 x 365 businesses, the windows of time available 
for data backup and recovery have virtually disappeared. In a nutshell, this has led to the need 
for cost-effective ways to ensure high data availability and reliability. 
 
3.2 Issues with traditional Storage 
 
The numerous manifestations of SCSI (SCSI-2, Wide SCSI, Fast SCSI, and SCSI-3) have long been 
the interface of choice for high-speed computer-to-storage connectivity for Windows NT and 
Unix users. A study by International Data Corporation estimates that the cost of managing 
storage is 10 times the initial cost of the storage device. Furthermore, the challenges facing “data 
administrators” are: 

1. Deploying vital applications across a network 
2. Allowing pooled data to be shared simultaneously among a large number of users, who 

may be widely separated from each other 
3. Managing storage distributed across a wide area as effectively and efficiently as possible, 

without expending large sums of money or manpower 
4. Supporting growing number of data-intensive applications 

 
The problems with using traditional SCSI to solve the above problems are: 

1. SCSI was designed as a point-to-point, directly attached computer-to-storage device 
interface. It is, therefore, ill suited for multiple host-to-storage communications. 

2. The SCSI maximum of 15 devices is a restriction for companies that want to implement 
multiple servers to multiple storage devices networking architectures. 

3. The maximum point-to-point distance allowed by SCSI is 25 m. For Ultra SCSI, this 
distance is reduced to 12 m. This distance limitation imposes architectural constraints on 
how storage is organized and distributed. 

4. The point-to-point limitation of SCSI requires backup traffic from server-to-server to 
travel over the LAN thereby placing additional strain on the LAN. 
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3.3 Approaches to solving the Storage Bottleneck 
 
The basic approach to solving the problem of the storage bottleneck deals with separating 
massive direct-access storage devices from the computer systems that access it. There are two 
mechanisms to achieve this. These are: 

1. Network Attached Storage (NAS) 
2. Storage Area Networks (SAN) 

 
The NAS approach was the more traditional approach. It intercepts the communication between 
an application client and a storage device. Communication between the host and the remote 
storage is via a special file system that uses the traditional network protocol stack. Access to the 
storage device is controlled by means of the NAS Server. Communication between the NAS 
server and the storage device is by traditional channel protocols such as SCSI. The 
communication between the NAS Server and the host (NAS Client) uses a special (typically, 
messaging) protocol. The unit of access between the NAS Server and the NAS Client is a file. The 
NAS File System therefore has to deal with such issues as integrity, security, and consistency at 
the level of a file. An example of a NAS is the Network File System (NFS) from Sun. The problem 
with this approach is a lack of scalability. In addition, this approach requires a lot of manual 
intervention in terms of making the connected systems aware of any new storage resources or 
configuration changes. 
 
3.4 The Storage Area Network Approach 
 
The concept that emerged out of the NAS approach was the need to have a block level protocol 
controlling access to the data storage units. Another key concept that simultaneously emerged 
was the creation of a network that was solely dedicated to the task of managing and controlling 
access to a set of storage devices. The unit of access across this Storage Area Network (SAN) is a 
block. SCSI provides an interoperable, high-performance block level protocol. Any new block 
level protocol would have had to deal with many of the same problems that SCSI had already 
dealt with. Thus, instead of reinventing the wheel, current SANs use the SCSI protocol as the 
block level access protocol. However, to counter the limitations of SCSI, most notably distance, 
SCSI is transported over a different low-level protocol that controlled access to the shared 
medium. This is the concept behind SCSI Transport Protocols. The visualization of the SAN in 
relation to the traditional LAN has been shown in Figure 3-1. 

Figure 3-1: Concept of Storage Area Networks 
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A SAN is thus a dedicated network that connects different kinds of storage – such as tape 
libraries and RAID systems - to servers. Because stored data does not reside on any network 
server, server resources can be utilized for other purposes, increasing network capacity. The 
benefits of such an approach to storage are listed below: 
 
1. Storage Consolidation: SANs enable consolidation of storage into a shared, heterogeneous, 

highly available environment. This is compared to the distributed “islands” of storage that 
foster unmanaged and unplanned growth. 

2. Improved Management: The consolidated storage means improved management of storage. 
SANs help simplify administration and reduce management costs. Separating storage and 
server functions allows network administrators to view these two functions independently, 
and to divide bandwidth optimally between them. 

3. Availability: A SAN can provide the ability to access the same storage over multiple paths. 
This implies that if one server or an interconnecting path fails, the user can access data 
through other paths. This is especially important for backup operations that rely heavily on 
successful operation. 

4. Scalability: Since there is separation between the servers and storage, all the individual 
components of a SAN scale well. As additional secondary devices are added to the SAN, they 
too become accessible from any server within the network. Consequently, an organization 
can start with the system capacity it currently needs and add storage as and when needed in 
the future. 

5. Bandwidth: SANs enable effective use of the bandwidth. Since, storage is tied to a network, 
and not to a server, the server can operate faster, and at a lower level of utilization. This 
implies that servers can operate faster and therefore, respond to requests quicker. 

 
An analysis of the different SCSI Transport protocols is presented in Chapter 4. 
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CHAPTER 4 
 
 
 

SCSI TRANSPORT PROTOCOLS 
 
 
 

4.1 Introduction 
 
Chapter 3 presented the limitations of SCSI and how the concept of SANs has evolved around 
SCSI but using a different low-level interconnect to transmit SCSI over greater distances and to a 
greater number of devices than is allowed by traditional SCSI. The SCSI standards organization 
(http://t10.org) has defined a set of protocols which allow SCSI to be transmitted over different 
low-level interconnects. These are collectively called the SCSI Transport protocols. With the 
growing importance of SANs over the past couple of years, several approaches have been 
proposed to the IETF and to T10. Examples of such approaches would be: 

1. Fibre Channel (FC) 
2. Scheduled Transfer Protocol (STP) 
3. SCSI Encapsulation Protocol (SEP) – Proposed by Adaptec 
4. Internet SCSI (iSCSI) – Proposed by IBM originally – now on the IETF Standards Track 
5. Storage Over IP (SoIP) – Proposed by Nishan Systems – now on the IETF Standards 

Track 
 
The hierarchy of these standards/proposals is shown in Figure 4-1. Some of these options are 
discussed. 
 
 
4.2 Fibre Channel 
 
Fibre Channel is a serial, high-speed data channel that provides logical bi-directional service 
between two ports. Fibre Channel is directed towards unifying LAN and channel 
communications by defining an architecture with enough flexibility and performance to satisfy 
both sets of requirements. Fibre Channel presents one solution to achieving most of the 
requirements of the SAN. It essentially assumes an error free network. Fibre Channel can provide 
data access at 1 Gbps and 2 Gbps with 10 Gbps expected in the future. 
 
 
4.2.1 Fibre Channel basics 
 
Individual nodes on a Fibre Channel network are referred to as ‘N_Ports’. Each N_Port resides on 
a hardware entity. A port capable of providing switching capabilities is referred to as an F_Port. 
Fibre Channel is structured as a set of hierarchical functions as shown in Figure 4-2. Each of these 
functions is described as a level. 

http://t10.org/
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The Physical interface (FC-0) consists of transmission media, transmitters, and receivers and their 
interfaces. The Physical interface specifies a variety of media, and associated drivers and 
receivers capable of operating at various speeds. 
 
The FC-1 level specifies the 8B/10B transmission code that is used to provide DC balance of the 
transmitted bit stream, to separate transmitted control bytes from data bytes and to simplify bit, 
byte and word alignment. In addition, the coding provides a mechanism for detection of some 
transmission and reception errors. 
 
The FC-2 Level is the signaling protocol specifying the rules, and provides mechanisms needed to 
transfer blocks of data end to end. FC-2 defines functions and facilities available for use by the 
upper levels. 
 
FC-3 provides a set of services that are common across multiple N_Ports of an FC node. This level 
is not yet well defined, due to limited necessity for it, but the capability is provided for future 
expansion of the architecture. 
 
The FC-4 level provides mapping of Fibre Channel capabilities to pre-existing Upper Level 
Protocols, such as IP, SCSI, ATM, etc. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-1: Protocols providing a mapping of SCSI over different protocols 
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Figure 4-2: Fibre Channel Functional Levels 
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The FC-1, FC-2, and FC-3 levels are typically implemented in hardware whereas the FC-4 level is 
implemented in software. 
 
A Fibre Channel network can be set-up in three basic topologies: 
 

1. Point-to-Point topology: Here two N_Ports are directly connected to each other. It is a non-
blocking connection. 

2. Fabric Topology: A network of multiple N_Ports is connected to a switched network by 
means of an F_Port. The basis for this non-blocking network is to take advantage of the 
fact that devices cannot sustain high rates of transfer over long periods. Such a 
configuration allows for fewer interconnects and makes the Fibre Channel network 
extensible. 

3. Loop Topology: The Loop topology consists of a maximum of 127 participating ports on 
one Loop. There is one link bandwidth that is shared between all ports. The Loop 
topology provides for a blocking and non-meshed network. Ports participating on the 
Arbitrated Loop are referred to as L_Ports (NL_Ports and FL_Ports). 

 
An implementation of a Fibre Channel network can consist of a combination of these topologies. 
This is shown in Figure 4-3. Most devices tend to support multiple topologies. Ports on such 
devices are referred to as Fx_Ports (if they provide Fabric functionality) or Nx_Ports otherwise. 
 
Fibre Channel supports five Classes of Service. These Classes of service are distinguished 
primarily by the methodology with which the communication circuit is allocated and retained 
between the communicating Nx_Ports and the level of delivery integrity required for an 
application. Classes 1, 2, and 3 are topology independent. If the Fabric is not present, the service 
is provided as a special case of point-to-point. Classes 4 and 6 require functionality outside of the 
participating Nx_Ports. Fabrics and Nx_Ports are not required to support all Classes of service. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-3: A possible implementation of a Fibre Channel Network 
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1. Class 1 service - Dedicated Connection: Class 1 is a service that establishes Dedicated 

Connections. Once established, a Dedicated Connection is retained and guaranteed by 
the Fabric. This service guarantees maximum bandwidth available between two N_Ports 
across the established connection. In Class 1, frames are delivered to the destination 
N_Port by the Fabric in the same order as they are transmitted by the source N_Port. 

2. Class 2 service - Multiplex: Class 2 is a connectionless service multiplexing frames at frame 
boundaries. Multiplexing is supported from a single source to multiple destinations and 
to a single destination from multiple sources. There are no guarantees for in-order 
delivery of frames. Furthermore, there is notification of delivery or failure to deliver. 

3. Class 3 service - Datagram: Class 3 is a connectionless service with unacknowledged 
delivery. There is no notification of delivery or failure to deliver and any error recovery is 
performed by the Upper Level Protocol (ULP) level. Any acknowledgement of Class 3 
service is left up to and determined by the ULPs. The transmitter transmits Class 3 Data 
frames in sequential order within a given Sequence. However, there are no guarantees 
for in-order delivery of frames. In Class 3, the Fabric is expected to make a best effort to 
deliver the frame to the intended destination and does not issue a busy or a reject frame 
to the source N_Port if unable to deliver the frame. 

4. Class 4 service - Fractional Bandwidth: Class 4 is a service that uses a virtual circuit 
established within a Fabric and between two communicating Nx_Ports to transmit 
frames to each other using a fabric-managed fractional bandwidth allocation protocol. 
This service requires a Fabric. The transmitter transmits Class 4 Data frames in a 
sequential order within a given Sequence. In Class 4, frames are delivered to the 
destination N_Port by the Fabric in the same order as they are transmitted by the source 
Nx_Port. The Fabric or destination Nx_Port guarantees notification of delivery or failure 
to deliver in the absence of link errors. In case of link errors, notification is not 
guaranteed since the Source_Identifier (S_ID) may not be error free. 

5. Class 6 - Multicast Connection: Class 6 allows an Nx_Port to establish simultaneous 
Dedicated Connections with multiple Nx_Ports. Once established, these Dedicated 
Connections are retained and guaranteed by the Fabric. This service guarantees 
maximum bandwidth available from the source N_Port to each destination N_Port across 
the established connections. The effective bandwidth of any Class 6 connection is 
multiplied by the number of destination Nx_Ports. Class 6 is inherently unidirectional. 
Data flows only from the source Nx_Port to the destination Nx_Ports. All destination 
Nx_Ports respond with the appropriate Link_Response frames to a Multicast Server. The 
Multicast Server collects the Link_Response frames and returns a single Link_Response 
frame to the source Nx_Port. Frames are delivered to the destination Nx_Ports by the 
Fabric in the same order as they are transmitted by the source Nx_Port. This service 
requires a Fabric. 

The Login protocol allows devices to communicate the Classes of Service that they support to 
each other. Class 3 is the most common Class of Service. 
 
4.2.2 SCSI over Fibre Channel 
 
Fibre Channel has been designed to implement the prerequisites required by the SCSI 
Architecture Model (SAM). Thus, it provides a logical means for extending the SCSI bus. The 
basic synergy between Fibre Channel and SCSI is that Fibre Channel allows SCSI-3 compliant 
devices to communicate over a reliable Fibre Channel interface over a greater distance and at a 
greater throughput than would have been possible by the use of SCSI. Thus, Fibre Channel 
provides a reliable interconnect with SCSI serving as the Upper Level Protocol. 
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The mapping of SCSI into Fibre Channel is defined by the Fibre Channel Protocol for SCSI 
standard (X3.269 – 1995 revision 12) – also referred to as SCSI-FCP. Four kinds of functional 
management functions are defined by SCSI-FCP: 

�� Device Management 
�� Task Management 
�� Process Login/Logout Management 
�� Link Management 

 
The FCP device and the task management protocols define the mapping of the SCSI functions 
defined in SAM to FC-PH. The SCSI-FCP is based on a two-level paradigm. The SCSI I/O 
Operation is mapped into an Exchange. The Request and Response primitives required by the 
I/O Operation are mapped into information units each of which may be contained within a 
Sequence. Link control is performed by the standard FC-PH protocol. This mapping is shown in 
Figure 4-4. 
 

SCSI function FCP equivalent 
I/O Operation Exchange 
Request/Response Primitives Sequence 
Command service request Unsolicited Command IU (FCP_CMND) 
Data delivery request Data descriptor IU (FCP_XFER_RDY) 
Data delivery action Solicited data IU (FCP_DATA) 
Command service response Command status IU (FCP_RSP) 

 
Figure 4-4: Functional Mapping between SCSI and Fibre Channel 

 
An application client begins an FCP Operation when it provides to the FCP a request for an 
Execute command service. A single request or a set of linked requests may be presented to the 
software interface of the FCP. Each request contains all the information necessary for the 
execution of one SCSI command, including the local storage address and characteristics of the 
data to be transferred by the command. The FCP then uses the services provided by Fibre 
Channel in order to execute the command. 
 
The SCSI Initiator for the command starts an exchange by sending an unsolicited command 
Information Unit (IU) containing the FCP_CMND payload, including some command control 
flags, addressing information, and the SCSI command descriptor block (CDB). In particular, the 
FCP_CMND payload is the Execute Command service request and starts the FCP I/O operation. 
The exchange is identified by its fully qualified exchange identifier which is used exclusively for 
all IUs associated with the execution of the command request. 
 
Upon receiving a SCSI command, the SCSI Target interprets the command. If a SCSI WRITE is 
requested, the SCSI Target determines the amount of data transfer required and allocates the 
necessary buffers to receive the data. It then transmits a data descriptor IU containing the 
FCP_XFER_RDY payload to the Initiator to indicate which portion of the data is to be transferred. 
The SCSI Initiator then transmits a solicited data IU to the Target containing the FCP_DATA 
payload requested by the FCP_XFER_RDY payload. If, on the other hand, the SCSI command 
received described a SCSI READ operation, the SCSI Target determines the amount of data 
transfer requested and allocates the necessary buffers. The data is then transferred using a 
solicited FCP_DATA IU to the Initiator. Data delivery requests continue until all data described 
by the SCSI command is transferred in either case. Thus, FCP_XFER_RDY are used to transfer 
data during SCSI WRITE operations but not during SCSI READ operations. 
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After all the data has been transferred, the device server transmits the Execute command service 
response by requesting the transfer of an IU containing the FCP_RSP payload. That payload 
contains the SCSI status and if an unusual status has been detected, the SCSI REQUEST SENSE 
information and the FCP response information describing the condition. The command status IU 
terminates the command. The SCSI logical unit determines if additional commands will be 
performed in the FCP I/O Operation. Upon determining that the command executed is the last or 
the only one to be executed in the FCP I/O Operation, the FCP I/O Operation and the exchange 
are terminated. 
 
