&

Clause 24

100BASE-X Physical Coding Sublayer
(PCS)

‘

© UNIVERSITY of NEW HAMPSHIRE INTEROPERABILITY LABORATORY

Presentation Overview:

e Location in the OSI Stack
e Interface with Reconciliation sublayer

e Interface with Physical Medium Attachment
(PMA) sublayer

e PCS Sublayer Functionality

\ UNIVERSITY of NEW HAMPSHIRE
- INTEROPERABILITY LABORATORY 100 Biﬁ\ls E-X PCS

aaaaaa

PCS In the OSI Model

03]
"
CSMaCD
LAYERS L AYERS
APPLICATION
HIGHER LAYERS
RREREMELTIoN LLGC - LOGICAL LIMKE CONTROL
MAC CONTROL (OPTIOMAL)
SESSIOM CLALISE 31
i
MAC -- MEDIA ACCESS COMTROL
CLALISE 4
TRAMSPORT
,r“' i RECOMCILIATION
4 P | ,
,-"" CLALISE 22
METWORK e | —
P |]
S PCS
DATA LINK .-"'f CLALISE 24
i PrA -
PHY
FMD CLALISE 25
PHYSICAL
AUTOMEG — CLALISE 28
FAD —
MEDILIK §
100BASE-TX

UNIVERSITY of NEW HAMPSHIRE
INTEROPERABILITY LABORATORY 100BASE-X PCS

Clause 24

Interface with Reconciliation
Sublayer

e The PCS sends and receives nibbles of data to the
Reconciliation sublayer. It uses 16 signals to transfer and
receive data, and to indicate collisions and carrier.

e RX signals
— RXD<3:0> - 4 lines for received data nibbles
— RX_ER —indicate a receive error
— RX_DV - indicate the reception of valid data
— RX_CLK — used as timing reference for transfer of RX signals

\ UNIVERSITY of NEW HAMPSHIRE
- INTEROPERABILITY LABORATORY 100BASE-X PCS

Clause 24

Interface with Reconciliation
Sublayer

e TX signals
— TXD<3:0> - 4 lines for transmitting data nibbles
— TX_EN — indicate the beginning of frame transmission

— TX_ER — used to force a transmission error by means of an
invalid code group

— TX_CLK — used as timing reference for transfer of TX signals
e Carrier Indication signals

— CRS - indicates carrier activity on the receive channel
— COL - indicates a collision on the medium

\ UNIVERSITY of NEW HAMPSHIRE
- INTEROPERABILITY LABORATORY 100BASE-X PCS

Clause 24

Interface with PMA Sublayer

' Ml = _
e Serial Bit Stream
PCS
— The PCS and PMA “ConsE.
tra nSfer COde blts " transmitting i receiving
through serial bit [recewe
streams. ox_bits [0 ‘
rx_bits [9:0]
e Control Status ! !
— The link_status
indication is generated
by th e PM A an d Sent tO Ix_code-bit link_status r¥_code-bit f:;:';tg::‘l‘:g
the PCS. This indicates [oua —
the integrity of the link | .| .. pETECT
(READY, OK, or FAIL). B e — Pl N
"""" I""T'J T]
\ UNIVERSITY of NEW HAMPSHIRE . :
- INTEROPERABILITY LABORATORY 100BASE-X PCS

Clause 24

PCS Sublayer Functions

e The 100BASE-X PCS provides the following
services:
— 4B/5B Encoding and Decoding
— Carrier sense and Collision detection
— Stream serialization to the underlying PMA
— Mapping of the MII signals to the PMA

\ UNIVERSITY of NEW HAMPSHIRE
- INTEROPERABILITY LABORATORY 100BASE-X PCS

Clause 24

4B/5B Encoding

e The PCS layer receives 4-bit data nibbles from the MII.
This results in a total of 24 different data symbols.

e The PCS needs additional control symbols to indicate idle,
start and end of the data stream, and errors to the far-
end station.

e The PCS would like sufficient transition density of the
signal (varied transition of 1s and 0s) to aid in clock
recovery at the far-end PMD.

e This is accomplished through 4B/5B encoding: mapping a
4-bit data nibble to a 5-bit code group.

\ UNIVERSITY of NEW HAMPSHIRE
- INTEROPERABILITY LABORATORY 100BASE-X PCS

Clause 24

4B/5B

e In the 5-bit world we now have 2> symbols referred to as
“code-groups”:
— The 16 data symbols (0-9, A-F) still exist but with different bit

representations. A 4-bit Data 0, 0000, gets translated into a 5-bit
code-group /0/, 11110.

— /1] and /K/ define the start of a stream
— [T/ and /R/ define the end of a stream
— /I/ defines the idle code-group that separates streams
— /H/ indicates an intentional error used in transmission

— The remaining 10 code-groups are invalid and should never be
intentionally transmitted (except for repeaters)

\ UNIVERSITY of NEW HAMPSHIRE
- INTEROPERABILITY LABORATORY 100BASE-X PCS

Clause 24

4B/5B Data Symbol List

Table 24-1—4B/5B code-groups

PCS code-group MIL({TXD/RXD)

[4:0] Name <3 Interpretation
43210

[
i
-

Data 0
Data 1

Data 2
Data 3
Data 4
Data 5
Data 6
Data 7
Data 8
Data 9
Data A
Data B
Data C
Data D
Data E
Data F

=
=

e

o | B | e |) —

HlElElE|Rr|Rr|=|=lololo|lo|lRr]=|lol| =
HlelEl=lololo|lo|lRk|F|lF|Rlo|lo|=]|-=
= lo|lo|l=|lelo|lo|=|=lo|lo|=]|=|o| -
ololr|lr|lr|lr|r|lr|lr|lklr|l~rlololal|—
~lolr|la|lr|lo|l~|lal~|lo|l~|la|l~|o|—
FleElErlErl R lololoc|loclololalo
Hlelelele|lo|le|le|k|H|lr|lkle|le|lele] w
LSl Il T =T I S S O - Y S (Y I S O S (e Y
Flolrlalrlolm|laol|laolrlaol=lol=|o

TE| DO E e s

UNIVERSITY of NEW HAMPSHIRE
INTEROPERABILITY LABORATORY 100BASE-X PCS

Clause 24

4B/5B Control Symbol List

PCS code-group MIL{TXIVRXD)
[4:0] Name <3:> Interpretation
43210 3210
11111 I undefined IDLE;
used as inter-stream [l code
C 11000] 0 1 0 1 Start-of-Stream Delimiter, Part 1 of 2
8 always used in pairs with K
N 10001 K 0 1 0 1 Start-of-Stream Delimiter, Part 2 of 2;
E always used in pairs with J
0 01101 T undefined End-of-Stream Delimiter, Part 1 of 2;
L always used in pairs with R
00111 R undefined End-of-Stream Delimiter, Part 2 of 2;
always used in pairs with T

UNIVERSITY of NEW HAMPSHIRE

100BASE-X PCS

Clause 24

INTEROPERABILITY LABORATORY

4B/5B Invalid Symbol List

PCS code-group MIL({TXIVRXD)
[4:0] Name <3 Interpretation
43210 3210

| D0O100 H Undefined Transmit Error:
N used to force signaling errors
W 000O0O0 v Undefined Invalid code
E 000O01 V Undefined Invalid code
| 00010 V Undefined Invalid code
D 00011 v Undefined Invalid code

00101 v Undefined Invalid code

00110 V Undefined Invalid code

01000 V Undefined Invalid code

01100 v Undefined Invalid code

10000 V Undefined Invalid code

11001 V Undefined Invalid code

UNIVERSITY of NEW HAMPSHIRE
INTEROPERABILITY LABORATORY 100BASE-X PCS

Clause 24

L

From 4B to 5B

e A few changes take place when converting from 4B to 5B

— When TX_EN is asserted on the MII (to indicate the beginning of
a MAC frame) the first two nibbles of data are replaced with the
/J/ and /K/ code-groups. The first two nibbles of data should be
the first two nibbles of the MAC preamble (0101 0101). The /J/K/
combination of code-groups is known as the Start of Stream
Delimiter (SSD).

