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ABSTRACT 
 

DESIGN, IMPLEMENTATION AND EVALUATION OF A 

FIBRE CHANNEL DRIVER FOR IP ON LINUX 

 

by 

 

Vineet M Abraham 

University of New Hampshire, September 1999 

 

Fibre Channel, which is used for high-speed data transfers, supports several higher layer protocols 

including Small Computer System Interface (SCSI) and Internet Protocol (IP). Until now, SCSI has been 

the only widely used protocol over Fibre Channel. IP over Fibre Channel had not been successful mainly 

due to inadequate specification in the standards. Currently IP specifications have reached a stage where 

interoperable implementations are possible. 

 

Although some support does exist for SCSI on Linux, there is no support for IP on Linux. This thesis aims 

at designing, developing, testing and evaluating a Fibre Channel driver for IP on Linux. 



1 

CHAPTER 1  

 
 

INTRODUCTION 
 

 

1.1 Overview and Related Work 

In recent years the need for extremely fast data links has increased as a result of various technical 

developments. The rapid growth of data-intensive and high-speed networking applications continues to fuel 

the need for faster technologies. However, the network interconnection technologies that currently exist 

between computers and I/O devices are unable to run at the desired speeds. The purpose of Fibre Channel is 

to develop a means of quickly transferring data between computers, storage devices and other peripherals. 

Fibre Channel is a generic name for a set of standards developed by the American National Standards 

Institute (ANSI). 

 

Currently, several companies like Compaq, Emulex, Hewlett-Packard, Interphase, Jaycor, LSI Logic, Prisa, 

Qlogic and Sun are involved in the production of Fibre Channel products for various platforms, the most 

common being Windows NT, Solaris and IRIX. One of the first protocols to be implemented over Fibre 

Channel was IP (Internet Protocol). But the efforts did not succeed due to poorly written specifications. The 

focus then shifted towards running SCSI (Small Computer System Interface) over Fibre Channel. Until 

recently SCSI has been the primary protocol for which Fibre Channel solutions were provided. Fibre 

Channel was predominantly used for communication between storage devices and servers. Now more and 

more companies have started developing Fibre Channel solutions for networking protocols like IP. Some of 

the companies that have Fibre Channel solutions for SCSI on Windows NT are Compaq, Emulex, Hewlett-

Packard, Interphase, LSI Logic and Qlogic. Jaycor and Sun have SCSI solutions for Solaris while Prisa’s 

solution runs on IRIX. Jaycor, Interphase and Prisa are the companies that have implemented IP on Fibre 

Channel for the operating systems as mentioned above. 
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1.2 Goals of this thesis 

The primary goal of this thesis is to design, develop, test and evaluate a Fibre Channel driver for IP on 

Linux. Although a lot of work has been done on operating systems like Windows NT, Solaris and IRIX, the 

support for Fibre Channel on Linux has been minimal. The only known support for Fibre Channel on Linux 

has been the implementation of a SCSI driver for a Qlogic Fibre Channel card at the University of New 

Hampshire’s InterOperability Lab. This thesis involved writing an IP driver for the Interphase 5526 Fibre 

Channel PCI card. The driver was built based on the specifications documented in [13]. The driver supports 

Fibre Channel Point-to-Point, Loop and Switched topologies (discussed in section 2.2). 

  

1.3 Hardware and Software Platforms 

The Interphase 5526 Fibre Channel PCI card was used for implementing the driver. The card contains a 

chip called "Tachyon" manufactured by Hewlett-Packard. The Tachyon chip implements the low level 

Fibre Channel protocol. Also present on the Interphase 5526 card is the Interphase (i)chipTPI which 

provides the interface between the Tachyon and the PCI (Peripheral Component Interconnect) bus. The 

implementation will be made using the Linux operating system, version 2.2.5. The driver will be built for 

both Intel and Alpha-based platforms. Testing and evaluation of the driver will be done at the University of 

New Hampshire’s InterOperability Lab using the Finisar Gigabit Traffic Generator and Analyzer. 