When the command is completed, returned information is used to prepare and return the 
Execute command service confirmation to the software that requested the operation. The 
returned status indicates whether the command was successful. The successful completion of the 
command indicates that the SCSI device performed the desired operations with the transferred 
data and that the information was successfully transferred to or from the SCSI Initiator. If on the 
other hand, command execution was unsuccessful, then the required error information can be 
provided according to a defined protocol. 
 
If the command is linked to another command, then the FCP_RSP contains the proper status 
indicating that another command will be executed. The Target presents the FCP_RSP in an IU 
that allows command linking. The Initiator continues the same exchange with an FCP_CMND IU, 
beginning the next SCSI command. 
 
FCP allows full use of Fibre Channel and the Classes of Service provided by it as well as the 
different topologies allowed by it. 
 
4.3 SCSI over Ethernet 
 
The development of Fibre Channel led to the birth of the concept of Storage Area Networks. The 
concept of SANs extends beyond the use of Fibre Channel as a lower level interconnect. The next 
logical step is to try and rationalize existing network infrastructure to serve the storage needs of 
organizations. Towards this end, there are several proposals to try to transmit SCSI over the 
existing Ethernet infrastructure. Most of these protocols use the TCP/IP protocol. Thus, these 
protocols are extensible to all link-level technologies that support TCP/IP. 
 
The intrinsic issues that network-based technologies need to solve are those of reliability and 
Target identification. The latter translates into routing. This is solved by using the IP layer for 
routing. One can visualize a network cloud where Target devices are identified by an IP address. 
The reliable delivery is solved by having a reliable connection-oriented protocol on top of IP such 
as that provided by TCP. The advantages of this approach are manifold. The first issue is the 
ability to use existing network protocol stacks for transmission of data. The second advantage is 
that these protocols are well understood. The effects and implications of time-outs and window 
sizes have been studied in detail. Thus, a vast knowledge base is already available when 
considering the implementation of any protocol on top of the TCP/IP protocol suite. The use of 
Ethernet also keeps the costs low as it is the most widely deployed LAN technology and Ethernet 
components enjoy the benefits that come with the high volume. The following sections discuss 
the proposed protocols which transmit SCSI over Ethernet. 
 
4.3.1 SCSI Encapsulation Protocol 
 
The SCSI Encapsulation Protocol (SEP) was developed by Adaptec Inc [9]. This protocol was 
primarily intended as a proof of concept demonstration to be able to use network technology to 
create a high performance storage subsystem. The SEP Protocol assumes an underlying reliable 
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session protocol such as TCP/IP. The protocol uses TCP/IP to allow the sharing of targets across 
various hosts. (Refer to Figure 4-5) 
 
The SEP architecture is designed to address the needs of the desktop, small server, campus wide 
and larger storage area networks. The architecture focuses on being able to provide a cost and 
performance competitive solution in those spaces. With typical server applications, CPU 
utilization by the host is a concern. The CPU utilization is relatively low in traditional storage 
adapters. In order to achieve similar CPU utilization metrics with host adapters using the SEP 
protocol, the SEP protocol envisages the processing of the entire TCP/IP protocol stack on the 
host adapter itself rather than using CPU cycles. 
 
SEP operates at the session layer of the network protocol stack, just above the TCP/IP layer. It 
relies on the transport layer for correct delivery, and concentrates on multiplexing SCSI 
command, data, and status information. Because TCP/IP can be used on any Link and Physical 
layer, IP-storage (IPS) implemented with SEP can provide SCSI service over any network which 
has adequate performance. 
 
Traditional SCSI (using the parallel bus interconnect) identifies the type of information (phase) on 
the data lines with a set of encoded control lines. The mapping of this to a serial bus can be 
efficiently done by sending a type code at the beginning of the new phase, which applies until the 
next phase. This type code is part of a header that is appended to the beginning of data from each 
phase. This header also contains the SCSI tag, so that data and status segments can be matched to 
the correct command. To separate SEP packets from each other, a packet length placed in the 
header is used to read in the bytes until the next header. 
 
 
 
 
 
 
 
 
 
 

Figure 4-5: Relationship between SEP and the TCP/IP Protocol 
 
The underlying transport layer provides minimal addressing and flow control for each of its 
instances. This may require separate connections for each command. However, there is an 
overhead associated with establishing the connection. Furthermore, SCSI places an ordering 
requirement on each command going out to a specific LUN. SEP uses this as a logical point of 
separation. Different commands to the same LUN travel over the same TCP connection. Multiple 
connections may be used when accessing different LUNs on the same Target. The requirement 
for using different connections for different LUNs results in SCSI frames being transmitted 
without LUN information in the SEP header. The TCP connection can be established and 
maintained either continuously (for devices accessed continuously such as disk drives) or on-a 
per use basis (for devices accessed sporadically such as a printer). 
 
SEP encapsulates SCSI command, status, message and data information as SEP segments with a 
SEP header at the beginning. The SEP header is a fixed length of eight bytes as depicted by Figure 
4-6. 
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All SEP segments are padded with zeroes to four byte boundaries. The CRC is optional and is 
added to the end of the segment, after any required pad bytes. The segment length indicated by 
the SEP header does not include the pad bytes or the CRC. The flags field in the SEP header is 
used to minimize the transmission of status messages to the host. 
 
The SEP protocol involves establishing a connection with an IP address by transmitting a 
‘Connect and Negotiate’ message. This message is specific to a LUN. The ‘Negotiation Response’ 
indicates that a connection has been established. The host then transmits various SCSI commands 
using the ‘Simple Tagged Command’ SEP header to the Target. The Target then responds with 
either ‘SCSI Data’, ‘SCSI Status’ or a ‘SCSI Message’. Flow control is managed by using the SCSI 
Data Request and in this sense is very similar to the way Fibre Channel implements flow control. 
The Target controls the flow of data from the host. The Target originally allows the host to 
transmit a limited amount of data to it without requiring checking if the Target has buffers 
available. This is decided by the ‘Negotiation Response’ transmitted by the Target. The host then 
has to wait until it receives a ‘SCSI Data Request’ from the Target before it can transmit any more 
data. 
 
SEP does not deal with error recovery in the case of a dropped connection. SEP assumes that 
error conditions are dealt with by SCSI and by TCP/IP. This leads to a couple of issues with 
regard to the state of the file system on the Target when a connection is lost. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-6: SCSI Encapsulation Protocol header 
 
 
 
 
 
 
 
 
4.3.2 Internet SCSI 
 
The Internet SCSI (iSCSI) protocol [7] was proposed by a group of companies including IBM, 
Cisco Systems, Hewlett-Packard, SANGate, Adaptec, and Quantum. The standard is currently 
being developed under the aegis of the Internet Engineering Task Force (http://www.ietf.org). 
The iSCSI protocol, similar to SEP, is designed primarily with TCP as the underlying level. 
 
Communication between an Initiator and a Target occurs over one or more TCP connections. The 
TCP connections are used for sending control messages, SCSI commands, parameters and data 
within iSCSI Protocol Data Units (iSCSI PDU). 
 

FlagsType Tag Word 0 

SEP Segment Length ReservedWord 1 

0 31

Type: 
0x01 Simple Tagged Command 
0x02 Head of Queue Tagged Command
0x03 Ordered Tagged Command 
0x04 SCSI Data 
0x05 SCSI Status 
0x06 SCSI Message 
0x08 SCSI Data Request 
0x09 SCSI Set Data Pointer 
0x10 Connect and Negotiate 
0x11 Negotiation Response 
0x12 Third Party Open 
0x13 Third Party Open Response 
0x14 Third Party Close 
0x15 Third Party Close Response 

Flags: 
 
0x80: Command Complete 
0x40: Good Status 

http://www.ietf.org/
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The iSCSI protocol requires a login in order to enable a TCP connection for iSCSI use. This login 
can be used for authentication and authorization. Connections from an Initiator to a given Target 
are part of an iSCSI session. There can be multiple iSCSI sessions between an Initiator and a 
Target. The targets listen on a well-known TCP port for incoming connections. The Initiator 
begins the login process by connecting to that well-known TCP port and transmitting a “login” 
message. After authorizing and authenticating the Initiator, the Target transmits an “accept 
login”. The login establishes a session ID. Other parameters may be negotiated using the highly 
extensible Text Command message that allows arbitrary key:value pairs to be passed. Once this 
exchange has been completed, the iSCSI session is said to be in the iSCSI full feature phase. 
 
In the iSCSI full feature phase, the Initiator may send SCSI commands and data to various LUNs 
on the Target by wrapping them in iSCSI messages that go over the established iSCSI 
connections. For SCSI commands that require data and/or parameter transfer, the (optional) data 
and the status for a command must be sent over the same TCP connection that was used to 
deliver the SCSI command. The Initiator and Target may interleave unrelated SCSI commands, 
their SCSI Data and responses, over the session. Outgoing SCSI data (Initiator to Target – user 
data or command parameters) is sent as either unsolicited data or solicited data. 
 
The iSCSI protocol identifies targets using a URL type name of the format: 

scsi://<domain-name>[/modifier] 
The name used to connect will be optionally included in the login in order to enable the Target to 
present different views. This is the Target Acquired Name (TAN). The domain names can follow 
the IPv4 or the IPv6 naming convention. The iSCSI message header used in draft 3 of the 
proposed IETF standard to encapsulate SCSI commands and data is shown in Figure 4-7. 
 
The iSCSI protocol makes some effort to deal with protocol errors. This section of the protocol is 
undergoing a lot of change currently. It is assumed that iSCSI in conjunction with SCSI is able to 
keep enough information to be able to rebuild the command Protocol Data Unit (PDU) and that 
outgoing data is available in host memory for retransmission while the command is outstanding. 
It is also assumed that at a Target, iSCSI and specialized TCP implementations are able to recover 
unacknowledged data from a closing connection or, alternatively, the Target has means to re-read 
the data from a device server. In other words, the iSCSI protocol makes the assumption that in 
spite of a protocol error on the iSCSI side, the Target has some means to access the data. (It must 
be pointed out that one potential mode of operation anticipated by iSCSI is where access to the 
disk (i.e., device server) will be through a “gateway” or a “bridge” that will return the data to the 
Initiator after converting it to the iSCSI data format.) The transmission or absence thereof, of 
status and sense information is used by the Initiator to decide which commands have been 
executed or not. 
 
iSCSI recovery for communication errors involves the following steps: 
�� Abort the offending TCP connection(s) (Target and Initiator) and recover at the Target all 

unacknowledged read data. 
�� Create one or more new TCP connections (within the same iSCSI session) and associate all 

the outstanding commands with the failed connection to the new connection(s) created at 
the Initiator and the Target. 

�� The Initiator will reissue all outstanding commands with their original Initiator Task Tag 
and their original Command Reference Number (CmdRN). The latter is needed only when 
the commands were not acknowledged. If acknowledged, a new CmdRN needs to be used. 
The Opcode will be set to indicate that the command is a retry. 

�� The Target then performs the operation either by recovering the old data (if possible) or re-
doing the operation. 
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Several issues concerning configurable options, security, error handling and recovery are 
currently being discussed by the iSCSI IETF Working Group. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-7: Generic iSCSI Message Header (from iSCSI Draft 3) 
 
 
4.3.3 Storage over IP (SoIP) 
 
Nishan Systems (http://www.nishansystems.com) proposed the concept of Storage over IP 
(SoIP). This paradigm is similar to and in some sense, parallel to the concept of iSCSI. While SoIP 
defines the concept, the actual protocol proposed by Nishan to implement this paradigm is Metro 
FCP (mFCP) [8]. Although this protocol has not been implemented as a part of this thesis, a 
description of the concept behind the protocol is presented below. 
 
mFCP as the name suggests is a protocol designed to transport Fibre Channel Protocol for SCSI 
(FCP) over metro- and local-scale IP networks. mFCP tries to use the existent networking 
protocols and in that sense combines IP and FCP. It uses IP as the addressing and routing layer 
and uses the FCP layer to transmit SCSI. The mFCP protocol essentially defines an encapsulation 
of FCP over IP. All FCP mechanisms are transported natively over IP between Fibre Channel and 
SCSI storage devices. mFCP uses the UDP transport protocol to facilitate high performance, and 
assumes that reliability and flow control will be handled by the encapsulated Fibre Channel 
protocol.  mFCP's primary objective is to allow interconnection and networking of existing Fibre 
Channel devices over an IP network. 
 
mFCP achieves this objective by leveraging FCP mechanisms already in use in storage products, 
and statelessly mapping these to UDP/IP.  Existing FCP-based Fibre Channel products can now 
use mFCP to internetwork over an IP-based network. mFCP achieves high performance by 

Opcode-specific fields5 – 12 

Initiator Task Tag4 

Logical Unit Number (LUN) or Opcode-specific fields 2 – 3 

Length of the data following the 48 byte header 1 

Opcode-specific fields Opcode 0 

Byte 0 Byte 1 Byte 2 Byte 3 Word 

Opcode:

 

0x00:NOP-Out Message 
0x01:SCSI Command 
0x02:SCSI Task Management 
Command 
0x03:Login Command 
0x04:Text Command 
0x05: SCSI Data (for WRITEs) 
0x06:Logout Command 

Opcode: 

 

0x80:NOP-In message 
0x81:SCSI Response 
0x82:SCSI Task Management Response 
0x83:Login Response 
0x84:Text Response 
0x85:SCSI Data (for READs) 
0x90:Ready To Transfer 
0x91:Asynchronous Event 
0xEF:Reject 

http://www.nishansystems.com/
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forwarding FCP information units directly between FCP end nodes without the delays 
introduced by conventional storage routers. 
 
The details of the protocol have not been made completely public. As a result, the details of the 
protocol have not been presented. 
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CHAPTER 5 
 
 
 

SCSI TARGET EMULATOR 
 
 
 

5.1 Introduction 
 
As seen in the previous chapters, there are several proposals to extend the length of the SCSI bus. 
In the evaluation of any networking technology that attempts to supplant SCSI, the resources 
needed are two-fold. The first of these is something that can perform the functionality of a SCSI 
Initiator over the desired interconnects. The pieces for this are already in place in terms of the 
SCSI mid-layer in the Linux kernel. The driver needed to interface with the hardware has to 
provide the functionality requested by the SCSI mid-layer. The driver in this case, is responsible 
for translating the function required by the SCSI Initiator mid-level in terms of the protocol used 
by the low-level interconnect. The functions provided by the Initiator use the protocol required 
by the interconnect to convert the received SCSI command into a correctly formatted frame or 
packet that can be transmitted over the interconnect. 
 
The other necessary resource is something that can provide the necessary functionality of a 
Target. As Targets tend to be mostly devices like hard drives or tape drives with their micro-code 
being resident on the device itself, the SCSI mid-layer, as it presently exists in the Linux kernel, 
does not cater to the needs of a Target and the way it is required to handle instructions in 
accordance with the relevant SCSI standards. From this point of view, it is highly desirable to 
have a generic way in which a driver written to perform Target functionality can interface with 
the Linux kernel. This functionality is what can be potentially provided by a SCSI Target 
Emulator. When implemented in the Linux kernel, this concept parallels that of the SIML and can 
be thought as the SCSI Target mid-level (STML). 
 
