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• The 1000BASE-T Coding System
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System Objectives
• Provide 1000Mbps Full Duplex Link between nodes
• Support large installed base of Cat 5 Balanced cable
• Operate with a bit error rate (BER) of ≤ 10-10

Boom

To put this in perspective:  One byte is sent every 8ns.  If 
bytes of data were sent constantly, every 10 seconds a bit 
detected at the receiver may be erred. 



Objectives
• Provide 1000Mbps Full Duplex Link between nodes
• Support large installed base of Cat 5 Balanced cable
• Operate with a bit error rate (BER) of ≤ 10-10

• Meet or exceed FCC Class A/CISPR



Other Objectives
• Support CSMA/CD MAC (clause 4)
• Comply with GMII Specification (clause 

35)
• Support 1000Mbps repeater (clause 41)
• Support Auto-Negotiation (clause 28)
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Basic Coding Theory Overview
• Communication Systems 101
• Scrambling Basics
• Descrambling Basics
• Block Codes
• Trellis Encoding
• Viterbi Decoding



Communication Systems 101
• What is the goal of any communication system?



Communication Systems 101
• What is the goal of any communication system? 

To convey information to a receiving party or parties.  
• Be it a radio transmission across a hostile battlefield environment
• A laser beam between two distant satellites
• Or simply a person trying to communicate to someone across a crowded 

noisy room



Communication Systems 101
• What is the goal of any communication system? 
• What is required to communicate?



Communication Systems 101



Communication Systems 101
• What is the goal of any communication system? 
• What is required to communicate?

• Prior knowledge of rate constraints
• Prior knowledge of the symbol set in use
• Prior knowledge of the structure of what is being conveyed

Take for example: A conversation (say a presentation)
• A speaker can only talk so fast (or slow) and still be understood
• Phonemes make up the basic set of sounds used
• Those sounds form known words for a given:

– language
– grammar
– dialect



Scrambling Basics
• First - What is the purpose of scrambling?

The purpose of scrambling is NOT to make a receiver’s job 
more difficult (except maybe in military applications)  but 
rather to combat issues related to the channel between the 
transmitter and receiver.

(recall that the term “channel” refers to any medium between the transmitter 
and receiver - be it copper cabling, fiber optic cabling, air or vacuum)



Scrambling Basics
• First - What is the purpose of scrambling?

The purpose of scrambling is NOT to make a receiver’s job 
more difficult (except maybe in military applications)  but 
rather to combat issues related to the channel between the 
transmitter and receiver.

(recall that the term “channel” refers to any medium between the transmitter 
and receiver - be it copper cabling, fiber optic cabling, air or vacuum)

In 1000Base-T, scrambling’s main purpose is to 
temporally and spatially decorrelate the 
transmitted data.  -- Lets explore that …



Scrambling Basics
• Why is scrambling necessary?

Consider a simple communication system that commonly sends a 
repeating pattern of 1010 and 1100 on a 4 channel medium.
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Scrambling Basics
Recall that “ones and zeros” are not sent on the channel, but rather an analog 
waveform is sent.  In the diagram below a two level waveform is sent, where 
a data ‘1’ causes a transition, and a data ‘0’ causes the waveform to remain at 
the same level.    (the horizontal dashed lines represent the bit-time boundaries)
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Scrambling Basics
Observe that the continuous repetition of 1’s results in the highest frequency 
waveform on the channel.  As higher frequencies tend to radiate “better”, 
scrambling can help to eliminate such strong high frequency components (by 
temporally decorrelating the data on the channel.)
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Scrambling Basics
In this example, as the “all 1’s” signal contains the highest frequency, any 
data sequence other than all 1’s naturally has a lower frequency content.  
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Scrambling Basics
By scrambling the data, no single frequency is sent for any significant period 
of time,  thus the power is spread out over a range in the frequency spectrum.  
This type of technique is oft referred to as “spread spectrum” as it effectively 
whitens the frequency content of the signal and thereby reduces the power of 
any particular frequency component.  This technique also makes more 
efficient use of the available bandwidth (as the entire band may be utilized).
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Scrambling Basics
Scrambling is said to “whiten” the data’s frequency content based on the color 
white which contains all visible colors (frequencies).  