— When TX_EN is de-asserted (to indicate the end of the MAC
frame) the PCS transmits the /T/ and /R/ code-groups. The /T/R/
combination of signals is know as the End of Stream Delimiter
(ESD).

— After transmitting the ESD the PCS transmits the idle code-group

\ UNIVERSITY of NEW HAMPSHIRE
s 100BASE-X PCS

Clause 24

B INTEROPERABILITY LABORATORY

From 5B to 4B

e A few more changes take place when converting from 5B
to 4B:

— When the PCS receives the SSD (/J/K/) it replaces it with
0101 0101. This is interpreted as preamble by the MAC.

— When the PCS receives the ESD (/T/R/) it de-asserts RX_DV
to let higher layers know they are no longer receiving valid
data.

— When the PCS receives one of the invalid code-groups (/H/
or the 10 others) it signals an error via the RX_ER signal.

\ UNIVERSITY of NEW HAMPSHIRE
- INTEROPERABILITY LABORATORY 100BASE-X PCS

Clause 24

PCS Encapsulation

L

MAC Frame
aclets 8 G & 2 46-1500 4 =12
TTTTTTTTTTTTTITITTTTIT T TOTI [TTTTTTTTTTTTI
p‘&;%b'&’ DA SA || LLC data FCS| interframe gap
et rr et bt rrrrd [Pttt bttt
100BASE-X S0OU P
S50 ESD
i i
[TTTTTTTTTTTTTTTITI III_IIIIIIIIIIIIIIIII IDLE
o Data Code-group pairs Code-groups
LI 1 T I O A A I M |

%

100BASE-X PDU

ﬁ

Physical Layer stream

Figure 24-5—PCS encapsulation

UNIVERSITY of NEW HAMPSHIRE
INTEROPERABILITY LABORATORY

100BASE-X PCS

Clause 24

4B/5B Summary

e Only the PCS knows about 5-bit code-groups
(except for the PMA)

e /]/ and /K/ replace part of the MAC frame’s
preamble

e /T/ and /R/ replace part of the inter-frame gap

e /H/ is the only invalid code group that can
intentionally be transmitted (except for
repeaters)

\ UNIVERSITY of NEW HAMPSHIRE
- INTEROPERABILITY LABORATORY 100BASE-X PCS

CCCCCCCC

Carrier and Collision Detection

e The PCS can detect activity on both the transmit and
receive channels. If it detects only one channel has
activity it signals CRS on the MII (meaning there is
activity on the medium).

e If both channels show activity the PCS can signal a
collision to higher layers via the MII's COL signal.

e This is only collision detection, not enforcement. The MAC
layer enforces collisions in Half Duplex mode.

e The behavior of the COL signal is undefined when the
Phy is in Full Duplex.

\ UNIVERSITY of NEW HAMPSHIRE
- INTEROPERABILITY LABORATORY 100BASE-X PCS

Clause 24

Stream Serialization

TXD <3:0= RXD =3:0=

3210 3210
Ml T z) Ml
(25 million nibbles/s) s 4 (25 million nibbles/s)
4B/5B 5B/4B
Encoder Decoder
PCS Encoding PCS Decoding
(25 million code-groups/s) (25 million code-groups/s)

) R

43210 9876543210

PMA Interface PMA Interface
(125 million nrzi-bits/s) (125 million nrzi-b's)

Figure 24-6—PCS reference diagram

UNIVERSITY of NEW HAMPSHIRE
INTEROPERABILITY LABORATORY 100BASE-X PCS

Clause 24

PCS State Diagrams

e The following state diagrams define the transmit
and receive functions of the PCS.

e The state diagrams are the final word on how the
PCS should perform.

e We'll begin by showing a valid instance of
transmission and reception, then show where the
error cases occur.

\ UNIVERSITY of NEW HAMPSHIRE
- INTEROPERABILITY LABORATORY 100BASE-X PCS

Clause 24

Stream Transmission

Data code-groups are
transmitted to the
underlying PMA only when
TX_EN is TRUE. Otherwise
the Idle code-group (/I/) is
transmitted.

The SSD is transmitted
during the first two
received nibbles after
TX_EN is TRUE (effectively
ignoring the first two
nibbles of data).

The ESD is transmitted
after TX_EN is FALSE.

UNIVERSITY of NEW HAMPSHIRE
INTEROPERABILITY LABORATORY

BEGIN

¥

IDLE

transmitting == FALSE

link_status = OK

l sentCodeGroup.indicate =
T¥_EN =TRUE =
TX_ER =TRUE

COL < FALSE
tx_bits [4:0] <= IDLE

| sentCodeGroup.indicate «

santCodaeGroup.indicate +
TX_EM = FALSE

TX_EM =TRUE =
X TX_ER = FALSE

START STREAM J

transmitting < TRUE
COL == recaiing

¥

START ERROR J

transmitting <= TRUE
COL = raceiving
t_bits [4:0] = S5D1

santCodeGroup.indicate

sentCodeGroup.indicaie

TX_ER =

te_bits [4:0] = 351
sentCodeGroup.indicate =
FALSE TX_ER =TRUE v iy
START STREAM K START ERRORA K
COL =« receiving COL = receiving
tx_bits [4:0] = SSD2 tx_bits [4:0] = S3D2

santCodeGroup.indicate

v v 3

ERROR CHECK

TX_EN =TRUE =
T¥_ER = FALSE r - 1% _ER=TRUE v

TRANSMIT DATA

TX_EMN =TRUE #

THRANSMIT ERROR

COL = receiving
tx_bits [4.0] -

ENCODE (TXD=3:0=)

fx_bits [4:0]

COoL = receiving

= HALT

p TX_EN=FALSE

sentCodeGroup.indicaie

EMND STREAMT

transmitting = FALSE
COL = FALSE

tx_bits [4:0] < ESD1

r

santCodeGroup.indicate

EMD STREAM R

tx_bits [4:0] = [ESD2

sentCodeGroup.indicate

sentCodeGroup.indicate

Figure 24-8 —Transmit state diagram

semCodeGroup.indicate

IDLE

PCS initialization state.

transmitting=FALSE
*PCS is not transmitting
COL=FALSE

eThere is no collision indicated because the
PCS is not transmitting.

tx_bits[4:0]=IDLE
eTransmit the 5-bit IDLE code-group (11111)

Exit cases

sentCodeGroup.indicate and
TX_EN=FALSE

eLoop through the IDLE state getting data
nibbles as long as there is no transmission

sentCodeGroup.indicate and
TX_EN=TRUE and TX_ER=FALSE

eExit the IDLE state when a transmission is
started without error indication

sentCodeGroup.indicate and
TX_EN=TRUE and TX_ER=TRUE

eFollow the error path of the state diagram
when both TX_EN and TX_ER are TRUE

UNIVERSITY of NEW HAMPSHIRE
INTEROPERABILITY LABORATORY

BEGIM link_status = OK

l sentCodeGroup.indicate =

IDLE TX_EN = TRUE +
transmitling = FALSE TX_ER =TRUE
——» COL = FALSE A
tx_bits [4:0] = IDLE

TX_EN = TRUE »
TX_ER = FALSE

sentCodeGroup.indicate =

| santCodeGroup.indicate
T¥_EM = FALSE

100BASE-X PCS

Clause 24

START STREAM J

Beginning of Start of Stream Delimiter (/J/K/)
transmission.