A SCSI Target device receives the SCSI commands from an Initiator. The process of how the 
command delivery occurs and how data is transmitted between the Initiator and the Target is 
implemented in an interconnect-dependent manner. This command is handled by an 
interconnect-specific low-level front-end Target driver (FETD). It will strip off headers 
introduced by the protocol used on the interconnect and hand off the SCSI command and data (if 
any) to the STML. The STML processes and executes this command and hands back the 
responses (data and/or status) back to the FETD so that it can transmit them back to the Initiator. 
The STML must also be able to respond to the error handling facilities provided by SCSI. This 
abstract overview is presented in the Figure 5-1. A description of the nature of the interaction and 
a discussion of the API needed to handle these interactions is provided in the following sections. 
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Figure 5-1: Abstract Overview of the functionality of a Target Emulator 
 
 
5.2 Preliminary Design Issues 
 
There are several options about how exactly the Target Emulator can be implemented. These 
options are discussed in this section. Clearly, the most obvious mode of functioning is when the 
Target Emulator functions exactly like a driver. It could potentially function entirely internal to 
the kernel. The issue then is of defining what processing a command actually means. The most 
simplistic implementation would involve being able to transmit frivolous data when READs are 
requested and accepting data for WRITEs without actually doing anything with that data. The 
second potential implementation is where the READs and WRITEs can be directed to a specific 
device (e.g., a SCSI or an IDE drive in the system). Another potential implementation is when the 
Target Emulator functions in a manner similar to the TCP/IP stack. Data is either transmitted to 
the user space or requested from the user space. The idea is to give the user flexibility over what 
to do with the actual data. The level of granularity can be varied depending upon the needs of 
the user. As a project objective, it is desirable to implement all of these modes of operation. 
 
The second aspect of this project involves actually using the Target Emulator implementation. 
Although the actual Target needs to be independent of the underlying interconnect, in order to 
demonstrate the functionality of the Target Emulator, it is proposed that a couple of low level 
drivers be implemented with the necessary functionality. The low-level interconnects for the 
purposes of this project are selected to be Fibre Channel, SEP and iSCSI. 
 
Apart from creating a generic interface for Target drivers, the Target Emulator has some other 
potential applications. One potential use is in testing. Depending upon the level of granularity 
(i.e., does the driver have frame/packet level control over the card or data level control) that the 
low-level driver has over the SCSI operation, it may become possible to transmit incorrect frames, 
or frames out of order. This functionality is desirable in a tool to test the SCSI functionality 
implemented on the Initiator. Another potential use is in being able to provide an interface to 
share files off a disk. The Target Emulator could function as a front-end for a large number of 
physical disks. This makes it an ideal location to implement policies about sharing partitions, 
volumes and files. It could also potentially be used to set policies about mirroring, path-
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redundancy and data access. The Target Emulator could be used to as an interface to a file 
sharing application (see Figure 5-2). 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-2: Functionality provided by the Target Emulator 
 
 
5.3 Description of API needed 
 
This section gives an approach to designing the STML. Since the functionality will need to mirror 
that offered by the SIML, this section also takes a look at the SIML design. The details of how the 
Target Emulator is actually implemented in user space and in kernel space are discussed in 
Chapter 6 and Chapter 7, respectively. 
 
The Linux SCSI subsystem can be classified into three levels. The three levels are depicted in 
Figure 5-3. In addition to this, the Linux SCSI subsystem also consists of a bottom-half handler 
that in effect is a thread with an infinite loop responsible for processing the responses received 
for SCSI commands. The key to the design lies in the fact that the low-level Initiator driver has to 
provide certain defined functionality. This functionality is defined by the struct 
Scsi_Host_Template. Typical functions that low-level Initiator drivers need to provide are a 
queuecommand() function (which is called when the SIML needs to line up SCSI CDBs for the 
low-level Initiator driver to transmit to the Target(s) connected to it), an abort function (called 
when there are errors in SCSI execution), etc. The SIML is completely independent of the low-
level Initiator driver. Furthermore, a common SIML enables rationalizing SCSI requests issued to 
Initiator drivers for different protocols. The SIML serves a two-pronged function. It provides an 
interface to enable abstraction on the user side, and on the interface to the lower level Initiator 
driver, it provides generic features that do not take away any necessary SCSI functionality. 
 
A SCSI Initiator can thus be viewed as the functionality provided by the Upper Level, the SIML 
and the low-level driver. The operation of the SCSI Initiator involves identification of the SCSI 
resources accessible to the Initiator. This is done as part of the set-up procedure when the low 
level Initiator driver registers with the SIML. When a read() or a write() is generated from 
the user level for an identified SCSI Target, the request is converted into SCSI CDB(s) by the 
SIML. The SIML then calls the queuecommand() for the low-level Initiator driver. The low-
level Initiator driver, through its queuecommand(), then executes the command, i.e., transmits 
the SCSI command to the Target. When the response to the SCSI command is received, the low-
level Initiator driver informs the SIML about the received response and/or data. The SCSI 
bottom-half handler then recognizes that a response has been received and if the “good” SCSI 
status is received, the corresponding command is said to be complete. 
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A general visualization of the nature of the operation required by a SCSI Target follows from the 
example of a SCSI Command being executed, as discussed in Chapter 2 and Chapter 4. In the 
typical operating scenario, a Fibre Channel card such as the QLogic ISP 2200 A, acting as a target, 
would generate a hardware interrupt for the low-level interconnect front-end Target driver 
(FETD) upon receiving a frame from an Initiator. The interrupt handler of the FETD would be 
called upon to take care of the interrupt. The interrupt handler then retrieves the frame. Upon 
deciphering that the frame is a valid SCSI frame, the interrupt handler would then hand it off to 
the STML. The driver then goes off to wait for further commands to be received. The STML then 
checks for any SCSI commands received. It has to decide whether this frame is a part of an 
entirely new command or a continuation of a command previously handled. Accordingly, the 
STML will need to assign an ID to the received command. The STML, depending on its mode of 
operation, will appropriately process the command and return the relevant response to the FETD. 
(If the command received is a READ, the STML will directly return the relevant data. If, on the 
other hand, the received command is a WRITE, the STML needs to be able to send XFER_RDY, 
which allocates the necessary buffer for the Initiator to write the requisite data. It then has to 
await the reception of the SCSI data – see section 2.3). The STML then has to be able to generate a 
RESPONSE indicating how the command was executed. If the execution of the SCSI command 
proceeded without any exceptional conditions, this transmission of a RESPONSE indicates a 
termination of the command execution sequence. If, on the other hand, exceptional conditions are 
reported, the STML may receive a few more frames inquiring about the exceptional condition. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-3: Organization of SCSI code in the Linux kernel 
 
From the discussion of the organization of the SIML and the mode of execution required by the 
STML, we now discuss the kernel level API that is needed on the Target side. The STML defines 
the functionality that an FETD has to provide. This is implemented in a manner similar to the 
way it is currently being done for an HBA driver. A struct Scsi_Target_Template (see Figure 
7-6) defines the functionality needed. An FETD registers with the STML indicating that it is 
capable of functioning as a Target. The nature of these functions is defined by the operations 
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defined by the previous paragraph. Essentially, the idea is to be able to separate SCSI 
functionality from the requirements of the low-level interconnect. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-4: API between the generic SCSI Target Mid-Level and the Front End Target Driver 
 
The functions required by the STML (in pseudo-code) would be: 

tx_response   (scsi_data, tag) 
tx_status  (scsi_cmnd, status_message, tag) 

 
 
The functions provided by the STML (in pseudo-code) would be: 

rx_cmnd  (scsi_cmnd, data, tag) 
rx_message  (scsi_message, tag) 

 
The other issue is that of being able to provide some functionality to the user. One of the intended 
uses of the SCSI Target Mid-Level being for testing, there needs to be some ability to transmit 
SCSI commands on to the user. This is also important for debugging purposes. The other 
interface that needs to be available is for configuration. The SCSI Target Mid-Level can also be 
envisioned as a “gateway” to managing a Storage Area Network (SAN). This gateway needs to 
be able to define what SAN resources are visible and in what manner. All such issues fall under 
the gamut of being able to provide a User Level API. While this was a proposed goal of the thesis, 
this has not been implemented because of a paucity of time. 

SCSI TARGET MID-LEVEL
rx_cmnd () 

rx_message ()

FRONT END TARGET DRIVER
tx_response() 

tx_status() 
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CHAPTER 6 

 
 
 

USER-SPACE TARGET EMULATOR 
 
 
 

6.1 Overview 
 
The objective behind the User Space Target Emulator (USTE) is to create an entity that can 
process SCSI commands on a Target device, and provide functions that are common to all front 
ends using this USTE. The primary purpose behind the design of the USTE was to gain some 
experience about what a Kernel Space Target Emulator (KSTE) would need to provide in terms of 
an interface and also provide some basic understanding about what are good design features. 
Furthermore, the user space is a better place to debug code as compared to starting work directly 
in the kernel space, and working in the user space helps USTE development become largely 
independent of changes in the kernel version. Figure 6-1 shows an abstract overview of what 
functionality the USTE is expected to provide. 
 
The USTE consists of two logical pieces of code, one of them is responsible for handling the 
details of the SCSI transport protocol and the other is responsible for the processing of SCSI 
commands. If designed correctly, the section of code dealing with the processing of SCSI 
commands should function completely independently of the SCSI transport protocol. In other 
words, it should extract all the common functionality needed by the section of code dealing with 
SCSI transport protocol. 
 
 
6.2 Basic Structure of the User Space Target Emulator 
 
The USTE is a group of functions contained in scsi_interface.c. The functions are available 
to any given front-end for the processing of SCSI commands: 
 
int open_SCSI_device  (__u64 scsi_id, __u64 scsi_lun); 
int close_SCSI_device  (__u64 scsi_id, __u64 scsi_lun); 
__u32 get_allocation_length (unsigned int cmd_len, unsigned char* 

 scsi_cdb); 
int handle_SCSI_cmd   (unsigned int cmd_len, unsigned int  

 in_size, unsigned char* i_buff, unsigned  
 int out_size, unsigned char* o_buff); 
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Figure 6-1: Functional Overview of the User Space Target Emulator 
 
In addition to these, a global struct (struct disk_properties disk_drive – Line 17 
scsi_interface.c) is common between the USTE and the Target front-end. 
 
The use of these functions is discussed below. The USTE can currently work in three modes: 

1. I/O to and from a real disk drive 
2. I/O to and from a file that contains the logical blocks 
3. I/O to and from memory 

Only one of these modes can be selected at a given time, since the decision is made when the 
USTE is compiled. The modes can be selected depending upon hash-defines selected in the 
scsi_interface.c file. These three modes of functioning are shown in Figure 6-2. 
 
6.2.1 I/O to and from a real disk drive 
 
The basic mode of operation (selected when BASIC is uncommented - in scsi_interface.h) is 
to read and write to a real disk drive. For this mode of operation to work, there needs to be some 
means of transmitting the received SCSI CDBs to a SCSI disk from the user-space as well as some 
means to recover the response. This function is served by the SCSI generic driver in the Linux 
kernel. The interface to this driver (discussed in detail later) is by means of traditional read and 
write system calls. This enables a user space "driver" to transmit SCSI commands onto a SCSI 
entity that has been recognized by the Linux kernel. In other words, to use this feature of the 
USTE, there needs to be on the platform running the USTE, a SCSI-capable host bus adapter 
(HBA) and a disk drive attached to this HBA. For purposes of testing, a QLogic ISP 2200 card was 
used as the SCSI HBA. This card accepts SCSI commands and transmits them onto a Fibre 
Channel interconnect. The driver used for this SCSI Initiator was written by Chris Loveland and 
is a part of the Linux kernel. Connected to this QLogic card was a 36 GB Seagate Fibre Channel 
drive (Refer to Figure 6-2). 
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To understand how this feature works, it is important to have an overview of the SCSI generic 
driver in the Linux kernel. As shown in Chapter 5, the SCSI upper level consists of the SCSI 
generic functionality as well. This provides an API to the user level to transmit SCSI commands 
directly into the SCSI mid-level. Whenever a SCSI device is detected by the kernel, the device gets 
mapped onto a corresponding SCSI generic device. In other words, in our case, when the QLogic 
driver detected the Seagate disk, it was mapped by the mid-level into /dev/sda (if no other SCSI 
disk was already present). Furthermore, if the SCSI generic upper-level driver was enabled, the 
disk drive also gets mapped as /dev/sga. The disk drive is then able to accept commands using 
the SCSI generic API. 
 
The SCSI generic API has two versions that are currently supported. While this USTE was being 
developed, the API was changed (changes first noticed in the kernel version 2.4.0-test9). These 
two versions are henceforth referred to in this document as the SCSI Generic 1 (SG-1) and the 
SCSI Generic 2 (SG-2) respectively. However, since the original focus of the USTE was to gain an 
understanding of the issues involved, there was no change made to the code to reflect the 
changed API. The API discussed below is the SG-1 interface which continues to be supported for 
reasons of backward compatibility. 
 
The SCSI generic interface, developed by Lawrence Foard 
(/usr/src/linux/include/scsi/sg.h), provides a general way of exchanging data with 
the generic driver. Before a command can be sent to a SCSI generic device, the device needs to be 
“open”ed. The file descriptor returned by the open system call allows the user space application 
to reference the device in all subsequent system calls. More importantly, it allows the SCSI 
generic driver to distinguish between different user-space applications trying to send SCSI 
commands to the same SCSI generic device. 
 
To send a command to an opened SCSI generic device, a data buffer containing: 

struct sg_header 
SCSI command 

Space for data to be sent with this command 
is sent to the device using the write() command. 
 
To obtain the result of a command, a read() command is executed with a data buffer containing 
space allocated for a similar structure: 

struct sg_header 
Space for data to be read with this command 

Thus, executing SCSI commands is equivalent to executing a write() command in which a 
command is "written" to a device followed by a read() command which gets the required 
response to the executed commands. The struct sg_header presented above is defined as 
shown in Figure 6-3. The individual terms in the struct are explained in the comments. The 
sense_buffer array gets used only when the command for which the read() is being executed 
has failed. 
 
There are some clear limitations to this mode of functioning. The most obvious is that the data is 
passed and received as a single logical buffer. The trouble with this occurs when the data reaches 
the SCSI Generic Upper Level driver. In order make use of the data, the kernel needs either to 
transfer the data from the user space to the kernel space (in the case of a WRITE-type command) 
or to copy the data to the user space from the kernel space (in the case of a READ-type 
command). This forced memcpy in the kernel causes some inefficiency. Internally, the kernel 
expects the data to be in the form of a vector (Figure 6-4). Typically, this is achieved using the 
readv and the writev system calls. The struct iovec shown in Figure 6-4 is a typical data 
structure the kernel uses. The data is structured in the form of an array of struct iovec, each 



 

entry consisting of an address (iov_base) and a length (iov_len) – defining the number of 
bytes of data pointed to by iov_base.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-3: Definition of struct sg_header 
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struct sg_header { 

int pack_len; /* length of incoming packet (including header) */ 

int reply_len; /* maximum length of expected reply */ 

int pack_id; /* id number of packet */ 

int result; /* 0==ok, otherwise refer to errno codes */ 

unsigned int twelve_byte:1; /* Force 12 byte command length for

group 6 & 7 commands */ 

unsigned int other_flags:31; /* for future use */ 

unsigned char sense_buffer[16]; /* used only by reads */ 

/* command follows then data for command */ 

}; 
int readv (int fd, const struct iovec *vector, int count); 
int writev (int  fd,  const  struct  iovec  *vector,  int count);
struct iovec { 

__ptr_t iov_base; /* Starting address.  */ 

size_t iov_len; /* Length in bytes.  */ 

}; 
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Figure 6-4: I/O using Vectors 

e is also an inherent but slightly less obvious limitation to the way SCSI generic works. The 
imum size of a buffer that can be passed while executing a write() or while receiving from 
ad() is limited by SG_BIG_BUFF which is a compile time constant within the kernel (defined 
clude/scsi/sg.h - Line 238). This constant has been hard coded to be 32 KB since the 2.2 
on of the Linux kernel. SCSI commands on a well-written Initiator tend to execute 

ands with a data buffer of the order of ~128 kB. Using a smaller buffer causes a tremendous 
unt of inefficiency. For instance, when an Initiator issues a SCSI WRITE(10) command 
esting that 128 kB of data be written to the disk, it sends the data to the Target as one 
guous buffer. Upon receiving this 128 kB block of data from the Target front-end, the USTE 
o break it up into four corresponding SCSI WRITE(10) commands (accounting for the correct 
s) and pass the data to SCSI generic appropriately. There are two ramifications because of 
The first is that when a SCSI READ command requesting greater than 32 KB of data is 
ved by the USTE, there is a memcpy imposed on the USTE when copying the data from a 
h of smaller buffers to a larger buffer. Secondly, this means that UNIX/POSIX asynchronous 
cannot be used with this interface, since the smaller READs/WRITEs will have to be 
leted in sequence. 
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Furthermore, it is not possible to maintain state information about the SCSI command using the 
above struct sg_header. The absence of this feature also means that UNIX/POSIX 
asynchronous I/O is not possible with the USTE using the available SCSI generic interface. 
 