Electrical noise is commonly Additive White Gaussian Noise (AWGN) 
which, simply put, means that the noise is random and occupies all 
frequencies (hence the term “white”).

By scrambling the data, the radiated power from the channel looks effectively 
like noise. This helps meet the FCC requirements.  Also, since there are 
multiple channels in close proximity, the radiated power received on one 
channel from another (called cross-talk) is not correlated to the data being 
sent.  This “spatial decorrelation” assists the receiver on the channel from 
distinguishing the desired signal from the background noise.



Scrambling Basics
• How do you scramble data?



Scrambling Basics
• How do you scramble data?

Easy, take each symbol, and alter it by a random value!



Descrambling Basics
• How do you scramble data?

Easy, take each symbol, and alter it by a random value!

• How do you scramble data such that it can be 
descrambled?
Take each symbol and alter it by a pseudo-random value.



Descrambling Basics
• Take each symbol and alter it by a pseudo-random value.
Take for example the scenario where:

the user wishes to send:  HELLO WORLD
the transmitter maps the characters to “symbols” suitable for “the channel”
H E L L O W O R L D

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
08 05 12 12 15 23 15 18 12 04



Descrambling Basics
• Take each symbol and alter it by a pseudo-random value.
Take for example the scenario where:

the user wishes to send:  HELLO WORLD
the transmitter maps the characters to “symbols” suitable for “the channel”

“scramble” the symbols by adding a pseudo-random value
H E L L O W O R L D

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
08 05 12 12 15 23 15 18 12 04

-1 -1 +1 -1 +1 +1 +1 -1 -1 +1

07 04 13 11 16 24 16 17 11 05



Descrambling Basics
• Our example continues - at the receiver:
Assume the receiver detects the scrambled sequence properly:

If we decode this as is:
07 04 13 11 16 24 16 17 11 05

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
G D M K P X P Q K E

Clearly, this is not:  HELLO WORLD

The receiver must somehow know what scrambling operation was 
performed on the data!!



Descrambling Basics
• The receiver must know the scrambling sequence

Hence why the scrambler must use a pseudo-random value - if it 
were truly random, the receiver could not know the sequence!



Descrambling Basics
• The receiver must know the scrambling sequence

Hence why the scrambler must use a pseudo-random value - if it 
were truly random, the receiver could not know the sequence!

• Pseudo-random values can be generated by any sequence which 
appears to be locally random, but is actually periodic.  
A common practical implementation of a pseudo-random number generator is 

through a linear feedback shift register (LFSR).
An LFSR of ‘n’ elements will identically  repeat its output every 2n-1 outputs
A simple 3 element LFSR is shown below:  

The repeating 7-code pattern for this LFSR is 0010111 (1 = “1”  0 = “-1”)

T T T

Output bit



Descrambling Basics
• The receiver must also synchronize its descrambler

To recover the current location of the transmitter in its scrambling sequence.
One option to achieve this method, “brute force” exhaustive search of space - requires 
knowledge of what ‘should’ be sent (this is typically the idle pattern - say,
HELLOWORLD was sent constantly between data)

07 04 13 11 16 24 16 17 11 05

-1 +1 -1 -1 -1 +1 +1 -1 +1 +1 F E L K O Y Q P L F

+1 -1 +1 -1 -1 -1 +1 +1 -1 +1 H C N K O W Q R K F

+1 +1 -1 +1 -1 -1 -1 +1 +1 -1 -> H E L L O W O R L D

-1 +1 +1 -1 +1 -1 -1 -1 +1 +1 F E N K Q W O P L F

+1 -1 +1 +1 -1 +1 -1 -1 -1 +1 H C N L O Y O P K F

+1 +1 -1 +1 +1 -1 +1 -1 -1 -1 H E L L Q W Q P K D

-1 +1 +1 -1 +1 +1 -1 +1 -1 -1 F E N K Q Y O R K D

-1 -1 +1 +1 -1 +1 +1 -1 +1 -1 F C N L O Y Q P L D

-1 -1 -1 +1 +1 -1 +1 +1 -1 +1 F C L L Q W Q R K F

+1 -1 -1 -1 +1 +1 -1 +1 +1 -1 H C L K Q Y O R L D



Descrambling Basics
Fortunately,  real implementations transmit the current state of the 

LFSR (typically in the idle mode) such that the receiver can easily 
recover the state of the transmitter’s scrambler.  