 

1.4 Organization of the Thesis 

Chapter 2 gives a general introduction of Fibre Channel. It talks about the different Fibre Channel 

topologies and layers as well as how addressing is done in Fibre Channel. Chapter 3 talks about the pieces 

of hardware with which the device driver interacts and provides a functional overview. Chapter 4 gives a 

brief summary of the Internet Draft “IP and ARP over Fibre Channel”. The driver is implemented based on 

this draft. Chapter 5 discusses some of the basic functions that the driver performs. Chapters 6, 7 and 8 

describes the design, implementation and evaluation of the driver respectively. Chapter 9 summarizes the 

work done and also discusses the work that can be done in future. 
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CHAPTER 2  

 
 

FIBRE CHANNEL 
 

 

2.1 Introduction 

Fibre Channel is an efficient, standard, high-speed data transport interface whose primary task is to 

transport data at the fastest speeds currently available with the least latency. It is a flexible, scalable method 

for achieving high-speed interconnection, communication, and data transfer among heterogeneous systems 

and peripherals, including workstations, mainframes, supercomputers, desktop computers, and storage 

devices. It allows many well known existing channel and networking protocols to run over the same 

physical interface and media. This chapter, which gives an introduction to Fibre Channel, is based on [14] 

and [15]. 

 

Logically, Fibre Channel is a bi-directional point-to-point serial data channel that has been structured such 

that it provides high performance. Physically, Fibre Channel can be an interconnection of multiple 

communication points, called N_Ports, interconnected by a switching network called a Fabric, a point-to-

point link or a ring configuration. Fibre Channel is structured as a set of hierarchical functions as illustrated 

in Figure 2-1. Fibre Channel supports a number of existing protocols, such as SCSI (Small Computer 

System Interface) and IP (Internet Protocol). It is not a high-level protocol like SCSI, but it does contain a 

low-level protocol for managing link operations. Fibre Channel is not aware of, nor is it concerned with, 

the content of the user data being transported. Networking and I/O protocols, such as SCSI commands, are 

mapped to Fibre Channel constructs and encapsulated and transported within Fibre Channel frames. The 

main purpose of Fibre Channel is to be able to run multiple protocols in a heterogeneous environment. 
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Figure 2-1 Fibre Channel layers 

 

2.2 Fibre Channel Topologies 

Fibre Channel defines three topologies, namely Point-to-Point, Arbitrated Loop and Fabric. These 

topologies are used to interconnect varying number of devices, called nodes in Fibre Channel terminology. 

An N_Port that can operate on an Arbitrated Loop is called an NL_Port. An NL_Port could be either a 

public or private NL_Port. A public NL_Port is one that is capable of logging into a Fabric and to 

communicate with devices connected to the different ports of a Fabric. On the other hand, a private 

NL_Port is one that does not log into the Fabric and hence can communicate only with those that are on the 

same Loop as it is on. A port on a Fabric switch to which N_Ports may be directly connected is called an 

F_Port. An F_Port which is capable of supporting an attached Arbitrated Loop is called an FL_Port. 

 

Point-to-Point. This is the simplest of the three topologies. It consists of two and only two Fibre Channel 

devices connected directly together. The two devices can utilize the entire bandwidth of the link. A simple 

initialization is required between the two devices before communication can begin. 

Arbitrated Loop. It is a cost-effective way of connecting up to 127 ports in a single network without the 

need for a Fabric switch. In this topology, the media is shared among the devices. Before a Loop is usable, 

it must be initialized so that each port obtains an Arbitrated Loop Physical Address (AL_PA). An AL_PA 

is a dynamically assigned value that is used by the ports to communicate.  
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Fabric. The Fabric topology is used to connect devices in a cross-point switched configuration. The media 

is not shared and more than one device can communicate at the same time. When the N_Ports are attached 

to a Fabric, they are required to log into the Fabric. The Fabric will then assign a unique address. Fabrics 

also have FL_Ports that allows attachment of an Arbitrated Loop to a Fabric. 

 

  

N_Port

Point-to-Point Topology

L_Port

L_Port L_Port

L_Port

Fabric
N_Port

N_Port

N_Port

N_Port

N_Port

Loop Topology

Fabric Topology

 

Figure 2-2 Fibre Channel Topologies 

 
2.3 Fibre Channel Layers 

As shown in Figure 2-1, Fibre Channel is structured with independent layers. The five layers of Fibre 

Channel define the physical and transmission rates, encoding scheme, framing protocol, common services 

and the upper-layer protocol interfaces. The user protocol being transported over the Fibre Channel – SCSI 

or IP, for example – is known as the upper level protocol (ULP). 
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2.3.1 FC-4: The Protocol Mappings Layer 

This topmost level in the Fibre Channel hierarchy defines the application interfaces that can execute over 

Fibre Channel. Fibre Channel supports networking and channel protocols, which include SCSI, IP and IPI. 