The SCSI generic interface has changed considerably in the latest Linux-2.4 kernels. The SG-2 
interface [11], discussed in the next chapter, solves most of the problems documented above. The 
USTE implemented has not been converted to the new interface because of time constraints. 
However, it should not be a lot of work to convert the USTE to the SG-2 interface to do 
synchronous I/O. Converting it to UNIX/POSIX asynchronous I/O requires some more work in 
terms of preparing the USTE to deal with SIGIO. 
 
6.2.2 I/O to and from a file that contains the logical blocks 
 
This is the mode of operation (available when both NON_BASIC and FILE_IO are uncommented 
- in scsi_interface.h) that can be used by systems which do not have a SCSI HBA and/or a 
SCSI disk attached to the platform that is running the USTE. In this mode of operation, the USTE 
opens up a file on the local disk drive. The USTE responds to the received SCSI commands as a 
real SCSI disk drive would. The data from a SCSI READ is obtained by reading the specified 
number of bytes from the file whereas for a SCSI WRITE, the blocks are written to the file. As far 
as the remote system is concerned, there is no difference between the file and a real disk. One of 
the reasons this mode of operation was developed was because it facilitated testing several 
features of the USTE. This mode of operation does not need the SCSI generic driver in the Linux 
kernel. The major disadvantage of this mode of operation is that the range of commands that can 
be used in a SCSI operation is restricted by the number of SCSI commands that are supported by 
the USTE. In the case where the commands were transmitted to a real disk, the USTE was 
restricted by the number of commands that are supported by the real disk. The USTE also makes 
some default assumptions about the block size (set to 512 bytes - defined by BLOCK_SIZE in 
scsi_interface.h) and the size of the disk (set to 600 MB - defined by FILE_SIZE in 
scsi_interface.h) which are relevant when responding to the received SCSI commands and 
in defining how the received SCSI READs and WRITEs get interpreted. 
 
In this mode of operation, corresponding to each SCSI Identifier (id) and Logical Unit Number 
(LUN), a file is opened with the name "scsi_disk_file_x_y", where x = SCSI id and y = SCSI 
LUN. Thus, all Target front-ends attempting to transmit SCSI commands to a given (id, LUN) 
pair will end up executing commands to the same file. Consequently, just like on a real shared 
disk, multiple users attempting to write to the same (id, LUN) will end up corrupting the file 
system on this simulated disk unless they somehow communicate between themselves to avoid 
it. The USTE does not attempt to rectify this behavior as it tries to simulate the behavior of a real 
disk as closely as possible. In block transmission protocols such as SCSI, issues related to 
maintaining the integrity of a file system are left up to the file system that utilizes SCSI. 
 
6.2.3 I/O to and from memory 
 
This mode of operation (selected when only NON_BASIC is uncommented – in 
scsi_interface.h) is primarily useful for the performance analysis of the front-end protocol 
implemented for this USTE. In this mode of operation, the USTE, upon receiving a SCSI WRITE 
command, does not do anything useful with the data and returns a STATUS_GOOD message as 
required by SCSI. Upon receiving a SCSI READ command, the USTE returns the data buffer "as-
is". 
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6.3 Description of the functions available to a Target front-end 
 
As stated in the previous section, four functions are available to any Target front-end 
implemented for the USTE. The steps normally involved in executing SCSI commands using the 
USTE are: 

1. Opening the device 
2. Get buffer requirements 
3. Execute the command 
4. Closing the device 

Steps 2 and 3 are repeated for the life of the front-end driver. The translation of these steps to the 
defined USTE is as follows: 
 
 
6.3.1 Opening the SCSI device using open_SCSI_device() 
 
The function expects the SCSI id and the SCSI LUN (both of these are defined by the SCSI 
Architecture Model for SCSI-3 standard as being 64 bit entities) as inputs. These values are 
normally a part of the protocol login or the protocol handshake. This must be done when the 
Target front-end decides that it is ready to receive SCSI commands from an Initiator for that id 
and LUN. The actual device or file that will be opened will depend upon the mode of operation. 
For I/O to and from memory, this is a no-op. For I/O to and from a file, the file opened will 
depend upon the LUN “a” and id “b”. The file name will be of the form “scsi_disk_b_a”. For 
I/O to and from a real disk, the current design opens SCSI disks on the basis of LUNs. Thus, for 
LUN 0, /dev/sga is opened, for LUN 1, /dev/sgb is opened. The id is not used in this mode 
of operation. It is expected that this mapping of generic devices to IDs and LUNs is the 
responsibility of an external configuration utility which is a management function not part of the 
USTE itself. 
 
6.3.2 Finding the buffer requirements using get_allocation_length() 
 
Upon receiving a SCSI command, the front-end driver should pass the SCSI Command 
Descriptor Block (CDB) along with the length of the command to the function 
get_allocation_length(). The function extracts the buffer length in bytes from the CDB and 
then returns it. This is the length of the buffer that the front-end driver needs to allocate for the 
data alone. Whether the front-end driver receives the actual data to fill into the buffer from the 
Initiator or from the USTE depends on the command. For a SCSI READ, the data would be 
received from the USTE. For a SCSI WRITE, the data would be received over the network from 
the Initiator that issued the WRITE command. Normally, the data transfer direction is included as 
part of the header information in the underlying protocol implementing SCSI. While this is the 
external behavior of the function, internally, it prepares the USTE to receive the command. It 
makes error checks on the received CDB and copies the CDB over to disk_drive (of type struct 
disk_properties – see Figure 6-5). 
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struct disk_properties { 

        int     fd;             /* file descriptor */ 

        int     max_buff;     /* how much can I read/write once */

 

        /* to help write greater than the amount allowed by 

scsi generic */ 

        int     write_flag;     /* write received = 1 */ 

        __u32   to_write;       /* how many bytes to write */ 

        __u32   written;        /* Bytes already written */ 

        __u32   lba_to_write;   /* which logical block to write */

        __u32   blocksize;      /* Size of Blocks */ 

        __u16   max_write;      /* How many to write */ 

        __u16   max_read;       /* How many to read */ 

 

        /* to help read greater than the amount allowed by 

scsi generic */ 

        __u32   to_read;        /* how many bytes to read */ 

        __u32   read;           /* bytes already read */ 

        __u32   lba_to_read;    /* which logical block to read */ 

 

        unsigned char write10_cdb[BYTE+2]; /* 10 Byte write cmd */

        unsigned char read10_cdb[BYTE+2];  /* 10 Byte read cdb */ 

}; 
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Figure 6-5: Definition of struct disk_properties 

.3 Calling handle_SCSI_cmd() to execute the command 

ter receiving the necessary buffer size from get_allocation_length(), the Target front-
d needs to create the buffers necessary to deal with the data. The size of struct sg_header is 
fined by the constant SCSI_OFF (Line 58 in scsi_interface.h). Thus, for a SCSI WRITE(10) 

mand, the buffer that would have to be allocated would be SCSI_OFF + 10 (size of the 
ITE CDB) + size of the buffer obtained from get_allocation_length(). For a SCSI 

AD(10), on the other hand, the buffer that would have to be allocated would be SCSI_OFF + 
e of the buffer obtained from get_allocation_length().  

e handle_SCSI_cmd function requires the following parameters as inputs when a READ 
mand is received: 
cmd_len: Length of the command (in bytes) being transmitted - For a SCSI READ(10), this 
is 10. 
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b. in_size: Length of the input data size (in bytes)  - For a SCSI READ(10), this is 0 since the 
direction of the data transfer is from the USTE to the Front End Target driver. 

c. i_buff: A pointer to the CDB in the input buffer allocated as described above. 
d. out_size: Length of the output data size (in bytes) - For a SCSI READ(10), this is the 

value returned by get_allocation_length()  + SCSI_OFF. 
e. o_buff: A pointer to the output buffer allocated as described above. 
 
The handle_SCSI_cmd function requires the following parameters as inputs when a WRITE 
command is received: 
a. cmd_len: Length of the command (in bytes) being transmitted - For a SCSI WRITE(10), this 

is 10. 
b. in_size: Length of the input data size (in bytes)  - For a SCSI WRITE(10), this is the value 

returned by get_allocation_length(), since the direction of the data transfer is from 
the Initiator to the Front End Target driver. 

c. i_buff: A pointer to the CDB in the input buffer allocated as described above. 
d. out_size: Length of the output data size (in bytes) – For a SCSI WRITE(10), this is 0. 
e. o_buff: A pointer to the output buffer allocated as described above. 
 
Internally, the handle_SCSI_cmd() is responsible for handing off the command to specific 
functions depending upon the mode of operation selected by the user. If a NON_BASIC mode of 
operation (I/O to and from a file, I/O to and from memory) is selected, then the command gets 
handed off to handle_file_io(). This function executes the command and returns the status 
along with the data (if required). If the basic mode of operation is selected, then 
handle_SCSI_cmd() determines if the data buffer associated with the command is greater 
than SG_BIG_BUFF (defined to be 32 kB by the Linux kernel). If so, executing the command 
requires executing multiple SCSI commands so that the total transfer size spread across these 
multiple SCSI commands is equivalent to the transfer size requested by the received SCSI CDB. 
Thus, a SCSI WRITE(10) requesting that 64 kB be written to a disk drive with a block size of 512 
bytes starting at Logical Block Address (LBA) 0 is mapped into two SCSI WRITE(10) commands, 
each one requesting that 32 kB be written to the disk, the first one starting with LBA 0, and the 
second one starting with LBA 64 (= 32 x 1024 / 512 + 0). After deciding if multiple commands are 
needed to execute the received CDB, the function then hands off the command(s) to 
handle_generic_io which executes the commands and returns the status along with data 
depending upon the command. 
 
 
6.3.4 Closing the SCSI device using close_SCSI_cmd() 
 
When the front-end is ready to close a given id and LUN, the front-end should call the function 
close_SCSI_cmd(). This will prevent this front-end from receiving any more SCSI commands at 
the given id and LUN unless reopened again. Note that other front-ends may continue to be able 
to issue SCSI commands to the same id and LUN. 
 
 
6.4 Design of the SEP User-Space Front-End 
 
For the purposes of testing, the SEP protocol, described in Chapter 4, was implemented as a 
front-end to the USTE described above. The SEP Initiator was implemented by Anshul Chadda, 
so that it interfaced with the SCSI Initiator mid-level of the Linux kernel. In addition to the SEP 
Initiator itself, a configuration tool (“sep_config”) was also implemented. 
 



 

The SEP Initiator interfaces with the SCSI Initiator mid-level using the struct 
Scsi_Host_Template. The Scsi_Host_Template used by SEP is shown in Figure 6-6. The 
SEP Initiator, upon start-up, registers itself with the SCSI Initiator mid-level. The SEP Initiator 
then spawns a thread which is the main processing thread. This thread is responsible for the 
transmission of SCSI commands using the SEP protocol and receiving the corresponding 
responses and handing them back to the SCSI Initiator mid-level. The sep_config utility is 
used to tell the SEP Initiator about what SCSI Target and LUN it must connect to. This is done as 
follows: 

sep_config up ip=x lun=y 
where x = IP address of the Target (either dotted decimal notation or the DNS registered name) 
and y = SCSI LUN on Target x to which the connection should be established. All communication 
to LUN y happens on this established connection. When the connection needs to be removed, the 
sep_config utility is used again as follows: 

sep_config down lun=y 
 
The sep_config utility has been designed to mirror the ifconfig utility for IP interfaces. 
Linux maps SCSI Targets to device files of the type /dev/sda, /dev/sdb, etc. This mapping 
happens automatically for every SCSI Target discovered when the SEP Initiator is “detect”ed. 
However, after an Initiator is detected and operational within the Linux kernel, if new Targets are 
discovered, there isn’t a mechanism from within the SCSI mid-level to map the SCSI Targets to 
the device files. The sep_config utility handles this problem by using the proc file interface 
of the Linux kernel. The sep_config utility forces a mapping of the device by “writing” to the 
proc file-system. This activates the SCSI mid-level to search for new devices corresponding to 
those that the Initiator had written to the proc file system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

# define  SCSI_SEP {    \ 

proc_info:    scsi_sep_proc_info, \ 

detect:   scsi_sep_detect,  \ 

release:   scsi_sep_release,  \ 

info:    scsi_sep_info,  \ 

ioctl:   scsi_sep_ioctl,  \ 

queuecommand:  scsi_sep_queuecommand, \ 

eh_abort_handler:  scsi_sep_abort,  \ 

reset:   scsi_sep_reset,  \ 

bios_param:   scsi_sep_bios_param, \ 

can_queue:   1,    \ 

this_id:   7,    \ 

sg_tablesize:  SG_LIST,   \ 

cmd_per_lun:  1,    \ 

unchecked_isa_dma: 0,    \ 

use_clustering:  ENABLE_CLUSTERING, \ 

use_new_eh_code:  1    \ 
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Figure 6-6: Scsi_Host_Template used by the SEP Initiator 

} 
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On the Target side, the SEP front-end (Figure 6-2) was designed to be able to use the USTE 
functions as described in Section 6.3. The SEP front-end is a simple server application (in 
scsi_server.c) that creates a TCP socket, waits on a well-known port (chosen to be 4000) and 
spawns off a child process for each accepted connection. The child (in sep_connection.c) is 
then responsible for handling the new connection. The child begins execution at the 
handle_SEP_connection() function (Line 275 in sep_connection.c). The basic 
functionality provided is an infinite loop that receives commands from the SEP Initiator using a 
TCP connection, determines if the received SEP frame is SEP-specific or something that the USTE 
needs to handle. If the received frame is SEP-specific, the SEP front-end generates a response to 
the received SEP packet. In case the received frame is a SCSI command or SCSI data, the SEP 
front-end strips off the SEP header and hands it off to the USTE. The mode of functioning is in 
the manner required by the USTE interface and described in the preceding section. Upon 
receiving a response from the USTE, the SEP front-end adds a SEP header and then transmits the 
response to the corresponding SEP Initiator via the same TCP connection. The SEP front-end is a 
very limited implementation of the SEP protocol. It is primarily designed to work synchronously 
(i.e., at most one command is outstanding at any given moment). Certain command types 
allowed by the SEP protocol are not implemented (e.g., third-party commands). Flow control 
between the Initiator and the Target is not used. Also, commands executed to different LUNs are 
mapped to different SCSI disk drives attached to the system instead of going to multiple LUNs 
on the same drive. This modification was made because the test environment lacked disk drives 
with multiple LUNs. 
 
The SEP Target responds to a received CONNECT-NEGOTIATE message from the SEP Initiator 
with a valid NEGOTIATION response. The corresponding SCSI device is then opened. The SEP 
Initiator can then transmit SCSI commands to the SEP Target. The mode of operation can be 
selected as described in the preceding sections. 
 
6.5 Lessons learned from the User Space Target Emulator 
 
The general principle learned was to have the front-end do the bare minimum possible. While 
this may seem obvious, it implies that the USTE has to do things in a roundabout manner for this 
principle to be maintained. The following were the design lessons that were learned by 
implementing the USTE: 

1. The allocation of buffers needs to be done by the USTE, not the front-end. This helps 
clean up code on the front-end considerably. 

2. The USTE needs to be a separate logical piece of code. The USTE consists of functions 
provided to execute SCSI commands. This is compiled with the front-end code which 
implies that Target stubs for different front-end protocols run as completely separate 
processes. This implies that sharing of resources between different front-end protocols is 
not possible. Also, it is desirable to provide a generic entity responsible for handling all 
SCSI commands received from any number of front-ends. 

3. There were some unavoidable copies of SCSI data necessitated by the SCSI generic 
requirements. These can be avoided in the kernel-space implementation of the Target 
Emulator. This is explained in Chapter 7 dealing with the kernel space emulator. 