Rather than exhaustively searching for alignment,  the receiver’s  
‘n’-bit descrambling LFSR is simply “primed” with the first ‘n’ 
bits received from the line.  



Block Codes
• Expands the code space of the data being transmitted.
• Allows an intelligent selection of channel symbols from 

the desired block of data being sent. 
• Typical Benefits of Block Codes

• Permits rich transition densities (allows for easier clock recovery)
• Permits DC Balanced codes to be used
• Permits non-data (control) codes, such as IDLE, Start of Frame, etc

• Some Ethernet Block Codes: 4B/5B  8B/10B  6B/3T

ex:  100Base-TX 4B/5B  “0 0 0 0”    <-----> “1 1 1 1 0”

Data Code Space

Redundant
Data Code Space

Mapped
Data Code

Space Control
Code Space

"Bad" CodesBlock
Encode/Decode



Convolutional Codes
• Convolutional Codes could be considered a special class 

of Block Codes
• The term “convolutional” is used as the output symbol 

sequence is generated by the convolution of the input 
sequence and a “generator” sequence.  

• The generator sequence is a K element delay line with 
modulo-2 adder feedback.  -- This is just another way of 
saying a LFSR!

• In terms we are familiar with,  a convolutional code is 
simply the result of XOR’ing the transmit data with the 
output of a scrambler.



Convolutional Codes
• A Simple Convolutional Encoder example

Below, the sequence 0n1n-11n-20n-3 is fed into the encoder, consisting 
of the time delay blocks, and XOR blocks.  

Note the output 00n11n-101n-201n-3 is at twice the input rate

T T Output bitInput bit

T T Output bitInput bit
0

110
0 0

0 0

0

00 00 00



Convolutional Codes

T T Output bitInput bit
01

10 0

1 1

1

11 00 00

T T Output bitInput bit
11

0 0

0 0

1

01 11 00

T T Output bitInput bit
10 1

1 0

1

01 01 11



Trellis Diagrams
• The preceding convolutional encoder can be 

represented in another form - a Trellis Diagram.



Trellis Diagrams
• Recall, the Convolutional Encoder example 

encoded 0110 to 00,11,01,01. 
End

(to"idle"
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01

If data to send is '0', follow solid line from
state and output codegroup (in blue)
If data to send is '1', follow dashed line from
state and output codegroup (in blue)
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Trellis Diagrams
• It should be clear now how this simple trellis 

provides a “structure” to the transmitted data 
stream,  as only valid transitions through the trellis 
may be transmitted!
(In the example,  after the codegroup 11 is sent, only the 

codegroup 01 or 10 are permissible)



Viterbi Decoding
• This structure provided to the underlying symbols 

transmitted is comparable to spelling and grammar 
rules.  consider: 
“I coldn’t wait til it was over” 
“I can’t believe their still awake”

Both symbol sequences are erred, but the 
knowledge of the structure of the transmission, 
allows the receiver to properly decode the 
sequence. 



Viterbi Decoding
• A Viterbi Decoder provides error correction.  Not 

just error detection like most other LAN block 
codes.  

• This results in a tolerance to a certain bit error rate 
(BER).  Thus, the overall system performance, 
often expressed in terms of the signal-to-noise ratio 
(SNR) is effectively increased by several dB when 
a trellis encoder/viterbi decoder is employed.  



Viterbi Decoding
• Consider once again the example trellis diagram  

01

If path selected is a solid line, the received data is '0'
If path selected is a dashed line, the received data is '1'
The distance metric employed is a simple binary hamming distance
     ie:   '00' is 2 distant from '11',  as is '01' from '10', etc..