Each ULP that is supported by Fibre Channel requires a separate FC-4 mapping. These mappings are 

specified in separate FC-4 documents. For example, the Fibre Channel protocol for SCSI, which is known 

as FCP, defines a Fibre Channel mapping layer that uses the services of the lowest three Fibre Channel 

layers to transmit SCSI command, data, and status information between a SCSI initiator and a SCSI target. 

 

2.3.2 FC-3: The Common Services Layer 

The FC-3 level defines a set of services that are common across multiple ports of a node. This layer is not 

well defined in the standards and is not generally implemented. 

 

2.3.3 FC-2: The Framing Protocol Layer 

This layer defines the rules for the signaling protocol and it serves as the transport mechanism of Fibre 

Channel. Included in this layer are the framing rules that define how data is transferred between ports. It 

also defines the various mechanisms used for controlling the different classes of service. To aid in the 

transport of data across the link, [2] defines the following building blocks: Ordered Sets, Frame, Sequence, 

Exchange and Protocol. Ordered Sets are used for handling such functions as configuration management, 

error recovery, frame demarcation, and signaling between two ends of a link. A Primitive Sequence is an 

Ordered Set that is transmitted and repeated continuously until a specific response is received. Frames are 

the smallest indivisible units of user data that can be sent on the Fibre Channel link. Frames can be variable 

in length, up to a maximum of 2148 bytes long. Each frame begins and ends with a Frame Delimiter as 

shown in Figure 2-3. Immediately following the four-byte Start of Frame (SOF) is the 24-byte Frame 

Header. Each frame can carry up to 2112 bytes of FC-4 payload. The payload includes zero to 64 bytes of 

Optional Headers and zero to 2048 bytes of ULP data. A Fibre Channel Optional Header allows up to 4 

optional header fields – Expiration Security Header (16 bytes), Network (16 bytes), Association (32 bytes), 

Device (64 bytes). The four byte Cyclic Redundancy Check (CRC) precedes the four-byte End of Frame 

(EOF) delimiter. 
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  4 bytes       24 bytes 2112 byte Data Field       4 bytes       4bytes

Start of Frame Frame Header     64 byte Optional Header        2048 byte Payload        CRC  End of Frame  

Figure 2-3 Fibre Channel Frame Format 

 
A Sequence is a set of one or more related frames transmitted unidirectionally from one N_Port to another. 

A sequence count is used to uniquely distinguish frames within a sequence. An Exchange contains one or 

more Sequences. The Exchanges may be unidirectional or bi-directional between two N_Ports. Fibre 

Channel provides Protocols to manage its operating environment for data transfer. FC-PH specifies the 

following protocols: Primitive Sequence protocol, Fabric Login protocol, N_Port Login protocol, Data 

transfer protocol and N_Port Logout protocol. Primitive Sequence protocols are based on Primitive 

Sequences and are specified for Link Failure, Link Initialization, Link Reset, and Online to Offline 

transition. If a Fabric is present, Fabric Login protocol specifies how an N_Port interchanges parameters 

with the Fabric. The N_Port Login protocol specifies how an N_Port interchanges its parameters with 

another N_Port before performing data transfer. The Data transfer protocol describes the methods of 

transferring ULP data using Flow Control mechanisms in Fibre Channel. The N_Port Logout protocol is 

performed when an N_Port requests removal of its parameters from another N_Port. This request may be 

used to free up resources at the other N_Port. The Login protocols are typically performed each time the 

Link gets reinitialized. Some of the cases where the Link gets reinitialized are powering on of a new 

device, removal and reinsertion of a device, upper layer time-outs, etc. 

 

Though the underlying hardware might provide some support for performing the above-mentioned 

functions, it is the responsibility of the driver software to establish and maintain connections and also to 

implement the protocols mentioned above. 