 
Furthermore, many of the design choices made in the user-level implementation of the USTE 
were influenced by the fact that the SEP protocol was to be implemented synchronously. This 
allowed sharing of data structures between the USTE and the Target front end. This needs to be 
avoided in the kernel space Target front end. 
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CHAPTER 7 
 
 
 

DESIGN AND IMPLEMENTATION OF THE KERNEL 
SPACE TARGET EMULATOR 

 
 
 

7.1 Introduction 
 
The Kernel Space Target Emulator (KSTE) refers to an entity that presents itself as a SCSI Direct 
Access disk while running within the Linux Kernel space. Actually, the term "emulator" when 
used for the kernel space entity is a misnomer. In the user space implementation, the entity 
providing the SCSI functionality and the entity responsible for transmitting SCSI over a given 
protocol form one logical piece of code. However, in the kernel space implementation, the entity 
responsible for handling SCSI commands has an existence independent of the low-level front-end 
Target driver (FETD) that is responsible for the transmission of SCSI in a device-specific manner. 
Thus, in terms of visualization, it may be better to think of the kernel space emulator as 
consisting of two distinct entities - the generic SCSI Target mid-level (STML) and the low-level 
front-end protocol-specific Target driver (FETD). This is shown in Figure 7-1. 
 
The SCSI Target mid-level runs parallel to and sometimes, in conjunction with, the SCSI Initiator 
mid-level and is concerned only with the processing of SCSI commands. This chapter presents 
the issues involved in the design of the SCSI Target mid-level, the eventual design in terms of the 
interface it provides to and requests from any FETD that needs to use it, and the actual 
implementation of the SEP front-end Target driver (FETD-SEP) and the Fibre Channel front-end 
Target driver (FETD-FC) for this mid-level. It also discusses code organization and the specifics 
of the design. 
 
 
7.2 Issues involved in the Design of the SCSI Target Mid-Level 
 
The USTE implemented with a SEP front-end was very valuable in designing the STML. The 
choices made in the design of the STML have evolved from the design of the USTE. 
 
One of the main lessons learned was that the STML needed to have an existence separate from 
that of the FETD instead of being compiled with the FETD itself. This is important to make the 
same STML accessible to multiple FETDs implementing different protocols. The way in which the 
USTE was designed allowed each protocol to have its own Target Emulator. Thus, it would not 
have been possible to present the SCSI resources available to the STML with any cohesion were 
different FETDs to run simultaneously. 
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Figure 7-1: A Block View of SCSI Initiator and Target Sub-Systems 
 
Unlike the SCSI Initiator mid-level (SIML), during normal operation, the STML is called by the 
FETD from the context of an interrupt-handler. Running within the interrupt-context severely 
limits the type of operations that are allowed (the prime restriction being the requirement of not 
going to sleep while in interrupt context). In addition, the SIML is always called from within the 
context of some user-level application (except in the case of SCSI error handling). This process 
context is not available to the STML. In the normal mode of operation, an FETD will receive a 
SCSI command (in an interrupt handler) and will pass it onto the STML. Thus, in order to process 
this received command, the STML will need some execution context. This context can be 
provided by an STML kernel thread. Thus, the interface to be provided to the FETD will have to 
be two-fold. The STML will have to provide a set of entry points that an FETD can call from 
within the context of an interrupt handler. The major function of these entry points into the 
STML is to queue the received information for the STML thread so that the information can be 
processed, and to awaken the STML thread. The second half of the interface is the set of entry 
points that the FETD will need to provide so that the STML thread can communicate with the 
Initiator. The major function of these entry points is to receive the processed SCSI commands and 
then transmit the appropriate response over the specific protocol for which the FETD was 
written. This model is clearly extensible to multiple protocols and enables the STML to be 
generic. The major difference between the SCSI Target stack and the SCSI Initiator stack is the 
absence of an upper level on the SCSI Target side. The specifics of the interface are discussed in a 
subsequent section. 
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In the case of the USTE, the requirements of the older SCSI Generic interface had imposed a 
memory copy (described in Chapter 6) when using the Target Emulator for I/O to and from a 
real disk. This interface was changed in the Linux development kernels as of linux-2.4.0-test9. 
This newer interface is referred to henceforth as the SCSI Generic 2 (SG-2) interface. The SG-2 
interface (discussed later) is used in the kernel space implementation. It rationalized the manner 
in which data could be handed off to the SIML. This helped avoid the unnecessary memory copy 
and led to some performance gains. 
 
7.3 Overview of the Operation of the SCSI Target Sub-System 
 
Any discussion of the details of the block view presented in Figure 7-1 would be difficult to 
understand in the absence of an operational overview. This section tries to present precisely this. 
The details of the entire process are presented in subsequent sections. 
 
Upon start-up, the STML spawns a kernel thread (SCSI Target Thread). The SCSI Target Thread 
(STT) represents the major processing entity within the STML. The STML has three modes of 
operation, each independent of each other, which decide how SCSI commands are processed. 
These modes parallel those available in the USTE namely, (a) I/O to and from memory, (b) I/O 
to and from a file that contains the logical blocks and (c) I/O to and from a real disk. These 
modes of operation can be selected at compile time and thus, exist independently of each other. If 
the selected mode of operation is (c), then the STML spawns a second kernel thread (SCSI Signal 
Processing Thread). This thread is required to allow asynchronous processing of SCSI commands 
(explained later). 
 
When a new FETD is introduced to the kernel, it registers itself with the STML. It provides to the 
STML by means of a jump table, a list of functions that enable the STML to transmit responses to 
the received SCSI commands. In turn, the STML provides the FETD with a set of functions that 
the FETD can use to inform the STML about received commands and data, and awaken the STT. 
These two interfaces represent the front-end to mid-level and mid-level to front-end APIs 
respectively. The FETD, after it has registered with the STML, is ready to receive SCSI 
commands. Upon receiving a SCSI command, the FETD hands it over to the STML and in the 
process awakens the STT. The STT then allocates the space needed to process the command. If the 
command needs data from the Initiator in order to process it further, the command is then 
handed back to the FETD in order to get the required data from the Initiator in question and the 
STT goes back to sleep. The FETD, upon receiving the required data, informs the STML that the 
command is ready to be processed and awakens the STT. 
 
Depending upon the mode of operation selected for the STML, the command is processed. When 
processing is completed, the STT informs the FETD that the command is processed. The FETD is 
then responsible for transmitting the appropriate response and then informing the STML when it 
is done transmitting the response and awakens the STT. The STT finally frees up the resources 
allocated to process the command which completes the processing of a command. 
 
7.4 SCSI Target Mid-Level to Front-End Target Driver API 
 
The FETD needs to have some way of notifying the STML about a received command or data. 
The functions in the STML that provide these operations provide entry-points into the mid-level 
code and are also responsible for initiating the processing of the received commands. This API 
consists of the following functions: 
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�� register_target_template() 
�� deregister_target_template () 
�� register_target_front_end() 
�� deregister_target_front_end() 
�� rx_cmnd() 
�� scsi_rx_data() 
�� scsi_target_done() 
�� scsi_release() 
�� rx_task_mgmt_fn() 

These functions are described below. 
 
int register_target_template (Scsi_Target_Template *the_template); 
The FETD needs to register with the STML before it can request the processing of SCSI 
commands. This registration and deregistration process has been intentionally kept similar to 
that required by the SIML. Since this process will be common to all the front-end drivers, the 
functionality required to do this has been provided in a single file (scsi_target_module.c). 
All front-ends will have to include this file and provide a template (of type 
Scsi_Target_Template – see Figure 7-6) assigned to the local variable my_template. This 
template (discussed in the next section) is the interface that must be provided by the FETD. The 
STML creates a linked list of templates available globally. When an FETD starts up, the function 
scsi_target_module_init (Line 17 - scsi_target_module.c) calls the STML function 
register_target_template with my_template being passed as the parameter. 
 
int deregister_target_template (Scsi_Target_Template *the_template); 
The FETD calls this function with the variable my_template (used in the registration process) 
when the module defining the FETD is removed from the kernel. This function is called from the 
scsi_target_module_cleanup function (scsi_target_module.c - Line 27) in the FETD. 
This function is responsible for cleaning up all resources associated with the corresponding 
module (including the template, any unexecuted commands, etc). Successful execution of this 
function allows the removal of the module containing the FETD associated with the template. 
 
Scsi_Target_Device* register_target_front_end (Scsi_Target_Template 
*tmpt); 
During the processing of a call to the register_target_template function, the STML makes 
a call back to the detect function associated with that template. This detect function is 
provided by the FETD and is called by the STML to find out the number of devices that will 
receive SCSI commands using the protocol for which the FETD was written (The registration 
process is summarized in Figure 7-9). If there are any such devices, then the FETD will need to 
register these devices with the STML in order to make the STML aware of the existence of these 
devices. The register_target_front_end function needs to be called by the detect 
function for each new device detected. For each new device, the STML creates an entry of the 
type Scsi_Target_Device, shown in Figure 7-2. 
 
The STML assigns a device id for each call to the register_target_front_end function. The 
device id is stored in the id field and uniquely identifies the corresponding device. The STML 
stores a list of all devices as a linked list available globally within the STML (discussed in Figure 
7-8). The FETD needs to use the assigned device id when indicating to the STML that it has 
received a SCSI command. 
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Scsi_Target_Template *template;  

} Scsi_Target_Device; 
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Figure 7-2: Definition of Scsi_Target_Device 
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FETD to free up the resources associated with that device. The STML then 
rocessed commands associated with that device and deregisters the device by 
the global device queue (see Figure 7-8). The FETD can explicitly call the 
get_front_end function when it has determined that the entity associated 
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are noted in the file /usr/src/linux/drivers/scsi/scsi.h). The only fields that should 
be changed by any FETD should be the sr_buffer field while filling up the data to be received 
by a WRITE command for example. The rx_cmnd function can be called from within an 
interrupt context.  
 
int scsi_rx_data (Target_Scsi_Cmnd *the_command); 
The FETD uses this function to provide notification to the STML that data has been received for 
the_command. This function allows WRITE-type commands to begin processing (Figure 7-12).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

typedef struct SC { 

/*  

*  state: This will take different values depending on what the 

*  present condition of the command is  

*/ 

int   state; 

/* id: id used to refer to the command */ 

int   id; 

/* dev_id: device id - front end id that received the command */

__u64   dev_id; 

/* dev_template: device template to be used for this command */ 

struct STT  *dev_template; 

/* target_id: scsi id that received this command */ 

__u64   target_id; 

/* lun: which LUN was supposed to get this command */ 

__u64   lun; 

/* cmd: array for command until req is allocated */ 

unsigned char cmd[MAX_COMMAND_SIZE]; 

/* len: length of the command received */ 

int   len; 

/* queue of Scsi commands */ 

/* next: pointer to the next command in the queue */ 

struct SC  *next; 

/* req: this is the SCSI request for the Scsi Command */ 

Scsi_Request *req; 

} Target_Scsi_Cmnd; 
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Figure 7-3: Definition of Target_Scsi_Cmnd 
(Note: Certain fields in the struct have been excluded for the purposes of brevity) 
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struct scsi_request { 

int   sr_magic; 

int    sr_result;  

/*  

 * Status code from lower level driver 

 * Obtained by REQUEST SENSE when CHECK CONDITION is received on

* original command (auto-sense) 

*/ 

unsigned char sr_sense_buffer[SCSI_SENSE_BUFFERSIZE]; 

struct Scsi_Host *sr_host; 

Scsi_Device  *sr_device; 

Scsi_Cmnd  *sr_command; 

/* A copy of the command we are working on */ 

struct request sr_request;  

unsigned  sr_bufflen; /* Size of data buffer */ 

void   *sr_buffer; /* Data buffer */ 

int   sr_allowed; 

unsigned char sr_data_direction; 

unsigned char sr_cmd_len; 

unsigned char sr_cmnd[MAX_COMMAND_SIZE]; 

/* Mid-level done function */ 

void   (*sr_done)(struct scsi_cmnd *);  

int   sr_timeout_per_command; 

unsigned short sr_use_sg; /* scatter-gather */ 

/* size of malloc'd scatter-gather list */ 

unsigned short sr_sglist_len; 

/* Return error if less than this amount is transferred */ 

unsigned  sr_underflow; 
}; 
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Figure 7-4: Definition of struct scsi_request 

, in the normal mode of operation, when a WRITE(10) command is received, the FETD calls 
mnd. After the looking at the command, the STML decides that it needs data from the 
tor in order to execute the command. The STML then allocates the buffer space needed 
buffer) and notifies the FETD that it can receive the necessary data by using the 
to_xfer function in the Scsi_Target_Template corresponding to the FETD. The 
 can then receive the required data in an interconnect-specific manner. Upon receiving the 
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data, the FETD then calls scsi_rx_data to notify the STML that the expected data has been 
received. The scsi_rx_data can be called from within the context of an interrupt handler. It 
changes the state of the_command and wakes up the mid-level thread so that the STT can then 
process the_command.  
 
int scsi_target_done (Target_Scsi_Cmnd *the_command); 
This function is called by the FETD to signify that it has completed the execution of 
the_command. This function changes the state of the_command and awakens the STT so that 
the_command can be dequeued. Upon return from this function, all information about 
the_command has been deleted from the STML. The semantics of when this function is called 
depends upon the protocol used by the low-level interconnect. The normal rule for calling this 
function is to call it when the FETD has done everything required by the low-level protocol to 
allow the Initiator to consider the execution of the_command as being completed. This function 
can also be called from an interrupt context. 
 
int scsi_release (Target_Scsi_Cmnd *the_command); 
This function can be called by the FETD when it wants to abort a command without having to 
send a response to the command that is being aborted. This function is needed to account for 
implicit aborts to commands defined in SCSI. The reasons as to why these implicit logouts 
happen depend on the semantics of the low-level interconnect used. An example of this scenario 
is when the Loop Address of the Target changes in Fibre Channel. 
 
Target_Scsi_Message* rx_task_mgmt_fn (SCSI_Target_Device *device, int 
fn, void* value); 
This function is called by the FETD to indicate to the STML that it has received a SCSI Task 
Management function corresponding to a command or a group of commands depending upon 
the nature of the Task Management function (indicated by fn). This is most commonly used 
when the FETD has received an ABORT for a given command. In that case, value points to a 
Target_Scsi_Cmnd. value changes meaning depending upon the Task Management function 
that is received. The present implementation of the STML does not implement the ABORT TASK 
SET, CLEAR ACA and the CLEAR TASK SET Task Management functions. This is partly because 
of the needs of this design implementation and partly because of the lack of a unique identifier by 
which a SCSI Target can reference a SCSI Initiator. All SCSI Transport protocols have the concept 
of a Login whereby they allow an Initiator to transmit SCSI Commands to the Target. The nature 
of this Login is specific to the low-level interconnect. As a result, each SCSI Transport Protocol 
defines an identifier construct by which a Target can keep track of the Initiators that are currently 
logged in to it. An example of this would be the Fibre Channel Port Name / Node Name 
construct. However, the STML cannot treat this identifier as an opaque object by means of which 
it can reference the Initiator, because the semantics of how a Login is invalidated change from 
interconnect-to-interconnect. As a result, when an ABORT TASK SET is received, the STML has 
no means by which it can identify which commands belong to which Initiator. Thus, these Task 
Management functions cannot be implemented using this design model at the STML. The way 
around this problem is by having the FETDs do the work in determining which commands are 
affected by the received Task Management function. The FETD can then call the 
rx_task_mgmt_fn in the STML to ABORT those commands. The rx_task_mgmt_fn then 
allocates a Target_Scsi_Message struct (Refer to Figure 7-5) and returns it to the FETD. The 
STML then executes the received Task Management function. The FETD gets informed about the 
execution of the Task Management function when the task_mgmt_fn_done function is called. 
This process is shown in Figure 7-13. 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7-5: Definition of Target_Scsi_Message 
 
 
7.5 Front-End Target Driver to SCSI Target Mid-Level API 
 
The STML needs to have some way of being able to transmit responses to the FETD in a 
consistent manner. In the Linux Operating System, this is achieved by using jump tables which 
define the functionality required. This jump table is the Target template to be assigned to the 
FETD variable my_template (the use of this variable is discussed in the previous section). The 
FETD variable my_template is of type Scsi_Target_Template. This struct is defined in 
Figure 7-6. A description of the use of the fields in the Scsi_Target_Template follows. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

typedef struct STT { 

const char  name[BYTE]; 

int (*detect)(struct STT*); 

int (*release)(struct STD*); 

int (*xmit_response)(struct SC*); 

int (*rdy_to_xfer)(struct SC*); 

int (*task_mgmt_fn_done)(struct SM*); 

void (*report_aen) (int, __u64); 