BEGIM

link_status = OK

l santCodeGroup.indicate =

IDLE TX_EMN=TRLUE +

transmitting=TRUE

*PCS is now transmitting

COL=receiving

*COL takes on the value of receiving, the
indicator of PCS reception. If receiving is TRUE

then COL is TRUE meaning a collision is
occurring.

tx_bits[4:0]=SSD1
eTransmit SSD1, /3/ (11000)

tx_bits [4:0]

transmitting == FALSE
COL = FALSE

T¥_ER =TRUE

+= |DLE

santCodeGroup.indicate =
TX_EM =TRUE =

T¥_ER = FALSE

sentCodaGroup.indicate =
T¥ EM = FALSE TX_ER = FALSE
START STREAM J
transmitting = TRUE
COL = recaiving
tx_Rits [4:0] = 33D1
sentCodeGroup.indicate « sentCodeGroup.indicate =

l

TX_ER = TRUE

Exit cases

sentCodeGroup.indicate and
TX_ER=FALSE

*Exit when a code group is available and an
error is not forced

sentCodeGroup.indicate and
TX_ER=TRUE

*Get on the error path when TX_ER is TRUE,
but continue to transmit a valid SSD.

UNIVERSITY of NEW HAMPSHIRE
INTEROPERABILITY LABORATORY

100BASE-X PCS

Clause 24

START STREAM K

Second part of /J/K/ transmission.

COL=receiving
*COL takes on the value of receiving to
indicate a collision or not.

tx_bits[4:0]=SSD2
eTransmit SSD2, /K/ (10001)

BEGIM

link_status = OK

l sentCodeGroup.indicate =

IDLE

TX_EN = TRUE +

transmitting

tx_bits [4:0]

COL «— FALSE

YT TX_ER = TRUE

= |DLE i

sentCodeGroup.indicate =
TX_EM = FALSE

santCodeGroup.indicate =
T¥_EM =TRUE =
T¥_ER = FALSE

START STREAM J

sentCodeGroup.indicate

Exit cases

fransmitting =+ TRUE

COL = receiving

te_bits [4:0] = B35D1

santCodeGroup.indicale = sentCodeGroup.indicate =
TX_ER = FALSE T¥_ER =TRUE

START STREAM K

COL = recaiving

tx_bifs [40] = S5D2

sentCodeGroup.indicate

oExit to the ERROR CHECK state when a code
group is available

/' sentCodeGroup.indicate

UNIVERSITY of NEW HAMPSHIRE
INTEROPERABILITY LABORATORY

100BASE-X PCS

Clause 24

ERROR CHECK

From this state the PCS loops through the
transmission of valid data and the
transmission of errors (/H/). When the
transmission ends it exits to the end of stream
path.

BEGIN link_status = OK

l semCodaGroup.indicata =
T¥X_EN =TRUE +
TX_ER =TRUE

IDLE
fransmiting <= FALSE
pi COL = FALSE
fx_bits [4:0] <= IDLE

| sentCodeGroup.indicate «

sentCodeGroup.indicate « TX_EN =TRUE »
START STREAM J

seniCodaGroup indicala
fransmitting <= TRUE

COL +« raceiving
x_bits [4:0] = S5D1

Exit cases

TX_EN=TRUE and TX_ER=FALSE

¢Go to the TRANSMIT DATA state if
transmission is enabled and transmit error is
FALSE

santCodeGroup.indicate « sentCodeGroup.indicate =
T¥_ER = FALSE TX_ER =TRUE
START STREAM K
COL «= recaiving
te_bitz [4:0] < S3D2

TX_EN=TRUE and TX_ER=TRUE

oIf an error is forced via TX_ER then the PCS
enters the TRANSMIT ERROR state.

\ senCodeGroup.indicale l seniCodeGroup.indicate
\\\’ ERROR CHECK
TX_EM =TRHLUE » T¥_EN=TRLE »
\ TX_ER=FALSE TX_ERA = TRUE
N

TX_EN=FALSE

*Exit the ERROR CHECK loop when the
transmission is no longer enabled.

UNIVERSITY of NEW HAMPSHIRE
INTEROPERABILITY LABORATORY

————— Q TX_EM = FALSE
seniCodeGroupindicate sentCodeGroup.indicale

BEGIN link_status = OK

TRANSMIT DATA l aaniCotatiroupindicats

Transmission of valid data symbols DLE T%_EN = TRUE +
TX_ER =TRUE

fransmiting <= FALSE
p COL = FaLSE

COL=receiving

*COL takes on the value of receiving to tx_bits [4:0] = IDLE
indicate a collision or not. | sentCodeGroup.indicate +

: indicate » TX_EN =TRUE »
tx_bits[4:0]=ENCODE(TXD<3:0>) o e e | T en=raLse
eEncode the 4-bit nibble of data (from START STREAM J
sentCodeGroup.indicate) into the ransmitting _ « TRUE SO e kscals
corresponding 5-bit code-group COL + receiving

x_bits [4:0] = S5D1

santCodeGroup.indicate « i sentCodeGroup.indicale =

TX_ER = FALSE TX_ER = TRUE
STAHRT STREAM K
. COL «= recaiving
Exit cases tx_bits [40] <« S5D2
sentCodeGroup.indicate sentCodeGroup.indicate sentCodeGroug indicate
oExit to the ERROR CHECK state when a code i il
group is available ERROR CHECK
TX_EM=TRLUE » TX_EN = TRUE »
TX_ER=FALSE o TX ER =TRUE

TRANSMIT DATA
COL = receiving
tx_bits [4.0] +

ENCODE [TXD<3:0=)

; TX_EM = FALSE

. y
seniCodeGroupindicate

seniCodeGroup.indicale

UNIVERSITY of NEW HAMPSHIRE

INTEROPERABILITY LABORATORY

END STREAM T

First part of /T/R/ transmission.

transmitting=FALSE

*PCS is no longer transmitting data nibbles
from the MII

COL=FALSE

eTransmission is done so there is no more
chance of a collision

tx_bits[4:0]=ESD1

eTransmit ESD1, /T/ (01101). The data nibble
from sentCodeGroup.indicate is ignored.

Exit cases

sentCodeGroup.indicate

eExit to the END STREAM R state when a code
group is available

UNIVERSITY of NEW HAMPSHIRE
INTEROPERABILITY LABORATORY

BEGIN link_status = OK

l sentCodeGroup.indicate =
TH_EN =TRUE *
T¥_ER =TRUE

IDLE
transmitling == FALSE

— | COL = FALSE
tx_bits [4:0] == IDLE

| santCodeGroup.indicate =

sentCodeGroup.indicate + TX_EN=TRUE =
TX EN = FALSE T¥_ER = FALSE

START STREAM J
transmitting = TRUE
COL = receiving
tx_bits [4:0] = 33D1
sentCodeGroup.indicate « sentCodeGroup.indicate =

TX_ER = FALSE " TX_ER =TRUE

sentCodeGroup.indicate

START STREAM K

COL == receiving
tx_bitz [4:0] <= S5D2

sentCodeGroupindicate l sentCodeGroup.indicate
ERROR CHECK
TX_EN =TRUE = T¥_EN=TRUE =
T¥_ER = FALSE T¥_ER =TRUE

TRAMSMIT DATA

COL == receiving
te_bits [4:0] =
ENCODE (TXD=3:0=)

% TX_EN =FALSE

¥

santCodeGroup.indicate sentCodeGroup.indicate
EMD STREAM T

transmitting = FALSE
COL = FALSE
ix_bits [4:0] < ESD1

& zentCodeGroup.indicate

END STREAM R

Second part of /T/R/ transmission.