 

2.3.3.1 Flow Control 

Flow control is the FC-2 control process to pace the flow of frames between N_Ports and between an 

N_Port and the Fabric to prevent overrun at the receiver. A device can transmit frames to another device 

only when the other device is ready to accept them. Before the devices can send data to each other, they 
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must login to each other. One of the things accomplished in login is establishing credit. Credit refers to the 

number of frames a device can receive at a time. This value is exchanged with another device during login. 

After login has been performed successfully, each device knows how many frames the other can receive. 

After enough frames have been transmitted and credit runs out, no more frames can be transmitted until the 

destination device indicates it has processed one or more frames and is ready to receive new ones. Thus, no 

device should ever be overrun with frames. Fibre Channel uses two types of flow control, end-to-end and 

buffer-to-buffer. 

 

End-to-End  

End-to-End flow control is not concerned with individual links, but rather the source and destination 

N_Ports. When the two N_Ports log into each other, they report how many receive buffers are available for 

the other port. This value becomes EE_Credit. EE_Credit_CNT is set to 0 after login and increments by 1 

for each frame transmitted to the other port. It is decremented upon reception of an ACK Link Control 

frame from that port. ACK frames can indicate the port has received and processed 1 frame, N frames, or 

an entire Sequence of frames. 

 

Buffer-to-Buffer  

This type of flow control deals only with the link between an N_Port and an F_Port or between two 

N_Ports. Each port on the link exchanges values of how many frames it is willing to receive at a time from 

the other port. This value becomes the other port's BB_Credit value and remains constant as long as the 

ports are logged in. Each port also keeps track of BB_Credit_CNT, which is initialized to 0. For each frame 

transmitted, BB_Credit_CNT is incremented by 1. The value is decremented by 1 for each R_RDY 

primitive Signal received from the other port. Transmission of an R_RDY indicates the port has processed 

a frame, freed a receive buffer, and is ready for one more. If BB_Credit_CNT reaches BB_Credit, the port 

can not transmit another frame until it receives an R_RDY. 

 



 9

2.3.3.2 Class of Services 

Fibre Channel defines six classes of service. The Class used greatly depends on the type of data that is 

being transmitted. The major difference between the various Classes of service is the flow control 

mechanism that is used.  

 

Class 1 is a service that provides dedicated connections. This Class of service guarantees delivery of frames 

in the order in which they were transmitted. Confirmation of delivery is also provided. Since the connection 

is dedicated, there is no need for buffer-to-buffer flow control. Thus, only end-to-end flow control is used 

in Class 1. Class 1 is best suited for sustained high-throughput transactions.  

 

Class 2 is referred to as multiplex due to the fact that it is a connectionless Class of service with 

notification of delivery and non-delivery of frames. Since no dedicated connection needs to be established, 

a port can transmit frames to and receive frames from more than one N_Port. As a result, the N_Ports share 

the bandwidth of the links with other network traffic. Frames are not guaranteed to arrive in the order in 

which they were transmitted, except in the point-to-point or Loop topologies. Also, the media speeds may 

vary for different links that make up the path. Both buffer-to-buffer and end-to-end flow control are used in 

Class 2. Class 2 is more like typical LAN traffic, such as IP or FTP, where the order and timeliness of 

delivery is not so important.  

 

Class 3 is identical to Class 2, except that the Frame delivery is not confirmed. It only uses buffer-to-buffer 

flow control. It is referred to as datagram service. Class 3 would be used when order and timeliness are not 

so important, and when the ULP itself handles lost frames efficiently. Class 3 is the choice for SCSI.  

 

FC-PH also defines an optional service mode called Intermix. Intermix is an option of Class 1 which allows 

interleaving of Class 2 and Class 3 frames during an established Class 1 connection between two N_Ports. 

The Class 2 and Class 3 frames may or may not be destined to the same N_Port as the Class 1 frames. Both 

N_Ports as well as the Fabric must support Intermix for it to be used.  
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Class 4 is a connection-oriented service for use with a Fabric. It provides fractional bandwidth allocation of 

the resources of a path through a Fabric that connects two N_Ports. One N_Port will set up a Virtual Circuit 

(VC) by sending a request to the Fabric indicating the remote N_Port as well as quality of service 

parameters. The resulting Class 4 circuit will consist of two unidirectional VCs between the two N_Ports. 