} Scsi_Target_Template; 
 

 
 

 

typedef struct SM { 

/* next: pointer to the next message */ 

struct SM  *next; 

/* prev: pointer to the previous message */ 

struct SM  *prev; 

/* message: Task Management function received */ 
int   message;  

/* device: device that received the Task Management function */

struct STD   device;  

/* value: if relevant to the function */ 

void   *value;  

} Target_Scsi_Message; 
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Figure 7-6: Definition of Scsi_Target_Template 
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const char name[BYTE]; 
This field represents the name of the template. It must be unique (at least in the name space for 
the templates that have been registered with the STML) so as to help identify the template. The 
length of name has been restricted to eight characters which should be sufficient for most 
purposes. 
 
int detect (struct STT *the_template); 
This function is used by the STML to detect the number of devices that use the given front-end 
protocol (implemented by the functions of the_template) to receive and process SCSI 
commands and data. The FETD detect function (functionality shown in Figure 7-9) is required 
to call the register_front_end function provided by the STML to make the STML aware of 
the front-end Target device. The FETD detect function should allocate the resources required 
by the FETD for each device detected to ready the device to receive SCSI commands and data. 
 
 
int release (struct STD *the_device); 
This function should free up the resources allocated to the_device (struct STD defined as 
shown in Figure 7-2). The release function (functionality shown in Figure 7-10) is called by the 
STML when the module corresponding to the given device is removed from the kernel. 
Normally, all front-end devices corresponding to a FETD are all removed from the global device 
list by repeated calls to the release function (made by deregister_target_front_end). 
After the function is called and executed, the STML is not available to process any SCSI 
commands for the given front-end device. Thus, a device is valid between calls to the detect 
and the release function. 
 
int xmit_response (struct SC *the_command); 
This function is the Target equivalent of the SIML queuecommand function. The FETD should 
transmit the response buffer (the_command->req->sr_buffer) and the status 
(the_command->req->sr_status). The expectation is that executing this function is non-
blocking. In other words, the xmit_response function should serve the function of allowing 
the STML to inform the FETD that the response for the_command is ready. The actual 
transmission of the appropriate response to the_command needs to happen outside of the 
context of the xmit_response function. The reason for this is that this function is called by the 
STT which is responsible for processing SCSI commands. There may be multiple commands 
queued up with the STML (either by the same FETD or from different FETDs). If the 
xmit_response function were written so that the transmission of a response happens within 
the context of this function, this would imply that the STT would block while the response to 
the_command is being transmitted. This, in effect, would slow down the processing of other 
commands in the STML. After the response is actually transmitted (or more precisely, the FETD 
has met all the requirements of the interconnect to allow the Initiator in question to consider the 
execution of the_command complete), the FETD should call the scsi_target_done function 
provided by the STML which will allow the STML to free up the resources associated with 
the_command. The functionality of the xmit_response function is detailed in Figure 7-11 and 
Figure 7-12. 
 
int rdy_to_xfer (struct SC *the_command); 
The STML uses this function to inform the FETD that data buffers corresponding to 
the_command have now been allocated and it is okay to receive data for the_command. This 
function is necessary because a SCSI Target does not have any control over the commands it 
receives. Thus, in the case of a WRITE operation, a Target can receive data for a command only 
after the STML has called the rdy_to_xfer function (functionality summarized in Figure 7-12) 
corresponding to the_command. In addition, most SCSI transport protocols have a 
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corresponding Information Unit / Protocol Data Unit which informs the SCSI Initiator that 
buffers have been allocated e.g., XFER_RDY in Fibre Channel. As with the xmit_response 
function, it is expected that such packet transmission, if required, is not done within the context 
of the rdy_to_xfer function (i.e., rdy_to_xfer is non-blocking). Likewise, data reception 
should be done outside the scope of the rdy_to_xfer function. After the data is actually 
received, the FETD needs to call the scsi_rx_data function provided by the STML in order to 
continue processing the_command. 
 
int task_mgmt_fn_done (struct SM *the_message); 
The STML uses the task_mgmt_fn_done function to inform the FETD that a received Task 
Management function has been executed. This is typically used to complete the processing of 
ABORTs. the_message defines the message (Refer to Figure 7-5) which has been executed by 
the STML. The function task_mgmt_fn_done, like the xmit_response and the 
rdy_to_xfer functions, is expected to be non-blocking. Furthermore, the STML frees up the 
resources associated with the commands affected by the Task Management function once the 
task_mgmt_fn_done function returns. The details of the SCSI Task Management functions 
(issued normally to correct error conditions) are extremely complex. Although the SCSI semantics 
of how the Task Management functions need to be executed are defined, how they translate to 
different low-level protocols is highly protocol-specific. The present structure is designed to be 
simple and flexible. 
 
int report_aen (int *fn, __u64 lun); 
When a Task Management function is received, depending on the nature of the function, the 
execution may affect the commands queued up by other Initiators. SCSI has thus devised a 
mechanism whereby Initiators can be notified of such events (referred to as Asynchronous Event 
Notification – Refer to Section 2.5.2). The report_aen function is called to allow the FETD to 
notify Initiators that have logged in with the Target about the Task Management function fn 
which may have affected any commands they may have queued up for LUN lun (The value of 
LUN may or may not be relevant depending on the fn). 
 
7.6 SCSI Target Mid-Level Design 
 
This section presents a more detailed view of the functioning of the STML using the functions 
that have been defined above. A detailed view of the FETD and STML is presented in Figure 7-7. 
The interaction between various code pieces and how they interact with each other is dealt with 
in subsequently. 
 
On start-up, the STML creates a global list of devices (st_device_list – See Figure 7-8) that 
have registered with it. The STML then spawns a thread which is responsible for most of the 
processing done by the STML (scsi_target_process_thread – SCSI Target Thread - STT). 
This is, in real terms, the SCSI mid-level. The STT sets up so that it is ready to receive and process 
SCSI commands. If the mode of operation used is I/O to and from a real disk, the STML spawns 
a second thread (signal_process_thread – SCSI Signal Processing Thread - SSPT). The sole 
function of this thread is to detect and process the SIGIO signal received by the thread if the 
execution of a SCSI CDB transmitted to a disk has been completed. 
 
The STML then sets up a global struct (of type Target_Emulator shown in Figure 7-8). This 
global struct contains fields for the list of devices (st_device_list) and for the list of 
commands (cmd_queue_start and cmd_queue_end). The remaining fields have been 
discussed in the comments. 
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One of the primary considerations involved in this design was whether to create a thread to 
process every registered device or to let a single thread deal with all the devices. Designing the 
STML so that each registered device has a thread for itself implies that for a large number of 
FETDs operating simultaneously with multiple front-end devices, a large amount of system 
resources will get tied up in maintaining the threads and their states. Whereas in the general case, 
threads have the effect of simplifying matters, in this particular case, there is a lot of interaction 
necessary between the threads to gain access to common data structures (using semaphores or 
spin-locks). This makes it very difficult to track errors and also makes deadlocks extremely likely. 
On the other hand, this method does have potential benefits in speeding up processing of 
commands and parallelizing the flow in case of a multi-processor system. Furthermore, having a 
single processing thread for all registered devices represents a single point of failure, while using 
one thread per device could help recovery in case a front-end device fails/encounters an 
exceptional condition. In the interests of simplicity, the single thread design was implemented. 
However, it is possible to convert the implementation so that there is a processing thread per 
registered device with some manipulation of the data structures. 
 
 
7.6.1 Registration and Deregistration with the mid-level 
 
A new FETD will have to be registered with the STML before it can begin to hand over SCSI 
commands to the STML for processing. An FETD is introduced into the operating system either 
dynamically by inserting the module corresponding to it (using insmod), or at system startup, 
when the driver is compiled directly into the kernel. The 2.4 series of kernel has rationalized the 
way in which modules and compiled drivers begin operation. In either case, the 
scsi_target_module_init function in the FETD gets called. This function calls the 
register_target_template function in the STML. The register_target_template 
function adds the template to a global linked list (st_target_template) maintained by the 
STML. The STML then proceeds to call the detect function in the FETD via the template. The 
detect function is expected to probe the hardware to see if there are devices that use the low-
level protocol implemented by the FETD to receive SCSI commands and to transmit SCSI 
responses and data. If the detect function finds any such device(s), then the STML calls the 
register_target_front_end function for each such device. The STML then allocates a 
struct of type Scsi_Target_Device (See Figure 7-2), fills it up, adds it to a global linked list of 
devices (st_device_list) in the STML, and returns a pointer to the struct to the FETD. This 
completes the registration of that device with the STML. This is shown in Figure 7-9. 
 
The deregistration process is initiated when a module corresponding to a FETD is removed from 
the Operating System (using rmmod) or during system shutdown. In either case, the 
scsi_target_module_cleanup function in the FETD module is called. This function calls the 
STML function deregister_target_template. The deregister_target_template goes 
through the global list of devices (st_device_list) to see if there are any that correspond to 
the given template. If there are devices present, then the deregister_target_front_end 
function in the STML is called, once for each device implementing the template. This function 
calls the release function in the FETD via the device template. The release function frees up 
any resources allocated by the FETD. The deregister_target_front_end then removes the 
device from the global device list (st_device_list), any commands that may be pending are 
discarded and any resources that may be tied up for this device are freed up for the kernel to 
reuse. The FETD needs some mechanism whereby it can selectively deregister a front-end device. 
This typically happens when the corresponding front-end device encounters an exceptional 
circumstance which prevents the device from working normally and can, therefore, not receive 
SCSI commands or transmit appropriate responses. 
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Figure 7-7: A detailed view of the SCSI Target Emulator Implementation 
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typedef struct GTE { 

/* command_id: id assigned to a command that gets queued */ 

int    command_id; 

/* thread_sem: semaphore to control the killing of the STT */ 

struct semaphore  thread_sem; 

# ifdef GENERICIO 

/* signal_sem: semaphore to control the killing of the SSPT */ 

struct semaphore  signal_sem; 

/* sig_thr_sem: the SSPT blocks on this semaphore */ 

struct semaphore  sig_thr_sem; 

/* signal_id: pointer to the task struct corresponding to the SSPT */

struct task_struct *signal_id; 

# endif 

/* target_sem: the STT blocks on this semaphore */ 

struct semaphore  target_sem; 

/* thread_id: pointer to the task struct corresponding to the STT */ 

struct task_struct *thread_id; 

/* st_device_list: list of devices registered with the STML */ 

Scsi_Target_Device *st_device_list; 

/* st_target_template: templates registered with the STML */ 

Scsi_Target_Template *st_target_template; 

/* add_delete: spinlock to be acquired when a command is added or 

 * removed from the STML queue. Necessary because the command is 

 * added from the interrupt context. 

 */ 

spinlock_t   add_delete; 

/* queue_sem: semaphore to acquire when elements are added or removed

 * from the queue. 

 */ 

struct semaphore  queue_sem; 

/* cmd_queue_start: pointer to the start of the command queue */ 

Target_Scsi_Cmnd  *cmd_queue_start; 

/* cmd_queue_end: pointer to the end of the command queue */ 

Target_Scsi_Cmnd  *cmd_queue_end; 

} Target_Emulator; 
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Figure 7-8: Global Data Structure used by the STML 
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Figure 7-9: Registration of a Device with the SCSI Target Mid-Level 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7-10: Deregistration of Device(s) from the SCSI Target Mid-Level 
 
 
As the result, the deregistration process has been designed to be asymmetric. The 
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devices to continue normal functioning. 
 
 
7.6.2 Processing of a READ-type command 
 
Once an FETD has registered with the STML and it has detected and registered device(s) with the 
STML, each front-end device is ready to receive SCSI commands. Upon receiving a SCSI 
command from an Initiator, the FETD calls the rx_cmnd function in the STML. This function 
creates a Target_Scsi_Cmnd struct corresponding to the received SCSI CDB, fills up the struct, 
adds the command to a global queue of commands (cmd_queue_start and cmd_queue_end) 
and then wakes up the STT. The FETD has access to the allocated struct by means of the return 
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value of the rx_cmnd function. The STT processes the command by handing it off to the internal 
handle_cmd function. If the command received is a READ-type command (i.e., where data 
direction is from a Target to an Initiator or where only a status message needs to be sent), the 
handle_cmd function allocates the necessary buffer space. 
 

 
Figure 7-11: Processing of a READ-type command 

 
This buffer space is contiguous so that devices having DMA capabilities can access the memory. 
Depending on the mode of operation selected, the command is handed off for processing 
appropriately. When processing is completed, the STT calls the internal hand_to_front_end 
function. This function makes appropriate error checks such as if the command was ABORTED in 
the intermediate time, or if the FETD was removed etc., and then calls the xmit_response 
function in the template corresponding to the FETD that received the command. The 
xmit_response function should queue up the response to be transmitted to the Initiator and 
then return. When the response is actually transmitted and the low-level protocol declares the 
execution of a SCSI command to be complete, the FETD can call the scsi_target_done 
function in the STML. This function allows the STML to free up resources that may be allocated 
for the command. These steps are shown in Figure 7-11. 
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7.6.3 Processing of a WRITE-type command 
 
The basic steps when a WRITE-type command (i.e., a command where the direction of data 
transfer is from the Initiator to the Target) is received are the same as those required by a READ-
type command until the STML hands the command off to its internal handle_cmd function. 
handle_cmd, upon deciding that it is a WRITE-type command, allocates the necessary buffers 
and changes the state of the command which causes the STT to call the internal 
hand_to_front_end function. The hand_to_front_end function interprets this command 
as waiting for data. The hand_to_front_end function then calls the rdy_to_xfer function 
in the FETD that received the command. A call to the rdy_to_xfer function means that the 
buffers required for the execution of the command have been allocated. The FETD then transmits 
any Information Units corresponding to the flow control mechanism relevant to the protocol 
used by the low-level interconnect (see Chapter 2 and Chapter 4). Since, the rdy_to_xfer 
function is expected to be non-blocking, the FETD needs to receive the data required for the 
command outside the context of the rdy_to_xfer function. Once data has been received, the 
FETD then calls the scsi_rx_data function in the STML. The scsi_rx_data function 
changes the state of the command and awakens the STT. The STT then processes the received 
command by handing it off to handle_cmd once more. This time handle_cmd processes the 
command according to the requirements of the mode of operation relevant to the STML (see 
Section 7.7). Once the command is processed, the STT calls the hand_to_front_end function 
again. The hand_to_front_end function this time calls the xmit_response function in the 
FETD. As in the case of the READ-type commands, once the FETD is done transmitting the actual 
response, it calls the scsi_target_done function provided by the STML. The STML then frees 
up the resources allocated for the execution of the command. These steps are shown in Figure 7-
12.  
 