00

10

00 0000

11 11 11 11

01 01 01

10 10 10

01 01 01

11
11 11

00

00 00
10 10 10

Start
(from
"idle"
mode)

11



Viterbi Decoding
• From idle,  the first code group is received

01

If path selected is a solid line, the received data is '0'
If path selected is a dashed line, the received data is '1'
The distance metric employed is a simple binary hamming distance
     ie:   '00' is 2 distant from '11',  as is '01' from '10', etc..
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Viterbi Decoding
• As more codes arrive, multiple possible paths emerge  

01

If path selected is a solid line, the received data is '0'
If path selected is a dashed line, the received data is '1'
The distance metric employed is a simple binary hamming distance
     ie:   '00' is 2 distant from '11',  as is '01' from '10', etc..
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Viterbi Decoding
• Some of these paths merge, leaving only 1 survivor

01

If path selected is a solid line, the received data is '0'
If path selected is a dashed line, the received data is '1'
The distance metric employed is a simple binary hamming distance
     ie:   '00' is 2 distant from '11',  as is '01' from '10', etc..
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Viterbi Decoding
• As merged paths represent higher/(or equal) cost paths to the same 

point,  no harm is done by eliminating them.

01

If path selected is a solid line, the received data is '0'
If path selected is a dashed line, the received data is '1'
The distance metric employed is a simple binary hamming distance
     ie:   '00' is 2 distant from '11',  as is '01' from '10', etc..
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Viterbi Decoding
• As more codes arrive, the overall path costs change.  How many codes 

must the system wait for to achieve an optimal decode???

01

If path selected is a solid line, the received data is '0'
If path selected is a dashed line, the received data is '1'
The distance metric employed is a simple binary hamming distance
     ie:   '00' is 2 distant from '11',  as is '01' from '10', etc..
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Viterbi Decoding
• Depending on the trellis design, the required number of codes to wait 

for could be quite large,  which increases the system delay!

01

If path selected is a solid line, the received data is '0'
If path selected is a dashed line, the received data is '1'
The distance metric employed is a simple binary hamming distance
     ie:   '00' is 2 distant from '11',  as is '01' from '10', etc..
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Viterbi Decoding
• Eventually, 0100010000 is decoded via the red path yielding the data 

0,0,0,0,0.  Thus, 2 bit errors did not prevent proper decode!!

01

If path selected is a solid line, the received data is '0'
If path selected is a dashed line, the received data is '1'
The distance metric employed is a simple binary hamming distance
     ie:   '00' is 2 distant from '11',  as is '01' from '10', etc..
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Intermission
• Catch your breath
• Ask some questions that can’t wait
• Fasten your seatbelt, the fun is just 

beginning!!



The 1000BASE-T Coding System
• Selecting the Channel Symbols
• Increasing Symbol Distance
• Defining the 4D/PAM5 Structure
• The Trellis structure used
• The Master/Slave Scramblers employed
• The 1000BASE-T Frame Structure



Selecting the Channel Symbols
• The 1000BASE-T phy will interface to the upper layers via 

the 8-bit wide GMII.  Thus, during frame transmission, the 
phy receives a new 8-bit word to send from the GMII every 
8ns (125Mhz).  

• A natural choice is to encode the full 8-bit word to some 
symbol space.  

• To keep the signaling rate low, all four pairs of the Cat 5 
cable will be used.  Thus,  only four 250Mbps channels are 
required. 



Selecting the Channel Symbols
• A system could be selected that has a high number of levels 

per symbol period, however additional levels increase the 
complexity of the system.

• As the data from the GMII is clocked at 125MHz,  a natural 
choice is to use this clock rate to drive symbols onto the 
channel - especially as 100Base-TX devices currently operate 
at 125MHz while sourcing three-level (MLT-3) symbols. 

• Unfortunately,  the phy is receiving 256 (28) data codes every 
8ns.  Even if the 3 level 100Base-TX system were used across 
all 4 pairs, only 81 (34) symbols would exist  



Selecting the Channel Symbols
• So, while there are benefits to leveraging the 100Base-TX 

design knowledge at the 125MHz speeds, clearly a three level 
system will not work.  

• Will 4 levels do?    44 = 256,  so yes, there are enough 
symbols to map the data codes; however,  there are no 
remaining codes for control signals (idle, start of frame, end 
of frame) nor are there and codes available for redundancy.

• Will 5 levels do?   54 = 625.  Yes!  In fact, enough codes exist 
in the symbol space to allow for 100% redundancy (use 512 
codes for data, rather than just 256) and still leave 113 
symbols for control signals.   