The VCs need not be the same speed. Like a Class 1 dedicated connection, Class 4 circuits will guarantee 

that frames arrive in the order they were transmitted and will provide acknowledgement of delivered 

frames. The main difference is that an N_Port may have more than one Class 4 circuit, possibly with more 

than one other N_Port at the same time. In a Class 1 connection, all resources are dedicated to the two 

N_Ports. In Class 4, the resources are divided up into potentially many circuits. The Fabric regulates traffic 

and manages buffer-to-buffer flow control for each VC separately using the VC_RDY Primitive Signal. 

Intermixing of Class 2 and 3 frames is mandatory for devices supporting Class 4.  

 

Class 5 involves isochronous, just-in-time service. However, it is still undefined and is not mentioned in 

any of the FC-PH documents. 

 

Class 6 provides dedicated connections for reliable multicast for a Fabric topology. Basically, a device 

wishing to transmit frames to more than one N_Port at a time sets up a Class 1 dedicated connection with 

the multicast server within the Fabric at the well-known address of hex "FFFFF5". The multicast server sets 

up individual dedicated connections between the original N_Port and all the destination N_Ports. The 

multicast server is responsible for replicating and forwarding the frame to all other N_Ports in the multicast 

group. N_Ports become members of a multicast group by registering with the Alias Server at the well-know 

address of hex “FFFFF8”. The Class 6 is very similar to Class 1. Class 6 SOF delimiters are the same as 

used in Class 1. Also, end-to end flow control is used between the N_Ports and the multicast server. 

 

2.3.4 FC-1: The Encode/Decode Layer 

This layer, which is the transmission encode/decode layer, defines serial physical transport, timing 

recovery, and serial line balance. Fibre Channel uses the 8B/10B encode/decode scheme. In the 8B/10B 

scheme, 8-bit internal bytes are encoded and transmitted on the Fibre Channel link as 10-bit Transmission 
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Characters. The transmission characters are converted back into 8-bit bytes at the receiver. Two types of 

Transmission Characters (Data and Special) are defined. FC-PH designates special meaning to certain 

combinations of Transmission Characters, referred to as Ordered Sets. Ordered Sets are used to identify 

frame boundaries, transmit primitive function requests, and maintain proper link transmission 

characteristics during periods of inactivity. One special character called a comma is used for byte 

synchronization. 

 

2.3.5 FC-0: The Physical Layer 

FC-0, the lowest of the five levels, covers the physical characteristics of the interface and media, including 

the cables, connectors, transmitters, and receivers. The FC-0 level describes the link between two Ports. 

Essentially this consists of a pair of either optical fiber or electrical cables along with transmitter and 

receiver circuitry which work together to convert a stream of bits at one end of the link to a stream of bits at 

the other end.  

 

2.4 Addressing 

Fibre Channel uses a three-byte address identifier, which is dynamically assigned during Login (as 

mentioned in 2.2). N_Ports transmit frames from their own Source_ID (S_ID) to a Destination_ID (D_ID). 

Addresses in the range of hex "FFFFF0" to hex "FFFFFE" are reserved. These are called well-known 

addresses and are used for such things as the Fabric Name Server, Alias Server, or the Multicast Server. 

Hex "FFFFFF" is reserved for broadcast. Before Fabric Login, the N_Port's S_ID is undefined: hex 

"000000". In a point-to-point topology, Fabric Login will fail, and the two ports will simply chose two 

unique addresses. Arbitrated Loop devices still use the three byte address identifiers, but also use an 

Arbitrated Loop Physical Address (AL_PA). AL_PAs are one byte values dynamically assigned each time 

the Loop is initialized. Once the Loop is initialized and each L_Port has selected an AL_PA, public 

NL_Ports will attempt Fabric Login if they are connected to an FL_Port. If there is an FL_Port, the Fabric 

will assign the upper two bytes of the NL_Port's address identifier and usually allow the low byte to be the 

NL_Port's AL_PA. If not, the Loop will need to be re-initialized so the NL_Port can select the Fabric 

assigned AL_PA. If no Fabric exists or if an NL_Port is a private NL_Port, the upper two bytes of the 
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address identifier will remain '0000', and the lower byte will simply be the NL_Port's AL_PA. Also for 

performing the Loop Initialization, a port needs to be identified uniquely. This is accomplished using 

Name_Identifiers, a fixed 64-bit value. Name_Identifiers are used to uniquely identify nodes 

(Node_Name), a Port (Port_Name), and a Fabric (Fabric_Name). Name Identifiers are not used to route 

frames, but are used in mapping to upper layer protocols. Port Names are also called World Wide Names. 