 
7.6.4 Processing a Task Management function 
 
When an FETD receives a Task Management function, it needs to inform the STML about the 
received Task Management function. As described in Section 7.4, the STML has not implemented 
the CLEAR ACA Task Management function. Furthermore, the execution of the ABORT TASK 
SET and the CLEAR TASK SET functions requires the FETD to determine what commands need 
to be aborted. When the FETD has performed this function, it informs the STML of the received 
Task Management function using the rx_task_mgmt_fn in the STML. rx_task_mgmt_fn 
creates a Target_Scsi_Message struct (Refer to Figure 7-5) and queues this entry up in the 
message queue of the STML. It then awakens the STT. The STT, upon detecting that it has 
received a Task Management function, executes the Task Management function. It then informs 
the FETD about the successful execution of the Task Management function by calling the 
task_mgmt_fn_done. Various SCSI Transport protocols have different interconnect-specific 
Information Units to inform the Initiator about the successful execution of the Task Management 
function. The FETD can transmit the required Information Units after the task_mgmt_fn_done 
function is called. If the Task Management function affects commands queued up by other FETDs 
than the one that received the Task Management function (i.e., LUN RESET and TARGET 
RESET), then the report_aen function is called for all the FETDs. This allows the FETDs to 
inform Initiators that have logged into them about the Unit Attention condition that has been 
created at the Target. These steps are shown in Figure 7-13. 
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Figure 7-12: Processing of a WRITE-type command 
 
 
 
 
 
 
 
 
 
 
 
 

xmit_response

Front End Target Driver SCSI Target Mid-Level

handle_cmd

scsi_target_done

hand_to_front_end

rx_cmnd

SCSI Target Threadxmit_queue

From
 Initiator

To Initiator

scsi_rx_data

From
 Initiator

rdy_to_xfer hand_to_front_end

handle_cmd

xmit_response

Front End Target Driver SCSI Target Mid-Level

handle_cmd

scsi_target_done

hand_to_front_end

rx_cmnd

SCSI Target Threadxmit_queue

From
 Initiator

To Initiator

scsi_rx_data

From
 Initiator

rdy_to_xfer hand_to_front_end

handle_cmd



 64

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7-13: Processing of a Task Management function 
 
 
7.6.5 Other design considerations 
 
Another issue that had to be decided while designing the STML was whether to have a single 
queue of commands each in a different stage of processing or to have different queues depending 
upon the stage of processing. The gain by selecting the latter option is primarily to reduce the 
amount of searching that may have to be done for command processing. The former option on 
the other hand, requires just one semaphore/spin-lock in order to resolve issues involving 
multiple accesses to the command queue. In addition, the advantage with the second option is 
that all commands on the command queue can be processed in one pass of the command queue 
search. For the option involving multiple queues for commands in different stages of processing, 
there is a lot of overhead in dequeuing commands from one queue and adding them on another 
and maintaining the associated state information.  Thus, the option of using multiple queues 
against one queue provided little benefit for added complexity. As a result, the single queue 
option was implemented. The execution state of the command on the command queue is 
available to the STML through the state variable in the Target_Scsi_Cmnd struct (this was 
not shown in Figure 7-3 as the FETD does not need access to this variable). 
 
7.7 SCSI Target Mid-Level: Modes of Operation 
 
The SCSI Target mid-level, like the USTE, is designed to work in three different modes of 
operation. The three modes of operation are independent of each other. Only one of these can be 
selected at compile time. These three modes of operations are: 

1. I/O to and from memory 
2. I/O to and from a file that contains the logical blocks 
3. I/O to and from a real disk 

Selecting a mode of operation is primarily responsible for deciding the functionality that will be 
provided by the handle_cmd function in the STML. 
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7.7.1 I/O to and from memory 
 
This mode of operation (selected by uncommenting MEMORYIO in scsi_target.h - Line 47) 
is primarily designed to be used for performance analysis of a SCSI transport protocol. This mode 
of operation does minimal processing on the received commands so that the time spent in the 
STML is the bare minimum. In this manner, the SCSI front-end protocol is the limiting entity and 
therefore, forms a good comparative base for the SCSI protocol in question. Although the FETD 
can queue up multiple commands for the STML, the processing of these commands is 
synchronous - that is, these commands are processed within one cycle of the main loop in the 
STT. When a READ(10) command is received, the data buffers are allocated and returned to the 
Initiator. For a WRITE(10) command, the data is discarded. 
 
 
7.7.2 I/O to and from a file that contains the logical blocks 
 
This mode of operation (selected by uncommenting FILEIO in scsi_target.h - Line 49) 
enables the system acting as a SCSI Target to create and maintain logical data blocks in a regular 
file that is stored on any type of random access media. When the Target Emulator starts up, it 
opens up, from within the kernel space, file(s) with the name "scsi_disk_file_x_y", where x 
= SCSI id and y = SCSI LUN. The code is set up to respond to id = 0 and the number of LUNs can 
be altered through the variable MAX_LUNS (scsi_target.h - Line 69). Presently, the code 
responds to two LUNs (0 and 1). The size of the disk represented by each file can be adjusted by 
changing the value of FILESIZE (scsi_target.h - Line 57) and is presently set to 1.7 GB. The 
STML responds to all commands except SCSI READs and WRITEs. For the READs and WRITEs, 
the STML is responsible for converting the Logical Block Addresses (LBAs) in the received 
Command Descriptor Blocks (CDBs) into block requests that can be executed by the file system. 
The processing of these commands, like I/O to and from memory, is synchronous. The 
disadvantages of this approach have been documented in the corresponding section in the 
Chapter 6, dealing with the USTE. 
 
7.7.3 I/O to and from a real SCSI disk 
 
In moving from the user space to the kernel space, there is an increase in the number of options 
that are available to transmit SCSI commands onto a SCSI disk connected to the system. These 
options are a direct result of the way in which the SCSI Initiator mid-level is organized. These 
three levels differ in their closeness to the lower level interconnect. Corresponding to these three 
levels, there are three options, each option having its pros and cons. These options are depicted in 
Figure 7-14. 
 
7.7.3.1 I/O to and from a SCSI disk using the queuecommand interface 
 
int queuecommand (Scsi_Cmnd *command, void (*done) (Scsi_Cmnd *)); 
 
The first option is where the STML uses the queuecommand function of the SCSI HBA in the 
system. For the platform running the SCSI Target Emulator, the list of SCSI HBA drivers in the 
SIML is available by means of a global queue provided by the SIML and each host registers its 
host template with the SIML. Each host is required to have a queuecommand function which 
allows the SIML to transmit SCSI commands and data. Using this queuecommand interface, the 
STML can directly transmit SCSI commands and data onto any SCSI disk connected to the 
corresponding HBA without interfering with the SIML queueing code. The functional overhead 
is also the lowest of the three options available. 
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The disadvantages of doing this are that the STML has to deal will any errors that may occur in 
the execution of the SCSI command. In other words, there is a lot of potential duplication of the 
SIML code in the STML if this option is implemented. Also, the code is not generic enough in that 
the STML needs to be aware of all the SCSI hosts on the system and needs to be able to separate 
SCSI direct access disks from other SCSI Targets that may be connected to the system. In 
addition, the SIML provides for command retries and timeouts. By interfacing directly with the 
SCSI HBA driver, the STML does not have access to these features of the SIML. This option has 
not been implemented in the STML due to these disadvantages. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7-14: Options for I/O to and from a SCSI Disk 
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7.7.3.2 I/O to and from a SCSI disk using the scsi_do_req interface 
 
void scsi_do_req (Scsi_Request *req, const void *cmnd, void *buffer, 

unsigned int bufflen, void (*done) (Scsi_Cmnd*), int 
timeout, int retries); 

 
The second option consists of the STML cutting in just above the SIML. This is the interface that 
all the upper-level drivers (sd, st, sr and sg) use to transmit SCSI commands to the SIML. The 
interface was previously provided by means of the scsi_do_cmnd function in the SIML. Recent 
versions of the kernel have changed this interface over to the scsi_do_req function. This 
change has been made to try to differentiate between a request and a command, a request being a 
SCSI CDB that is put into a queue and a command being a request that is at the head of the same 
queue. Although not completely implemented, the scsi_do_req is the preferred interface. The 
advantage of this interface is that the SIML handles some of the basic error handling details. Also, 
the interface is a little more generic, in that, the SIML transmits the SCSI commands received 
using the scsi_do_req function over the correct interface given the correct SCSI id and SCSI 
LUN. The disadvantage of this interface is that it is not documented very well. As a result, it is 
relatively non-trivial to debug the code. In terms of functional overhead, this is slightly more 
overhead as compared to the previous option. This option has been implemented partially and 
can be utilized by uncommenting DISKIO (scsi_interface.h - Line 48). Though 
implemented, this option has not been completely debugged. More information is needed about 
the interface before the code can be made error-free. 
 
7.7.3.3 I/O to and from a SCSI disk using the SCSI Generic interface 
 
The third option consists of the SCSI Target mid-level using the SCSI Generic upper level. This is 
similar to the manner in which the USTE worked. For the kernel space implementation, the 
newer SG-2 interface was used. The SG-2 interface enables Asynchronous I/O between the 
application using the SCSI generic interface and the SCSI disk. The SG-2 interface is based on the 
sg_io_hdr struct depicted in Figure 7-15. 
 
The organization of the struct is similar to the manner in which the Scsi_Cmnd struct is 
organized (see Figure 7-16). The SG-2 interface also enables the use of scatter-gather buffers to 
transmit and receive data. Asynchronous I/O is supported by using the SIGIO signal in 
conjunction with non-blocking reads and writes. The mechanism used to execute SCSI commands 
using the SG-2 interface is similar to the mechanism used by the USTE (described in Chapter 6) 
using the older interface. An sg_io_hdr_t struct is filled appropriately by the STML and is 
handed to a previously “open”ed SCSI device using a write command. When asynchronous 
I/O is used, this write needs to be non-blocking. When the command has been completed, 
SCSI Generic issues a SIGIO signal. The STML then needs to execute a read command so that 
the result of the execution of the SCSI command can be retrieved. Using this read-write 
interface in the kernel space involves some amount of manipulation of the traditional system call 
interface (sys_read and sys_write). The advantage of this technique is that the interface is 
well defined with good documentation. In addition, the SCSI generic interface allows application-
specific definitions of retries and timeouts. This gives the STML a high enough interface in the 
SCSI processing stack where it does not have to deal with error handling on the SCSI Initiator 
side. The disadvantage remains a higher functional overhead as compared to the other two 
options. 
 
There are some issues with the asynchronous processing of commands.  This means that a STML 
thread is not blocked while a command is being processed. The SG-2 interface then transmits an 
SIGIO signal when the processing of the command is completed. The STML thread then needs to 
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retrieve the response using the SG-2 interface. While this is not a problem when there is a single 
FETD operating with an Initiator that does not allow command queuing, in the general case, this 
proves to be a problem. That is because there are certain sections of the SCSI generic code that do 
not expect to receive signals. As a result, the STT (in the context of which the SCSI Generic 
functions are called) cannot receive signals. A separate entity is needed to process signals. When 
this mode of operation is used, the STML has to spawn a separate thread (SCSI Signal Processing 
Thread). The SCSI Signal Processing Thread (SSPT) is responsible for processing the received 
SIGIO and awakening the STT so that it can receive the response to the processed command 
using the SG-2 interface described previously. This option has been implemented and can be 
used by uncommenting GENERICIO (scsi_interface.h - Line 50).  
 
7.8 Implementation of the SEP front-end in Kernel Space 
 
The SEP front-end Target driver (FETD-SEP) in the kernel space was designed to be similar to the 
SEP front-end implementation in the USTE in structure. The FETD-SEP registers with the STML 
and "detect”s one device which represents a server (sep_server_thread) that is spawned by 
the detect function. The sep_server_thread awaits connections on the TCP port 4000. 
When a connection is accepted, it then spawns one thread to receive SCSI commands 
(represented by sep_rx_thread) and another to transmit SCSI responses and status 
(represented by sep_tx_thread). The semantics of the operation are similar to those used in the 
USTE. ABORTs and certain command types supported by SEP (e.g., third-party commands) are 
not supported by the implementation. Flow control is not used between the Initiator and the 
Target. Since SEP does not use the SCSI id, all LUNs are represented on id 0. 
 
7.9 Implementation of the Fibre Channel front-end in Kernel Space 
 
The Fibre Channel front-end Target driver (FETD-FC) was implemented using the Target Mode 
operation of the QLogic ISP 2200A Card. The driver for this was based on the HBA driver written 
by Chris Loveland (University of New Hampshire). The FETD-FC registers with the STML and 
then “detects” any ISP 2200A device that may be connected to the PCI bus. Each such device is 
registered with the STML. The firmware on each device is then loaded, configured and executed. 
An interrupt-handler is registered with the kernel. It was also realized that a considerable portion 
of what the FETD needed to do would have to be done in interrupt-context. To remedy this 
situation, each registered device spawns a qlgc_process_thread. This is the primary 
processing entity within the FETD-FC. The QLogic firmware interface (briefly described in 
Appendix C) consists of creating a receive and transmit queue within the kernel and then 
exchanging I/O Control Blocks (IOCBs) with the ISP 2200A. The IOCBs are 64-byte instructions 
that can be issued to the ISP 2200A firmware. The FETD-FC is informed about an update to the 
receive queue (i.e., it has received an IOCB) and about the successful execution of an IOCB in 
interrupt context. If IOCBs are received, the interrupt handler copies the received IOCBs to an 
IOCB queue which is maintained by the FETD-FC. If, on the other hand, a received interrupt 
indicates that an IOCB has completed execution, the interrupt handler prepares this IOCB for 
being dequeued from the IOCB queue. The qlgc_process_thread is then awakened and the 
required actions are taken. The ISP 2200A firmware deals with most of the specifics of the SCSI-
FCP so that the FETD-FC is left free to deal with the SCSI commands themselves. Flow-control 
and link-level details are also dealt with by the ISP 2200A firmware. 
 
 
 
 
 



 

7.10 Implementation of the iSCSI front-end in Kernel Space 
 
The iSCSI front-end Target driver (FETD-iSCSI) was implemented to the iSCSI Draft version 3. 
This version was chosen because there were some questions about the latest changes in iSCSI 
Draft version 5 and continuing into future drafts. The FETD-iSCSI was implemented with a 
structure similar to the FETD-SEP. The FETD-iSCSI registers with the STML and "detect”s one 
device which represents a server (iscsi_server_thread) that is spawned by the detect 
function. The iscsi_server_thread awaits connections on the TCP port 4002. When a 
connection is accepted, it then spawns one thread to receive SCSI commands (represented by 
iscsi_rx_thread) and another to transmit SCSI responses and status (represented by 
iscsi_tx_thread).  Each connection is part of a session that is established between an iSCSI 
Initiator and an iSCSI Target. Task Management functions implemented by the STML have also 
been implemented by the FETD-iSCSI. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

typedef struct sg_io_hdr { 
int     interface_id; /* [i] 'S' for SCSI generic (reqd) */ 
int     dxfer_direction; /* [i] data transfer direction */ 
unsigned char  cmd_len; /* [i] SCSI command length ( <= 16 bytes) */ 
unsigned char  mx_sb_len; /* [i] max length to write to sbp */ 
unsigned short iovec_count; /* [i] 0 implies no scatter gather */ 
unsigned int   dxfer_len; /* [i] byte count of data transfer */ 
void      *dxferp; /* [i], [*io] points to data transfer memory

or scatter gather list */ 

unsigned char  *cmdp; /* [i], [*i] points to command to perform */ 
unsigned char  *sbp; /* [i], [*o] points to sense_buffer memory */ 
unsigned int   timeout; /* [i] MAX_UINT->no timeout (unit: msec) */ 
unsigned int   flags; /* [i] 0 -> default, see SG_FLAG... */ 
int     pack_id; /* [i->o] unused internally (normally) */ 
void     *usr_ptr; /* [i->o] unused internally */ 
unsigned char  status; /* [o] scsi status */ 
unsigned char  masked_status; /* [o] shifted, masked scsi status */ 
unsigned char  msg_status; /* [o] messaging level data (optional) */ 
unsigned char  sb_len_wr; /* [o] bytes actually written to sbp */ 
unsigned short host_status; /* [o] errors from host adapter */ 
unsigned short driver_status; /* [o] errors from software driver */ 
int     resid; /* [o] dxfer_len - actual_transferred */ 
unsigned int   duration; /* [o] time taken by cmd (unit: millisec) */
unsigned int   info; /* [o] auxiliary information */ 
} sg_io_hdr_t; /* 64 bytes long (on i386) */ 
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Figure 7-15: Definition of the sg_io_hdr_t struct 
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Figure 7-16: Definition of Scsi_Cmnd struct 
 

typdef struct scsi_cmnd { 
unsigned int  target; 

unsigned int  lun; 

unsigned int  channel; 

unsigned char  cmd_len; 

unsigned char  old_cmd_len; 

unsigned char  sc_data_direction; 

unsigned char  sc_old_data_direction; 

unsigned char  cmnd[MAX_COMMAND_SIZE]; 

unsigned  request_bufflen; /* Actual request size */ 

struct timer_list eh_timeout; /* Used to time out the command. */ 

void   *request_buffer; /* Actual requested buffer */ 

unsigned char  data_cmnd[MAX_COMMAND_SIZE]; 

unsigned short  old_use_sg; 

unsigned short  use_sg;  /* Number of pieces of scatter-gather */ 

unsigned short  sglist_len; /* size of malloc'd scatter-gather list */

unsigned short  abort_reason; 

unsigned  bufflen; /* Size of data buffer */ 

void   *buffer; /* Data buffer */ 

unsigned  underflow; 

unsigned  old_underflow; 

unsigned  transfersize; 

int   resid; 

struct request  request; 

unsigned char  sense_buffer[SCSI_SENSE_BUFFERSIZE]; 

unsigned  flags; 

unsigned  done_late:1; 

void   (*scsi_done) (struct scsi_cmnd *); 
Scsi_Pointer  SCp; /* Scratchpad used by some host adapters */ 

unsigned char  *host_scribble; 

int   result; /* Status code from lower level driver */ 

unsigned char  tag; /* SCSI-II queued command tag */ 

unsigned long  pid; /* Process ID, starts at 0 */ 

} Scsi_Cmnd; 
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CHAPTER 8 
 
 
 

TESTING AND PERFORMANCE ANALYSIS 
 
 
 

8.1 Overview 
 
This thesis has implemented the STML along with the FETDs for the SEP, Fibre Channel and the 
iSCSI Protocols. The SEP and the iSCSI implementations were based on software 
implementations of the TCP/IP protocols. The Fibre Channel driver was implemented for the 
Target Mode operation of the QLogic ISP 2200A card. This Chapter deals with the issues of 
testing and performance analysis of these implementations. 
 