BEGIN link_s

tx_bits[4:0]=ESD2
eTransmit ESD2, /R/ (00111). The data nibble
from sentCodeGroup.indicate is ignored.

Exit cases

sentCodeGroup.indicate

*Exit to the IDLE state when a code group is
available. This ends a stream transmission
from the PCS.

UNIVERSITY of NEW HAMPSHIRE
INTEROPERABILITY LABORATORY

I

IDLE

transmitiing = FALSE

tatus = OK

santCodeGroup.indicate =
TX_EN =TRUE *
T¥_ER=TRUE

COL «— FALSE
ti_bits [4:0] = IDLE

| sentCodeGroup.indicate =

sentCodeGroup.indicate +
TX_EM = FALSE

sontCodeGroup.indicate =

TX_ER

START STREAM J

= THUE
recaiving
= 58D

transmitting
COL =
te_bits [4:0]

=FALSE

START STREAM K

COL =
t_bits [d:0]

receiving
= 55D2

santCodeGroup.indicate

T¥_EM =TRUE =
| TX_ER =FALSE

sentCodeGroup.indicate =

santCodeGroup.indicate

TX_ER =TRUE

seniCodeGroup.indicate

v v ¥

ERROR CHECK

THX_EM = TRUE »
T¥_ER = FALSE b T

TRANSMIT DATA

COL =+ receiving
te_bits [4:0] =

ENCODE (TXD<3:0=)

santCodeGroup.indicate

sentCodeGroup.indicate

TX_EN = TRUE +
ER = TRUE

, TX_EN = FALSE

EMD STREAMT

sentCodeGroup.indicate

transmitiing = FALSE
COL = FALSE

tx_bits [4:0] + ESD1

sentCodeGrol

F

up.indicate

EMND STREAM R

te_bits [4:0] - ESD2

BEGIN link_status = OK

l sentCodeGroup.indicate =
T¥_EN =TRUE =
TX_ER =TRUE

e Transmit Errors O E

e The transmit error signal o e
(TX_ER) can occur during /J/,
/K/, or data (shown by the red
arrows)

Transmission errors should
only occur when both TX_EN
and TX_ER are TRUE.

If TX_ER is TRUE during the
transmission of the SSD
(/J/K/), a valid SSD is
transmitted anyway. At least
one error code-group is
transmitted afterwards.

Transmission errors are
created by sending the /H/
code-group.

UNIVERSITY of NEW HAMPSHIRE
INTEROPERABILITY LABORATORY

tx_bits [4:0]

p COL = FALSE

= IDLE

santCodaeGroup.indicate +
TX_EM = FALSE

santCodeGroup.indicate

START ERROR J

TX_EM =TRUE =
X TX_ER = FALSE

sentCodeGroup.indicaie

TX_ER

santCodeGroup.indicate

START STREAM J

transmitting <= TRUE
COL = raceiving
t_bits [4:0] = S5D1

transmitting < TRUE
COL == recaiing

santCodeGroup.indicate

te_bits [4:0] = 351
sentCodeGroup.indicate =
=FALSE TX_ER =TRUE iy
START STREAM K START ERRORA K
COL =« receiving COL = receiving
tx_bits [4:0] = SSD2 tx_bits [4:0] = S3D2

semCodeGroup.indicate

v v 3

ERROR CHECK

TX_EN =TRUE =
T¥_ER = FALSE r

TRANSMIT DATA

K_EM =TRUE *
¥ ER =TRUE

THRANSMIT ERROR

COL = receiving
tx_bits [4.0] -

ENCODE (TXD=3:0=)

sentCodeGroup.indicaie

santCodeGroup.indicate

F

CoL
f_bits [4:0] == HALT

TX_EN = FALSE

= receiving

EMND STREAMT

transmitting = FALSE
COL = FALSE
tx_bits [4:0] = ESD1

r

sentCodeGroup.indicate

EMD STREAM R

tx_bits [4:0] = [ESD2

sentCodeGroup.indicate

Figure 24-8 —Transmit state diagram

IDLE Exit cases

sentCodeGroup.indicate and
TX_EN=TRUE and TX_ER=TRUE
*When a transmission begins from the IDLE

state and an error is forced the state diagram
follows the error path to START ERROR 1J.

START ERROR J

Transmission of SSD when an error is
indicated

transmitting=TRUE
*PCS is transmitting
COL=receiving

*COL takes on the value of receiving to
indicate a collision or not

tx_bits[4:0]=SSD1
eTransmit SSD1, /J/ (11000). Even though an
error is indicated a valid SSD must be sent so

the receiving station sees a valid Start of
Stream Delimiter.

BEGIM link_status = OK

l sentCodeGroup.indicate =

TS TH_EN =TRUE +

transmitiing = FALSE

— p COL = FALSE
tx_bits [4:0] == IDLE

T¥_ER = TRUE

IR

START ERROR J

sentCodeGroup.indicate =
TX_EM = FALSE

transmitting <= TRUE
COL == raceiving

TX_EN = TRUE »

| santCodeGroup.indicate «
TX_ER = FALSE

tx_bits [4:0] = 351

UNIVERSITY of NEW HAMPSHIRE
INTEROPERABILITY LABORATORY

100BASE-X PCS

Clause 24

START STREAM J EXit cases

sentCodeGroup.indicate and
TX_ER=TRUE

oIf TX_ER is asserted after transmitting a valid
/1/, the PCS enters the START ERROR K state.

Otherwise it enters the START STREAM K
state.

START ERROR K

Transmission of SSD when an error is
indicated

COL=receiving

*COL takes on the value of receiving to
indicate a collision or not
tx_bits[4:0]=5SD2

eTransmit SSD2, /K/ (10001). Even though an
error is indicated a valid SSD must be sent so

the receiving station sees a valid Start of
Stream Delimiter.

BEGIM

link_status = OK

l l semtCodeGroupindicate =

IDLE

tx_bits [4:0]

transmitting == FALSE
— » COL - FALSE

TX_EN = TRUE +
TX_ER =TRUE

<+ |DLE

sentCodeGroup.indicate =
T¥_EM = FALSE

T¥_EM=TRUE =

santCodeGroup.indicate =
T¥_ER = FALSE

START

STHEAM J

COL ==

fransmitting = TRUE

tx_bits [4:0]

recaiving

|

START ERROR J

transmitting == TRUE
COL = receiving
te_fits [4:0] = 5501

sentCodeGroup.indicate

= 55D

santCodeGroupindicale =
TX_ER = FALSE

| sentCodeGroupindicate =
¢ TX_ER = TRUE

START ERROR K

COL
tx_hits [4:01

recaiving
= 35D2

A

UNIVERSITY of NEW HAMPSHIRE
INTEROPERABILITY LABORATORY

100BASE-X PCS

Clause 24

TRANSMIT ERROR

Transmission of the /H/ invalid code-group to
force a transmit error

COL=receiving
*COL takes on the value of receiving to
indicate a collision or not.

tx_bits[4:0]=HALT

eTransmit /H/ (00100) to force the receiving
end to detect an error in the stream.