Selecting the Channel Symbols
• These 5 symbols are labeled as -2, -1, 0, +1, +2

(+/- 2 actually maps to +/-1V, and +/-1 maps to +/- 0.5V)

• If the symbols -1 and +1 are not used, and only one channel is 
transmitted on,  then the output is very similar to 100Base-TX 
signaling (allowing for simpler dual 100/1000 speed 
implementations)



Increasing Symbol Distance
• While the symbols  -2, -1, 0, +1, or +2 are sent per transmitter, recall 

that the 1000BASE-T system uses all four pairs of the Category 5 
balanced cable. 

• The combined output of all four transmitters on each line forms a 
four-dimensional constellation.

Such a constellation is formed by 
taking the possible outputs of each 
transmitter as an axis orthogonal 
(at right angles) to the other axis. 
For every symbol period, one 
point in the constellation is sent. 
While the real system is a 
5x5x5x5 constellation, a simple 
5x5 constellation is easier to 
explain…



Increasing Symbol Distance
• However,  noise affects the constellation.  If too much noise 

disrupts the signaling,  then the receiver will not be able to 
distinguish between the correct point in the constellation and 
neighboring (incorrect) points.



Increasing Symbol Distance
• Attenuation also affects the constellation, with similar 

concerns.



Increasing Symbol Distance
• As the attenuation/noise distortion increases,  the problem of 

differentiating between points within the constellation 
becomes obvious.



Increasing Symbol Distance
• To combat this problem,  limit the permissible combination of 

symbols.  
• The images below are identical to the previous, simply the 

“even” and “odd” constellation points have been separated.

EVEN ODD



Increasing Symbol Distance
• The separation of “even” and “odd” points has the effect of 

increasing the minimum distance between the permissible 
transmit codes.  Prior to the separation, the minimum 
Euclidean distance was 1.  Now it is 2.5   Thus, the minimum 
squared Euclidean distance is now 2.

EVEN ODD



The 4D/PAM5 System
• Let us define symbol subsets X = -1, +1  &  Y = -2, 0, +2
• The Even subset can be written as:

YY ___ YY ___ YY
___ XX ___ XX ___
YY ___ YY ___ YY
___ XX ___ XX ___
YY ___ YY ___ YY  min sqr distance = 2

This subset can be further separated to:
YY ___ YY ___ YY
___ ___ ___ ___ ___
YY ___ YY ___ YY
___ ___ ___ ___ ___
YY ___ YY ___ YY min sqr distance = 4



The 4D/PAM5 System
The remaining subset from the even subset is:

___ ___ ___ ___ ___
___ XX ___ XX ___
___ ___ ___ ___ ___
___ XX ___ XX ___
___ ___ ___ ___ ___ min sqr distance = 4



The 4D/PAM5 System
• Likewise, the Odd subset can be written as:

___ XY ___ XY ___
YX ___ YX ___ YX
___ XY ___ XY ___
YX ___ YX ___ YX
___ XY ___ XY ___  min sqr distance = 2

This subset can be further separated to:
___ ___ ___ ___ ___
YX ___ YX ___ YX
___ ___ ___ ___ ___
YX ___ YX ___ YX
___ ___ ___ ___ ___  min sqr distance = 4



The 4D/PAM5 System
• Likewise, the Odd subset can be written as:

___ XY ___ XY ___
___ ___ ___ ___ ___
___ XY ___ XY ___
___ ___ ___ ___ ___
___ XY ___ XY ___  min sqr distance = 4

• Why is any of this useful??  
Recall that the Viterbi Decoder will choose the lowest cost path, 

and even properly choose the correct path even after several 
error events have been received, provided no other (incorrect) 
path is a lower cost!  Hence,  maximizing the separation of the 
symbols is highly desirable. 



The 4D/PAM5 System
• Recall that the symbol distance example up to this point has been for 

only a 2-D constellation.  As each of the four channels can be sending a 
symbol from X or Y, there are naturally 16 combinations.  