These names could be one of the different formats like IEEE, IEEE extended, CCITT, etc. The first 4 bits 

of the World Wide Name specifies the Network Address Authority (NAA) to indicate the format of the 

name used. The next 12 bits are usually set to 0 followed by 48 bits that contain the address in the format 

specified by the first 4 bits. 
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CHAPTER 3  

 
 

TACHYON AND (i)CHIP 
 

 

3.1 Introduction 

The two pieces of hardware that form the core of the Interphase 5526 PCI based Fibre Channel Host Bus 

Adapter are: 

• Hewlett-Packard’s Tachyon chip, and, 

• Interphase’s (i)chipTPI. 

This chapter provides a functional overview of the above-mentioned chips. Figure 3-1 gives an idea about 

the organization of a Fibre Channel Adapter. 

 

          

GigaBaud Link Module

Fibre Channel
Controller
(Tachyon)

TSI/PCI Interface
((i)chipTPI)

Tachyon System Inteface (TSI) Bus
40 MHz

PCI Bus 33 MHz

 

Figure 3-1 PCI Fibre Channel Adapter 
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3.2 Tachyon: A Gigabit Fibre Channel Protocol Chip 

This section summarizes the relevant contents of the Tachyon User's Manual[11]. The Tachyon chip 

implements the FC-1 and FC-2 layers of the five-layer Fibre Channel standard. Some of the features of 

Tachyon are: 

• supports Fibre Channel Class 1, 2 and 3 services 

• supports Fibre Channel Arbitrated Loop (FC-AL), Point-to-Point and Fabric topologies 

• automatically generates acknowledgement (ACK) frames for inbound data frames for class 1 

and class 2 

• handles NL_Port and N_Port initialization entirely in hardware 

• manages concurrent inbound and outbound sequences 

• uses a messaging queue to notify the host of all completion messages 

• assists networking protocols by supporting IP checksums 

• supports up to 2K-byte frame payload size for all Fibre Channel classes of service 

• supports broadcast transmission and reception of frames in an Arbitrated Loop topology 

• supports SCSI encapsulation over Fibre Channel 

 

3.2.1 Tachyon Functional Overview 

The interface of the Tachyon chip to the device driver is a set of registers used for initialization, 

configuration, and control. There is also a set of data structures that are used for sending and receiving data 

and for event notification. The driver and Tachyon use five host-based circular queues to pass messages 

and memory descriptors. The circular queues that the driver needs to maintain are: 

• Outbound Command Queue (OCQ) 

• High-Priority Command Queue (HPCQ) 

• Inbound Message Queue (IMQ) 

• Single Frame Sequence Buffer Queue (SFSBQ) 

• Multi Frame Sequence buffer Queue (MFSBQ) 
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Each circular queue consists of four main components: 

• The queue itself 

• The queue length 

• The producer index 

• The consumer index 

 

Each circular queue is a contiguous area in the host’s virtual memory that can be thought of as an array of 0 

to (n-1) entries (if there are 'n' entries). All entries in all of the queues are 32 bytes in length. Except for the 

IMQ, all the other queues must contain a minimum of two entries. The IMQ must have a minimum of four 

entries. Base addresses of the queues must be aligned on a sizeof (queue) boundary, i.e., 32 multiplied by 

the number of entries in the queue. The device driver creates the queues in its host's virtual memory and 

writes the base address and size of the queues to the corresponding registers on the Tachyon. The queues 

should be contiguous in physical memory. This is typically done initially when the driver gets loaded. The 

queues need to be set up before Tachyon can be used for transmission/reception of data. 