Exit cases

sentCodeGroup.indicate

oExit to ERROR CHECK state when another
data group is available. If TX_EN and TX_ER
are both TRUE then enter the TRANSMIT
ERROR state again.

BEGIM

link_status = OK

l sentCodeGroup.indicate =

IDLE

tx_bits [4:0]

transmitiing = FALSE
— 1 COL = FALSE

TX_EN = TRUE +
TX_ER = TRUE

= |DLE

santCodeGroup.indicate =

|

START ERROR J

sentCodeGroup.indicate TX_EM =TRUE = :[:rr?fmitting - TRUE
T¥ EM = FALSE TX_ER =FALSE - == raceiving
- te_bits [4:0] - S5D1
START STREAM J T
sentCodeGroup.indicate

fransmitting =+ TRUE

COL == receiving

be_its [4:0] = B35D1

santCodeGroup.indicale = sentCodeGroup.indicate =
TX_ER = FALSE T¥_ER =TRUE

START STREAM K START ERROR K

COL = recaiving COL = receiving

tx_bits [4:0] = S5D2 tw_bits [4:0] - SSD2

seCodeGroup.indicate

UNIVERSITY of NEW HAMPSHIRE
INTEROPERABILITY LABORATORY

'

semCodeGroup.indicate

!

ERROR CHECK

TX_EN = TRU
T¥_ER = FALSE

sentCodeGroup.indicala

TX_EN = TRUE +
TX_ER = TRUE '

TRAMSMIT ERROR

coL =
be_bits [4:0] =

racaiving

HALT

sentCodeGroup.indicate

100BASE-X PCS

Clause 24

e Stream Reception

e Carrier is detected by
seeing two non-
contiguous ZEROs
within any 10-bits of the
data stream.

e A valid stream begins
with /J/K/.

e A valid stream contains
only data code-groups.

e A valid stream ends with

[T/R/.

UNIVERSITY of NEW HAMPSHIRE
INTEROPERABILITY LABORATORY

BEGIN

h

link_status = OK +
RY¥_DOV = FALSE

h

link_status = OK =+

recaiving = TRUE *
RX_DV =TRUE «

gotCodaGroup.indicate

|

IDLE

gotCodeGroup

LIMK FAILED

.indicate

receiving = FALSE |4
RX_ER = FALSE

RAX_DV =

FALSE

AX_ER < TRUE
receiving < FALSE

r_bits [9:0] = IDLES

rx_bits

rx_bits
v -

link_status = 0K =

[0)=0=
[@:2] = 11111111

rx_bits [5:0]

BAD 8D

= JIJf

AX_ER«TRUE |
AXD<3:0> + 1110

CARRIER DETEC

T

receiving

+ TRUE

UCcT

F3

b

rx_bits [8:0] = /W

CONMNFIRM K

{rx_bits [9:5] = /Jf) =

{rx_bits [4:0] = /K/)

b

(rx_bits [9:5] = i) »
{rx_bits [4:0] = /K/)

START OF STREAM

J

RY_OV =
RXD<3:0=

TRUE
= 0101

h 2

goiCodeGroup.indicate

EMD OF STREAM

START OF STREAM K
P bits [9:0] « AXD<d:0= < 0101
11111 11111
ucT

gotCodeGroup.indicate =

gotCodeGroup.indicate +
rx_bits [9:5] & DATA «
rx_bits [8:0] = ESD =+

rx_bits [9:0] = ESD

RECEIVE

rx_bits[9:0] = IDLES

f

DATA ERROR

Ll

RX_ER = TRUE

gotCodeGroup.indicate +
rx_bits [9:0] = IDLES

gotCodeGroupindicate

PREMATURE END

UCcT

gotCodeGroup.indicate «
m_hits [95] £ DATA

R¥_ER =+ TRUE

DATA,

UcT

R¥_ER = FALSE

RXD=3:0=
DECODE (rx_lvits [2:5])

a—

Figure 24-11—Receive state diagram

IDLE

PCS reception initialization state. The PCS also
enters this state after a link failure occurs
while the PCS is not receiving valid data
(link_status+0OK and RX_DV=FALSE).

BEGIM

link_status = OK *

link_status = OK recaiving = TRUE

RX_DV = FALSE
- RAX_DOV =TRUE =
gotCodeGroup.indicate
IDLE gotCodeGroup

receiving=FALSE

*PCS is not receiving data
RX_ER=FALSE

*No receive errors
RX_DV=FALSE

*No reception of valid data. The value on the
MII data signals are undefined at this point
but are ignored by the Reconciliation Sublayer
until RX_DV is asserted.

indicate

raceiving = FALSE
RAX_ER « FALSE
R¥_DV =+ FALSE

/

link_status = OK =
rx_bits [0] =0 =
re_bits [2:2] = 11111111

Exit cases

link_status=0K and rx_bits[0]=0 and
rx_bits[9:2]#¥11111111

oExit the IDLE state when the link is okay, a 0
is in the first rx_bits vector and another 0 is
present in the other bit vectors. The two non-
contiguous 0’s means carrier is detected. Also,
exiting the IDLE state depends on a valid link
status.

UNIVERSITY of NEW HAMPSHIRE
INTEROPERABILITY LABORATORY

100BASE-X PCS

Clause 24

CARRIER DETECT

The PCS detects carrier (something other than
idle). The PCS enters this state once it sees
two non-contiguous ZEROs within ten bits.

link_status = OK
RX¥_DV =FALSE

receiving=TRUE
*PCS is now receiving (something)

IDLE

gotCodeGroup

receiving = FALSE

AX_ER
AX_DV

= FALSE
+= FALSE

link_status = OK =
rx_bits [0] =0 =
re_bits [5:2] = 11111111

CARRIER DETECT

recaiving = TRUE

Exit cases

i ra_bits [9:0] = /W

rx_bits[9:0]#/1/]/

oIf the bits in the rx_bits vector do not match
the /I/ and /]/ code-groups then move on to
the BAD_SSD state. The PCS must detect a
complete SSD that indicates a valid stream.

rx_bits[9:0]=/1/]/

oIf the bits in the rx_bits vector match the /I/
and /J/ code-groups then move on to the
CONFIRM K state. The PCS must detect a
complete SSD that indicates a valid stream.

UNIVERSITY of NEW HAMPSHIRE
INTEROPERABILITY LABORATORY

link_status = OK
recaiving = TRUE =
RX¥_OV =TRUE =
gotCodeGroup.indicate

100BASE-X PCS

CONFIRM K

Confirm the existence of a valid SSD.

BEGIM

Exit cases

rx_bits[9:5]=/]/ and rx_bits[4:0]#/K/
oIf the bits in the first half of the rx_bits
vector match /J/ and the second half does not
match /K/ then an invalid SSD has been
detected. The PCS moves on to the BAD SSD
state.