• These 16 sets can be reduced to 8 and still keep a min. sqr distance of 4 
between the symbols on the four channels.  This is done identically to 
the previous 2-D channel constellation sub-set breakdown.  We can now 
form the 4D sub-lattices constellations:
D0 XXXX + YYYY Any two points within each sub-lattice has a min.
D1 XXXY + YYYX square distance of 4.   
D2 XXYY + YYXX  Similarly, any two points in different sub-lattices
D3 XXYX + YYXY   has a min. square distance of 4.
D4 XYYX + YXXY
D5 XYYY + YXXX
D6 XYXY + YXYX
D7 XYXX + YXYY



The Trellis Structure
• ICBST (It can be shown that) the distance between 

any two points in a sublattice is at least 4.
D4: XYYX + YXXY - pick +1,-2,+2,-1 and 0,-1,+1,0
(+1 - 0)2 + (-2 - -1)2 + (+2 - +1)2 + (-1 - 0)2= 1+1+1+1=4
Of course, some points are more than 4 distant
D0: XXXX + YYYY pick -2, -2, 0, -2 and 0,0,-2,0 dist=8 !

D0 (YYYY specifically) make up 
the 1000BASE-T IDLE codes
as their min sqr distance is (2√2)2=6

• The defined sublattice-to-symbol group mapping is 
used to govern the transitions in the trellis diagram.

IDLE



CSn[0]CSn[1] CSn[2]

Sdn[7]Sdn[6] Sdn[8]

tx_enable n-2

Delay DelayDelay

+ +

1000BASE-T Convolutional Encoder
as per IEEE Std802.3ab-1999 Section 40.3.1.3.4

The 1000BASE-T Convolutional 
Encoder



The Trellis 
Structure

D0 D2 D4 D6

D1 D3 D5 D7

D2 D0 D6 D4

D3 D1 D7 D5

D4 D6 D0 D2

D5 D7 D1 D3

D6 D4 D2 D0

D7 D5 D3 D1

D0 D2 D4 D6

D1 D3 D5 D7

D2 D0 D6 D4

D3 D1 D7 D5

D4 D6 D0 D2

D5 D7 D1 D3

D6 D4 D2 D0

D7 D5 D3 D1

Convolutional Encoder
Bits at time n

Convolutional Encoder
Bits at time n+1

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111



The Trellis Structure
• Notice that IDLE (D0 Subset codes) does not benefit 

from the trellis structure - only data frames do.   
• The benefit of the complexity of this system is an 

effective coding gain of 6dB !
• Also notice that to return to idle, two “convolutional 

resets” are required to guarantee that the 0 (top) state 
can be returned to.  For example: a frame’s data may 
end with the trellis in state 3, the only path back to 
idle (state 0) requires two codes (the first to either 
state 4,5,6,or 7, and the next back to state 0) This is 
illustrated in the following slide.



Convolutional Reset (CSReset)
Convolutional Encoder
Bits at time n (end of frame data)

Convolutional Encoder
Bits at time n+1

001

011

101

111

011

100

101

110

111

000

010

001

010

100

110

000000

001

010

011

100

101

110

111

001

010

011

100

101

110

111

000

Convolutional Encoder
Bits at time n+2

State of Encoder
at End of

Frame Data

First CSReset
in Dashed/Red: causes transition

to 000, 010, 100,or 110

Second CSReset
in Dashed/Red: causes transition

to 000 Subset (IDLE ∈ =000)



The Master/Slave Scramblers
• The chosen scrambler (LFSR) length is 33 bits.

• That’s 233-1 or  8589934591 bits before the LFSR 
pattern repeats, that’s 68.72s  (100Base-TX is only 2047bits)

• The two parties on a 1000BASE-T link are referred to 
as Master and Slave.  The Master is the clock source. 
The Slave recovers the Master’s clock and uses that 
clock to transmit and receive.  (How this relationship is 
developed is explored in Phy Control and Auto-Negotiation)



The Master/Slave Scramblers
• The LFSR Structures used are:

Master

Slave

The Master uses the Master Side-Stream Scrambler to transmit, and the 
Slave Side-Stream Scrambler to receive,  and vice versa for the Slave.

T T T

0 1 2

... T T T T

12 13 19 20

... T T

31 32

...

T T T

0 1 2

... T T T T

12 13 19 20

... T T

31 32

...



The 1000BASE-T Frame Format
• Constantly active: either idle, 2byte SSD, Data, or 4byte ‘end frame’
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