8.2 Approaches to Testing 
 
Testing a product involves several different facets. Due to the vast scope of the design phase in 
this thesis, the extent of testing for this thesis is limited. This section outlines the testing that 
needs to be performed along with a description of those aspects that have been performed as part 
of this thesis. 
 
8.2.1 Conformance Testing 
 
This is the most basic form of testing which involves deciding whether a product has 
implemented the specifications of a standard to the fullest aspect. For this project, there are four 
different standards families which can be referenced: the SCSI family (SAM-2, SPC-2, SBC-2), the 
SEP draft, the Fibre Channel family (FC-PH, FC-AL-2, FC-FLA, FC-PLDA, SCSI-FCP), and the 
iSCSI draft. Clearly, the wide scope of standards families across which this thesis works renders 
it almost impossible to test in any complete manner. 
 
From the standpoint of the STML, the threadbare SCSI commands required for normal operation 
have been implemented. SCSI Mode Page definitions have not been implemented. Error recovery 
mechanisms have been implemented but not all the semantics of error recovery have been 
implemented. As far as the SEP implementation is concerned, flow control and Task 
Management functions have not been implemented. For the Fibre Channel implementation, the 
recovery procedures allowed by the QLogic firmware interface have been implemented. Not all 
the semantics of SCSI-FCP-2 can be implemented. In addition, Class 2 service has not been 
implemented (Class 2 Service is intended for use with Sequential Access devices like tape drives, 
whereas the present implementation is for Direct Access devices). For the iSCSI implementation, 
several negotiable features such as immediate data, header and data digests, have not been 
implemented. 
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8.2.2 Stress Testing 
 
The idea behind this type of testing is to create conditions of heavy load and observe the behavior 
of the entities involved. The primary objective behind such testing is to test the implementation at 
its limits (for example: for the iSCSI limitations, when the number of connections that the FETD-
iSCSI can handle reaches it maximum) and to see that the device handles error conditions caused 
by resource unavailability gracefully. This type of testing has not been performed on any of the 
implementations. 
 
8.2.3 Interoperability Testing 
 
This testing checks to see if a given implementation can work successfully with others. The STML 
has been tested for interoperability with a wide range of SCSI Initiators. The Fibre Channel 
implementation has been extensively tested for interoperability with different HBAs and Fibre 
Channel switches from different vendors to see if they recognize the Target. The SEP and iSCSI 
implementations could not be tested similarly due to a lack of access to devices that implement 
the SEP and iSCSI protocols. 
 
8.2.4 Operability Testing 
 
This testing checks to see if a given implementation does indeed do what is expected of it. In the 
case of this thesis, the expectation was to create a SCSI Target device which is able to store data 
without corruption. Extensive testing has been done for this aspect of testing. The “disk” 
represented by the STML has been used as a valid file system that can be accessed by different 
hosts. Consistency tests have also been run on such a “disk”. This kind of testing tests the basic 
path of data through a given implementation. For scenarios involving errors and error recovery, 
not much testing has been done. 
 
8.3 Performance Analysis 
 
A detailed performance analysis of these and several other protocols will be performed by 
Anshul Chaddha as a part of his thesis. This thesis references some of the basic data that has been 
gathered from his initial work. 
 
The mode of operation involving I/O operations to and from memory (# define MEMORYIO 
uncommented) was used as a comparative basis for the different SCSI Transport Protocols. 
 

No. Target Emulator Data Rate (MB/s) 

1 USTE/SEP 19 
2 KSTE/SEP 21 
3 KSTE/FC 45 
4 KSTE/iSCSI 19 

 
Figure 8-1: Data Rates with different implementations 

 
In addition, the values of CPU utilization were observed for the above performance tests using 
the “top” utility provided with the Linux Operating system. The maximum values observed for 
Fibre Channel (< 5%) were significantly lower than those observed for iSCSI and SEP (~25 %). 
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CHAPTER 9 
 
 
 

CONCLUSIONS AND FUTURE WORK 
 
 
 

9.1 Conclusions 
 
This thesis presents a general architecture for implementing SCSI Targets that utilize SCSI 
Transport Protocols. This thesis documents the design and implementation of: 

1. An interface for a SCSI Target in the user-space. 
2. A SEP front-end for the above user-space interface. 
3. A SCSI Target Mid-Level (STML) for the Linux Operating System kernels 
4. SEP, iSCSI and Fibre Channel front-end Target drivers for the implemented STML. 

 
The STML has been implemented in three separate modes of operation with I/O going to and 
from a real SCSI disk connected to a system, I/O going to and from a file on a local disk that 
contains the logical blocks, and I/O to and from memory. 
 
Some limited performance analyses were conducted on the different implementations. The SEP 
and iSCSI protocol implementations yielded similar values for data rates (19 – 21 MB/s) 
independent of whether the implementation was in the user-space or the kernel-space (if 
applicable). The Fibre Channel protocol implementation yielded a data rate of 45 MB/s. 
 
In addition, CPU utilization values observed for Fibre Channel (< 5%) were significantly lower 
than those observed for iSCSI or SEP (~25%). 
 
The above two conclusions together imply that in order to get viable iSCSI or SEP 
implementations, TCP/IP would have to be implemented in hardware. 
 
Implementation of the above protocols yielded some interesting conclusions about the protocols 
themselves: 

1. For SCSI implementations which deal with multiple SCSI Transport Protocols, a given 
SCSI Target does not have a common mechanism to reference an Initiator. As a result, not 
all the semantics of the Task Management functions provided by SCSI can be 
implemented. This problem is currently being addressed by T10. 

2. While attempting to implement the iSCSI protocol using draft 5, a number of issues were 
observed with the suggested iSCSI PDU header implementation. These problems were 
conveyed back to the IETF. A new header format has since been suggested and is 
expected to be implemented in version 6 of the iSCSI draft standard. It was because of 
these issues that the present implementation is based on version 3 of the iSCSI draft 
standard. 



 74

 

9.2 Future Work 
 
Future work from this thesis can take several different directions. These are discussed below. 
 
9.2.1 Performance Analysis 
 
This thesis has not looked at performance issues and the effect they can have on the design 
choices. The choices made in the design of the STML were made based on intuition and program 
complexity rather than considering actual performance. Examples of such choices would be 
having separate threads for each FETD instead of having a single STT. Another improvement that 
could be made is to have separate queues for commands from each separate FETD. This design 
could also significantly simplify FETD design since a significant portion of the implementation of 
the FETDs involves dealing with the command queues for the individual FETDs. In addition, this 
could reduce search time for the STML and thus, affect performance. Another consequence of 
studying performance analysis would be to reveal possible bottlenecks in the STML design. For 
the TCP/IP based SCSI Transport Protocols, the present TCP/IP implementations are in 
software. It is expected that gradually TCP/IP will be implemented in hardware. Performance 
analysis of the present implementations could yield an idea of the performance improvements to 
be gained by a hardware implementation of TCP/IP. 
 
9.2.2 Development of Testing Tools and Test Suites 
 
The STML along with the corresponding drivers provides the ability to test the different SCSI 
Transport Protocols. Several tests in the Private Loop Direct Attach (PLDA) Test Suite written by 
the Fibre Channel Consortium (University of New Hampshire) could be implemented using the 
KSTE. Tools for testing the iSCSI protocol could also be implemented using the FETD-iSCSI. 
 
9.2.3 Protocol Development 
 
Another aspect that needs a good deal of future work is protocol development. An extremely 
limited set of SCSI commands has been implemented. This set needs to be extended. It may also 
be possible to extend the design to include Sequential Access devices in addition to Direct Access 
devices. The SCSI Error Recovery protocol has been implemented minimally without all of the 
semantics. In addition, the SCSI Mode Page definitions have not been implemented. These are 
also possible projects. 
 
In addition, more FETDs for different protocols need to be implemented to guarantee the generic 
nature of the design. Examples of such implementations would be for the mFCP protocol and the 
upcoming Infiniband protocol. In addition, it is expected that software implementations will give 
way to hardware implementations. The FETDs for SEP and iSCSI will then have to be re-written 
to work with such implementations. In addition, there are several Fibre Channel cards with 
Target Mode operation. Drivers for these cards need to be written in the interest of providing 
wider support for the designed STML. 
 
9.2.4 Kernel Design Projects 
 
One of the interesting implications of the KSTE is that it provides a common interface behind 
which a large number of storage resources can potentially reside. It thus provides an interface for 
managing these resources. The functionality associated with this management interface can be 
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isolated into a SAN Layer which could deal with the issues pertaining to redundancy, mirroring, 
fail-over and also, naming and discovery of the storage resources. 
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APPENDIX A 
 
 
 

SCSI COMMANDS FOR DIRECT ACCESS DEVICES 
 
 
 

The following is a table of SCSI commands that are relevant to the Direct Access SCSI devices. 
 
OP 
Code 

Command Name OP 
Code 

Command Name 

00h TEST UNIT READY 32h SEARCH DATA LOW 
01h REZERO UNIT 33h SET LIMITS 
03h REQUEST SENSE 34h PRE-FETCH 
04h FORMAT UNIT 35h SYCHRONIZE CACHE 
07h REASSIGN BLOCKS 36h LOCK/UNLOCK CACHE 
08h READ (6) 37h READ DEFECT DATA 
0Ah WRITE (6) 39h COMPARE 
0Bh SEEK (6) 3Ah COPY AND VERIFY 
12h INQUIRY 3Bh WRITE BUFFER 
15h MODE SELECT (6) 3Ch READ BUFFER 
16h RESERVE (6) 3Eh READ LONG 
17h RELEASE (6) 3Fh WRITE LONG 
18h COPY 40h CHANGE DEFINITION 
1Ah MODE SENSE (6) 41h WRITE SAME 
1Ch RECEIVE DIAGNOSTIC RESULTS 4Ch LOG SELECT 
1Dh SEND DIAGNOSTIC 4Dh LOG SENSE 
1Eh PREVENT/ALLOW MEDIUM 

REMOVAL 
55h MODE SELECT (10) 

25h READ CAPACITY 56h RESERVE (10) 
28h READ (10) 57h RELEASE (10) 
2Ah WRITE (10) 5Ah MODE SENSE (10) 
2Bh SEEK (10) 5Eh PERSISTENT RESERVE IN 
2Eh WRITE AND VERIFY 5Fh PERSISTENT RESERVE OUT 
2Fh VERIFY A0h REPORT LUNS 
30h SEARCH DATA HIGH A7h MOVE MEDIUM ATTACHED 
31h SEARCH DATA EQUAL B4h READ ELEMENT STATUS ATTACHED 
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APPENDIX B 
 
 
 

INSTALLING AND EXECUTING THE KSTE AND THE 
USTE 

 
 
 

1. The files required to install the USTE and the KSTE can be accessed from the IOL web-
site at http://www.iol.unh.edu/consortiums/fc/fc_linux.html 

2. The USTE files are located in the user_space_emulator directory. The files can be 
compiled by running “make”. The executable is scsi_server which listens for SEP 
CONNECT-NEGOTIATE message on TCP Port 4000. 

3. The KSTE files are located in the kernel_space_emulator directory. The files can be 
compiled by running “make”. The modules for the STML, the FETD-SEP, the FETD-FC, 
and the FETD-iSCSI are scsi_target.o, sep_target.o, qlogicfct.o, and iscsi_target.o, 
respectively. 

 

http://www.iol.unh.edu/consortiums/fc/fc_linux.htmllinux-drivers
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APPENDIX C 
 
 
 

QLOGIC ISP 2200A FIRMWARE INTERFACE 
 
 
 

The ISP2200/ISP2200A firmware supports two interfaces to the host system software: mailbox 
commands and host memory queues. The mailbox commands configure the ISP2200/ISP2200A 
firmware and hardware and issue priority IOCBs. The host memory queue interface is the 
operational interface. This interface has two queues in the host memory: the request queue and 
the response queue. The request queue is where the host system places IOCBs to be processed by 
the ISP2200/ISP2200A firmware. The response queue is where the ISP2200/ISP2200A firmware 
places IOCBs to be processed by the host system. 
 
The SCSI-FCP host adapter firmware for the ISP2200/ISP2200A supports Initiator and Target 
modes of operation. These modes transport SCSI command descriptor blocks (CDBs) to the 
desired FC-AL SCSI target device and transfer data associated with the command between the 
host memory and the FC-AL SCSI device. The ISP2200/ISP2200A firmware does not interpret the 
CDB nor the data. The host adapter firmware incorporates the following features: 

�� A user interface that is consistent within the QLogic ISP family of products 
�� Fibre Channel link level support 
�� SCSI initiator mode and target mode support 

 
The ISP 2200A is first reset and the firmware is then loaded, verified, configured and executed. 
This part is achieved by using Mailbox commands. The interrupts are disabled in this process. 
Interrupts are then enabled. The host system and the firmware then communicate with each 
other using IOCBs on both the response and the request queue. 
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APPENDIX D 
 
 
 

ACRONYMS USED 
 
 
 

The following is a list of the acronyms that have been used in this thesis: 
 
ACA  - Auto Contingent Allegiance 
API  - Application Programming Interface 
CDB  - Command Descriptor Block 
FC  - Fibre Channel 
FEID  - Front End Initiator Driver 
FETD  - Front End Target Driver 
FETD-SEP - SEP Front End Target Driver 
FETD-FC - Fibre Channel Front End Target Driver 
FETD-iSCSI - iSCSI Front End Target Driver 
HBA  - Host Bus Adapter 
IOCB  - I/O Control Block 
IP  - Internet Protocol 
IU  - Information Unit 
iSCSI  - Internet SCSI 
KSTE  - Kernel Space Target Emulator 
LBA  - Logical Block Address 
LUN  - Logical Unit Number 
mFCP  - Metro Fibre Channel Protocol 
NACA  - Normal ACA 
NAS  - Network Attached Storage 
PDU  - Protocol Data Unit 
PLDA  - Private Loop Direct Attach 
SAM  -  SCSI Architecture Model 
SAN  - Storage Area Networks 
SASI  - Shugart Associates Systems Interface 
SBC  -  SCSI Block Commands 
SCSI  - Small Computer Systems Interface 
SCSI-FCP - Fibre Channel Protocol for SCSI 
SEP  - SCSI Encapsulation Protocol 
SG-1  - SCSI Generic 1 (refers to the older interface available in all Linux kernels) 
SG-2 - SCSI Generic 2 (refers to the new SCSI Generic interface available in all 

Linux kernels subsequent to 2.4.0-test9) 
SIUL  - SCSI Initiator Upper Level 
SIML  - SCSI Initiator Mid-Level 
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SoIP  - Storage over IP 
SPC  - SCSI Primary Commands 
SSPT  - SCSI Signal Processing Thread 
STML  - SCSI Target Mid-Level 
STT  - SCSI Target Thread 
STP  - Scheduled Transfer Protocol 
TAN  - Target Acquired Name 
TCP  - Transmission Control Protocol 
ULP  - Upper Level Protocol 
USTE  - User Space Target Emulator 
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