(r_bits [9:5] = /Jf) »
(rx_bits [4:0] = /KJ)

rx_bits[9:5]=/]/ and rx_bits[4:0]=/K/
oIf the bits in the first half of the rx_bits
vector match /J/ and the second half matches
/K/ then a valid SSD has been detected. The
PCS moves on to the START OF STREAM]
state.

receiving = FALSE

CARRBIER DETECT

link_status = OK *
receiving = TRUE *
RA¥_OV =TRUE =
gotCodeGroup.indicate

link_status = OK *
R¥_DW = FALSE

gotCodaGroup
JIndicate

IDLE

AX_ER < FALSE
AX_DV < FALSE

link_status = 0K =
rx_bits [0] =0«
re_bits [9:2] = 11111111

= TRUE

receiving

rx_lpits [9:0] = I

COMNFIRM K

(r_bits [9:5] = 1J/) »
(r_bits [4:0] = /K/)

UNIVERSITY of NEW HAMPSHIRE
INTEROPERABILITY LABORATORY

100BASE-X PCS

Clause 24

START OF STREAM J

The PCS has detected a valid SSD and will now
communicate this to the RS.

RX_DV=TRUE

*PCS asserts RX_DV to indicate the reception
of valid data.

RXD<3:0>=0101

A data 5 is sent in place of the /J/ code-
group.

rx_bits [9:0]
= IS

BEGIN

link_status = COK =
RX_DW = FALSE

IDLE gotCodeGroup
indicate

racaiving = FALSE
RX¥_ER
AX_DV =+ FALSE

+= FALSE

re_bits [:2] = 11111111

link_status = OK =
rx_bits [0] =0 +

CARRIER DETECT

recaiving <= TRUE

i rx_bits [9:0] = AN

Exit cases

gotCodeGroup.indicate

eAfter sending the Data 5 the PCS waits for
another code-group. This new code-group
moves the initial /J/ out of the rx_bits vector.

(r_hits [2:5] =N/} *

{rx_bits [4:0] =

COMFIRM K

{re_bits [2:5] = 1) +
{r_bits [4:0] = /K

START OF STREAM J

AX_DV <« TRUE
RXD<3:0> <« 0101

UNIVERSITY of NEW HAMPSHIRE
INTEROPERABILITY LABORATORY

TgﬂlCDdaGmup.indic&ts

link_stafus = OK =
receiving = TRUE =
AX_DV =TRUE «
gotCodeGroup.indicate

100BASE-X PCS

START OF STREAM K

The PCS has detected a valid SSD and will now
communicate this to the RS.

RXD<3:0>=0101
oA data 5 is sent in place of the /K/ code-

BEGIM

link_status = OK *
receiving = TRUE =
AX_DV =THUE =
gotCodeGroup.indicate

link_status = OK *
R¥_DW = FALSE

IDLE gotCodaGroup
Indicate

raceiving = FALSE
A¥X_ER = FALSE
R¥_DV =+ FALSE

group.

rx_bits [2:0]
= [

Exit cases

link_status = QK =
rx_bits [0] =0 =
re_bits [8:2] = 11111111

CARRIER DETECT

recaiving * TRUE

i rx_bits [9:0] = /10K

UCT

eThe PCS unconditionally transitions (UCT) to
the next state, RECEIVE.

UNIVERSITY of NEW HAMPSHIRE
INTEROPERABILITY LABORATORY

COMNFIRM K

{rx_bits [8:5] = A1/} =
{rx_bits [4:0] = /K/)

START OF STREAM J

AX_DV < TRUE
AXD<3:0> <« 0101

l gotCodeGroup.indicate

START OF STREAM K

RXD=30= = 0101

UCT

RECEIVE

After receiving a valid SSD the PCS is ready for
the stream of data and ESD. The PCS also
detects errors in the stream.

Exit cases

gotCodeGroup.indicate and
rx_bits[9:0]=ESD
eThe PCS receives a valid ESD.

gotCodeGroup.indicate and

rx_bits[9:5] DATA and
rx_bits[9:0]#ESD and
rx_bits[9:0]+IDLES

*The PCS receives something other than ESD,
IDLE, or data. Enter DATA ERROR state.

BEGIN

link_status = OK =
receiving = TRUE =
R¥_DV = TRUE =
gotCodeGroup.indicate

link_status = OK =
R¥_DWV = FALSE

1. l

AX_ER
AX_DV

IDLE gotCodeGroup
JIndicate
raceiving = FALSE
= FALSE
= FALSE

link_status = OK =
rx_bits [0] =0 =
rx_bits [2:2] = 11111111

h

rx_bits [9:0]

= I CARRIER DETECT

receiving + TRUE

rx_bits [9:0] = /I

b

CONFIRM K

(rx_bits [8:5] = M)/} =

(rx_bits [4:0] = /K

{rx_bits [9:5] = /1) »
{rx_bits [4:0] = /K

START OF STREAM J

RX_DV <« TRUE
RXD<3:0> -+ 0101

gotCodeGroup.indicate and
rx_bits[9:0]=IDLES

e The PCS receives idle before an ESD. Enter
the PREMATURE END state.

gotCodeGroup.indicate and
rx_bits[9:5] € DATA

eThe PCS receives a code-group that is a
member of the DATA set of code-groups.

UNIVERSITY of NEW HAMPSHIRE
INTEROPERABILITY LABORATORY

gotCodeGroup.indicate

h 2

START OF STREAM K

RXD<3:0=

= 01

gotCodeGroup.indicate =

ucT
gotCodeGroup.indicate «
rx_bits [9:5] & DATA «
rx_bits [9:0] = ESD=

ni_bits [9:0] = ESD RECEIVE

_bils [9:0] » IDLES —I
o *
ucT

goiCodeGroup.indicate +
rx_bits [9:0] = IDLES

gotCodeGroup.indicate «
rx_bits [9:5] £ DATA

o A—
VA

DATA

The PCS receives a code-group that is a
member of the DATA set of valid code-groups.
The PCS decodes it into its 4-bit
representation.

link_status = OK =

RX_ER=FALSE

eUpon reception of a valid data code-group
the PCS sets the receive error indication to
FALSE.

RXD<3:0>=DECODE(rx_bits[9:5])

eThe PCS decodes the 5-bit code-group into
the 4-bit data representation and sends it to
the RS.

BEGIN AX_DV = FALSE RX_DV = TRUE =
gotCodeGroup.indicate
¥ l
IDLE gotCodeGroup
JIndicate
raceiving = FALSE

AX ER < FALSE
AX OV « FALSE

link_status = OK =
rx_bits [0] =0 =
rx_bits [2:2] = 1111111

h

rx_bits [9:0]
= IS CA

RRIER DETECT

receiving + TRUE

rx_bits [9:0] = /I

b

Exit cases

UCT

eThe PCS unconditionally transitions (UCT)
back to the RECEIVE state to receive more
data.

CONFIRM K

(rx_bits [8:5] = M)/} =

(rx_bits [4:0] = /K

{rx_bits [9:5] = /1) »
{rx_bits [4:0] = /K

STAR

T OF STREAM J

RY_DV

RXD<3:

+= TRUE
0> == 0101

gotCodeGroup.indicate

h 2

START OF STREAM K

RXD<3:0= = 010

UNIVERSITY of NEW HAMPSHIRE
INTEROPERABILITY LABORATORY

gotCodeGroup.indicate =

m_bits [9:0] = ESD

link_status = OK =
receiving = TRUE =

ucT
gotCodeGroup.indicate «
rx_bits [9:5] & DATA «
rx_bits [9:0] = ESD=
rx_bils [8:0]) = IDLES
RECEIVE

Ll

oiCodeGroup.indicaie #

rx_bits [9:0] = IDLES

ey JotCodeGroup.indicate «
Wallh] £ DATA

UCT

[

DATA

i UcT

RX_ER < FALSE

RXD=3:0>

P

DECODE {rx_bits [9:5])

END OF STREAM

The PCS has detected a valid ESD and has
entered this state.

rx_bits[9:0]=11111 11111

eThe PCS waits in this state until it sees two
/I/ code-groups. This means the PCS ignores
any code-groups that come after the ESD that
are not idle.

Exit cases

UCT

eThe PCS unconditionally transitions (UCT)
back to the beginning IDLE state after seeing
idle. It sets RX_DV to FALSE so that the RS
knows the stream has ended and it can now
ignore the MII data signals.

link_status = OK =+

link_status = OK + recahving = TRUE +

R¥_DV = FALSE
BEGIM - R¥_DV =TRUE =
gotCodaGroup.indicate
J l
b S J
IDLE gotCodeGroup
indicate
receiving = FALSE
AX_ER « FALSE
RX_DV = FALSE

r_bits [9:0] = IDLES

link_status = 0K =
rx_bits [0] =0 =

4 PS8 < 11111111

rx_bits [5:0]
= s

CARRIER DETECT

receiving *= TRUE

rx_bits [8:0] = /W

b

CONMNFIRM K

{rx_bits [9:5] = /Jf) =

{rx_bits [4:0] = /K/)

(rx_bits [9:5] = i) »
{rx_bits [4:0] = /K/)

b

START OF STREAM J

RY_OV
RXD<3:0=

«= TRUE

= 0101

goiCodeGroup.indicate

h 2

UNIVERSITY of NEW HAMPSHIRE

INTEROPERABILITY LABORATORY

uct | EMDOF STREAM START OF STREAM K
bits [9:0
P bits [9:0] « AXD<d:0= < 0101
11111 11111
ucT
gotCodeGroup.indicate +
_bits [8:5] & DATA =
gotCodeGroup.indicate x_bits[8:0] = ESD+
e r_bits [3:0 IDLES
rx_bits [9:0] = ESD RECEE 8:0] - |
ol
ucT

gotCodeGroup.indicate +
rx_bits [9:0] = IDLES

gotCodeGroupindicate

—

gotCodeGroup.indicate «
m_hits [95] £ DATA

DATA,

A¥_ER « FALSE
RXD=3:0= ==
DECODE (rx_lvits [2:5])

UcT

Figure 24-11—Receive state diagram

Reception Errors

Receive errors can happen
during the /J/K/, during the
data, or during the /T/R/.
RX_ER is asserted to signal
an error.

The Reconciliation Sublayer
should make sure that when
both RX_ER and RX_DV are
asserted the MAC will detect
an error in the frame.

UNIVERSITY of NEW HAMPSHIRE
INTEROPERABILITY LABORATORY

BEGIN

link_status = OK +

link_status = OK =+
recaiving = TRUE *

RX¥_DV = FALSE
- RX_DV =TRUE =
gotCodaGroup.indicate
b S J
IDLE gotCodeGroup LINK FAILED

receiving = FALSE
RX_ER < FALSE
RX_DV =

FALSE

AX_ER < TRUE
receiving < FALSE

.indicate I

r_bits [9:0] = IDLES

rx_bits [0]

h 2

link_status = 0K =

=0=

rx_bits [8:2] = 11111111

BAD 8D

CARRIER DETECT

A¥_ER = TRUE
AX D30 == 1110

recel

iving + TRUE

b

rx_bits [8:0] = /W

CONMNFIRM K

{rx_bits [9:5] = /Jf) =

{rx_bits [4:0] = /K/)

b

(rx_bits [9:5] = i) »
{rx_bits [4:0] = /K/)

START OF STREAM J

RY_OV

RX D310

<+ TRUE
= 0101

h 2

goiCodeGroup.indicate

uct | EMDOF STREAM START OF STREAM K
bits [9:0
P bits [9:0] « AXD<d:0= < 0101
11111 11111
ucT
gotCodeGroup.indicate =
ri_bits [9:0] = ESD ———

gotCodeGroup.indicate +
rx_bits [9:5] & DATA «
rx_bits [8:0] = ESD =+
= IDLES

rx_bits [3:0]

———
DATA ERROR

RX_ER = TRUE

Ll

gotCodeGroup.indicate +
rx_bits [9:0] = IDLES

gotCodeGroupindicate

PREMATURE END
I R¥_ER <+ TRUE I

UCcT

gotCodeGroup.indicate «
m_hits [95] £ DATA

DATA,

A¥_ER « FALSE
RXD=3:0= ==
DECODE (rx_lvits [2:5])

UcT

Figure 24-11—Receive state diagram

LINK FAILED

The PCS visits this state when it is receiving
valid data and an error in the link occurs
(link_status#0K). This state makes sure an
error is indicated before transitioning to the
IDLE state.

BEGIM

link_status = OK =
R¥_DOW = FALSE

link_status = OK =
receiving = TRUE *
FX_DV = TRUE =«
gotCodeGroup.indicate

y |

RX_ER=TRUE
eSince the link has gone bad the PCS signals
an error.

receiving=FALSE
*PCS is no longer receiving valid data.

Exit cases

gotCodeGroup.indicate

esWhen a new code-group is available
transition to the IDLE state

UNIVERSITY of NEW HAMPSHIRE
INTEROPERABILITY LABORATORY

gotCodaGroup
.indicate

LIMK FAILED

AX_ER < TRUE
receiving <= FALSE

100BASE-X PCS

Clause 24

CARRIER DETECT Exit cases

rx_bits[9:0]+/1/]/
oIf the bits in the rx_bits vector do not match

the /I/ and /]/ code-groups then an invalid
SSD has been detected.

BAD SSD

The PCS detects carrier (something other than
idle) but a valid SSD does not exist.

BEGIM

link_status = OK =
R¥_DV = FALSE

i

IDLE

gotCodeGroup
Indicate

raceiving = FALSE
AX_ER +« FALSE
R¥_DV =+ FALSE

i —

link_status = OK
recaiving = TRUE =
R¥_OV =TRUE =
gotCodeGroup.indicate

l

r_bits [9:0] = IDLES

link_status = OK =
rx_bits [0] =0 =

r_bits [9:2] = 11111111

RX_ER=TRUE
eThe PCS signals an error via RX_ER.

RXD<3:0>=1110

eThe PCS sends a data E to higher layers.
RX_DV is not asserted in this state, so when
RX_ER is asserted with a data E and RX_DV is
not asserted a false carrier event has
occurred.

rx_bits [2:0]
BAD SSD = I
AX_ER = TRUE F
AMD=3:0m= = 1110

Exit cases

rx_bits[9:0]=IDLES
eThe PCS continues to send the false carrier
indication to higher layers until it sees idle

code-groups. It then transitions back to the
IDLE state.

UNIVERSITY of NEW HAMPSHIRE
INTEROPERABILITY LABORATORY

CARRIER DETECT

recaiving * TRUE

i rx_bits [9:0] = /10K

(rx_bits [B:5] = /1) »

{rx_bits [4:0] = /K))

100BASE-X PCS

Clause 24

CONFIRM K Exit cases

rx_bits[9:5]=/]/ and rx_bits[4:0]+#/K/
oIf the bits in the rx_bits vector match /J/ but

not /K/ then an invalid SSD has been
detected.

BAD SSD

The PCS detects carrier (something other than
idle) but a valid SSD does not exist.

link_status = OK =

BEGIM

r_bits [9:0] = IDLES

RX_ER=TRUE
eThe PCS signals an error via RX_ER.

RXD<3:0>=1110

eThe PCS sends a data E to higher layers.
RX_DV is not asserted in this state, so when
RX_ER is asserted with a data E and RX_DV is
not asserted a false carrier event has
occurred.

BAD 53D

Exit cases

rx_bits[9:0]=IDLES
eThe PCS continues to send the false carrier
indication to higher layers until it sees idle

code-groups. It then transitions back to the
IDLE state.

UNIVERSITY of NEW HAMPSHIRE
INTEROPERABILITY LABORATORY

R¥_ER = TRUE
AXD=3:0= = 1110

rx_lpits [2:0]
j = /!

link_status = OK
recaiving = TRUE =
FX_DV =TRUE =
gotCodaGroup. indicate

|

RX_DV = FALSE
l IDLE gotCodaGroup
Indicate
raceiving = FALSE 4
A¥X_ER = FALSE
R¥_DV =+ FALSE

link_status = QK =
rx_bits [0] =0 =

ne_bits [9:2] = 11111111

CARRIER DETECT

recaiving * TRUE

i ra_bits [9:0] = /W

COMFIRM K

(rx_bits [9:5] = /1) *

(rx_bits [4:0] = /KJ)

(r_bits [4:0] = /K/)

l {rx_bits [9:5] = /J/) +

100BASE-X PCS

Clause 24

RECEIVE Exit cases

gotCodeGroup.indicate and

rx_bits[9:5] DATA and
rx_bits[9:0]#ESD and
rx_bits[9:0]#IDLES

eThe PCS receives something other than a

valid ESD, two idle code-groups, or data. Enter
DATA ERROR state.

BEGIN

h

link_status = OK +
RY¥_DOV = FALSE

link_status = OK =+

recaiving = TRUE *
RX_DV =TRUE «

gotCodaGroup.indicate

l

IDLE

gotCodeGroup

AX_ER

receiving = FALSE
<= FALSE
RX¥_DV < FALSE

.indicate
Ll

r_bits [9:0] = IDLES

h 2

link_status = 0K =
rx_bits [0] =0 =
rx_bits [8:2] = 11111111

BAD 8D

rx_bits [5:0]

AX_ER«TRUE |

DATA ERROR

The incoming stream contains an invalid data
code-group. An error condition has occurred.

AXD=3:0= = 1110

= JIJf

CARRIE

R DETECT

receiving

+ TRUE

b

rx_bits [8:0] = /W

RX_ER=TRUE

eThe PCS signals an error via RX_ER. RX_DV is
also asserted in this state. Since an invalid
code-group has no 4-bit representation the
previous value on RXD<3:0> should still be
asserted along with RX_ER and RX_DV.

CONMNFIRM K

{rx_bits [9:5] = /Jf) =

{rx_bits [4:0] = /K/)

b

(rx_bits [9:5] = i) »
{rx_bits [4:0] = /K/)

START OF

STREAM J

RY_OV
RXD<3:0=

<+ TRUE
= 0101

h 2

goiCodeGroup.indicate

Exit cases

UCT

eThe PCS unconditionally transitions (UCT)
back to the RECEIVE state to receive more
data.

gotCodeGroup.indicate +
rx_bits [9:5] & DATA «
rx_bits [8:0] = ESD =+

STAAT OF STREAM K
R¥D<=3:0= « 0101
UcT
gotCodeGroup.indicate = i
r_bits [9:0] = ESD RECEIVE

rx_bits [9:0] = IDEls

DATA ERROR

Ll

Hul;udualuup.ilu.iihalu ¥
I e B T =

r Y

UCcT

o

gotCodeGroupindicate

UNIVERSITY of NEW HAMPSHIRE

INTEROPERABILITY LABORATORY

—

m_bits [9:5] £ DATA

RX_ER = TRUE

UcT

Figure 24-11—Receive state diagram

RECEIVE Exit cases

link_status = OK +

gotCodeGroup.indicate and
rx_bits[9:0]=IDLES

eThe PCS transitions out of the RECEIVE state
when it sees two idle code-groups (/1/1/). The
PCS expects to see valid data or a valid ESD
while in the RECEIVE state.

PREMATURE END

The incoming stream has transitioned from
data code-groups to idle code-groups without
a valid End of Stream Delimiter. An error
condition has occurred.

RX_ER=TRUE
eThe PCS signals an error via RX_ER. RX_DV is
also asserted in this state.

Exit cases

gotCodeGroup.indicate

*\When another code-group is available the
PCS transitions back to the IDLE state.

link_status = OK =+
recaiving = TRUE *

R¥_DV = FALSE
BEGIM - R¥_DV =TRUE =
gotCodaGroup.indicate
J l
b S J
IDLE gotCodeGroup
indicate

receiving = FALSE |4
RX_ER < FALSE

RX_DV = FALSE

r_bits [9:0] = IDLES

rx_bits [5:0]

BAD S50 = W

AX_ER«TRUE |

link_status = 0K =
rx_bits [0] =0 =

h 2
CARRIER DETECT

AXD=3:0= = 1110
F 3

receiving *= TRUE

rx_bits [8:0] = /W

b

CONMNFIRM K

{rx_bits [9:5] = /Jf) =

{rx_bits [4:0] = /K/)

(rx_bits [9:5] = i) »
{rx_bits [4:0] = /K/)

b

rx_bits [8:2] = 11111111

START OF

STREAM J

RY_OV =
RXD<3:0=

TRUE
= 0101

b

r

goiCodeGroup.indicate

gotCodeGroup.indicate

gotCodeGroupindicate

UNIVERSITY of NEW HAMPSHIRE

INTEROPERABILITY LABORATORY

PREMATURE END

R¥_ER =+ TRUE

Figure 24-11—Receive state diagram

N,]

rx_bits [9:0] = IDLES

—

gotCodeGroup.indicate +

UcT START OF STREAM K
—
R¥D<3:0= = 0101
ucT

rx_bits [9:5]

gotCodeGroup.indicate ré_bits [9:0]

i 0] = rx_bits [9:0

rx_bits [9:0] = ESD RECEIVE [9:0]

& DATA =
= ESD=*

= IDLES

f

Ll

DATA ERROR

RX_ER = TRUE

UCcT

gotCodeGroup.indicate «
m_hits [95] £ DATA

UcT

In Summary

e PCS performs 4B/5B encoding and decoding

e PCS signals carrier sense and collisions

e Stream serialization to the underlying PMA

e Mapping of the MII signals to the PMA

e Detection of errors in the incoming data stream

\ UNIVERSITY of NEW HAMPSHIRE
- INTEROPERABILITY LABORATORY 100 Biﬁ\ls E-X PCS

aaaaaa

Additional resources

UNIVERSITY of NEW HAMPSHIRE
INTEROPERABILITY LABORATORY 100BASE-X PCS

Clause 24

References

e For correct citation format for virtually any source see:
http://www.reference.unh.edu/bib.html

UNIVERSITY of NEW HAMPSHIRE
INTEROPERABILITY LABORATORY 100BASE-X PCS

Clause 24

http://www.reference.unh.edu/bib.html

	Clause 24
	Presentation Overview:
	PCS in the OSI Model
	Interface with Reconciliation Sublayer
	Interface with Reconciliation Sublayer
	Interface with PMA Sublayer
	PCS Sublayer Functions
	4B/5B Encoding
	4B/5B
	4B/5B Data Symbol List
	4B/5B Control Symbol List
	4B/5B Invalid Symbol List
	From 4B to 5B
	From 5B to 4B
	PCS Encapsulation
	4B/5B Summary
	Carrier and Collision Detection
	Stream Serialization
	PCS State Diagrams
	In Summary
	Additional resources
	References