 

3.2.1.1 Transmit Process Overview 

For Tachyon to transmit a frame, the driver has to provide the data to Tachyon in a fixed format. Initially, 

the driver has to construct the Tachyon Header structure. The driver then creates the data buffers that need 

to be transmitted. The addresses of these structures are put into Outbound Descriptor Blocks (ODB), which 

in turn are present inside the OCQs. Each OCQ corresponds to a Fibre Channel Exchange that needs to be 

transmitted. The details of the transmit process are given below. 
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Figure 3-2 Transmit Process Overview 

 
For transmission, the driver creates buffers of data to be transmitted. The driver stores these data buffers in 

its host's virtual memory. Initially the driver creates a Tachyon Header Structure that contains the Fibre 

Channel frame header information. This structure is also stored in the host memory. The driver then creates 

another data structure called the Outbound Descriptor Block (ODB) that defines the sequence of data to be 

transmitted. The ODB contains Fibre Channel information like maximum frame size, class of service, etc., 

that is obtained by the driver during the login procedures it had performed using the protocols mentioned in 

2.3.3. The ODB contains a pointer (Hdr_Addr) to the Tachyon Header Structure. The ODB also contains a 

pointer (EDB_Addr) to the Extended Descriptor Block (EDB). The EDB contains Address/Length pairs 

(A/L pairs). These Address/Length pairs define the location and length of data buffers stored in host 

memory. Tachyon uses the Fibre Channel information in the ODB and the Tachyon Header Structure to 

construct Fibre Channel frame headers. The Tachyon header structure is copied by Tachyon to its internal 

registers so that it can be used for generating Fibre Channel headers for subsequent frames in that sequence. 
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Each OCQ entry consists of one ODB. The producer index of the OCQ, known as the OCQ Producer 

Index, points to the next available OCQ entry in which an ODB can be created. Whenever the driver 

creates a new ODB, it updates the OCQ Producer Index to inform Tachyon that a new valid ODB exists. If 

Tachyon's Outbound Sequence Manager (OSM) is not currently transmitting a sequence, the OSM 

performs a DMA operation to move the ODB via the Outbound Message Channel from the host memory 

into an internal Tachyon resource. When the OSM receives the ODB, the OSM has all the information 

needed to transmit a sequence.  

 

The OSM retrieves data from the Outbound Message Channel in frame size packets for transmission. The 

OSM DMAs the first frame from the data buffer in host memory to the Outbound Frame FIFO. Once the 

entire frame is in the Outbound Frame FIFO, the OSM notifies the Frame Manager to begin transmitting 

the frame onto the link. When the first word of the frame is transmitted onto the link, the OSM is notified. 

The OSM then begins to move the second frame from host memory to the Outbound Frame FIFO. This 

operation continues until the entire sequence has been transmitted.  

 

When the OSM transmits the sequence successfully, it notifies the Inbound Sequence Manager (ISM) to 

generate an outbound-completion message. The ISM sends this completion message to the driver as an 

entry in the Inbound Message Queue (IMQ). Completion messages contain information about the status of 

the transfer and any information needed by the driver for maintaining the queues. 

 

3.2.1.2 Receive Process Overview 

Upon receiving a frame, Tachyon puts the frame in the SFS or MFS Buffer Queue depending on if it is a 

single or multi-frame sequence. The buffer contains the Tachyon Header and the payload of the frame. The 

driver has to strip off the Tachyon Headers before it gives it to the upper layers for processing. The details 

of the receive process are given below. 
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Figure 3-3 Receive Process Overview 

 
As Tachyon receives a frame, the frame is stored in the Inbound Data FIFO while it verifies the Cyclic 

Redundancy Check (CRC). If the CRC fails, the frame is discarded. If the CRC passes, the ISM is notified 

of the received frame. The ISM then checks to see if the frame received is a frame of a single-frame 

sequence (SFS). If it is an SFS, Tachyon uses the next available buffer in the Single Frame Sequence 

Buffer Queue (SFSBQ), which was created by the driver, to store the received frame. Tachyon does this by 

DMAing the SFS (Fibre Channel Header and data payload) to the SFSBQ in the driver via the Inbound 

Data Manager and the SFS Buffer Channel. On the other hand, if the ISM determines that the received 

frame is part of a multi-frame sequence (MFS), Tachyon uses the next available buffer in the Multi Frame 

Sequence Buffer Queue (MFSBQ), which was created by the driver, to store the received frame. When the 

complete sequence has been received, the ISM generates an inbound-sfs-completion message or an 

inbound-mfs-completion message and passes the message to the driver through the Inbound Data and 

Inbound Message Channel as an entry in the IMQ. After Tachyon sends the completion message, Tachyon 

generates an interrupt to signal the host to process the received sequence.  



 19

 

3.3 Interphase (i)ChipTPI 

The (i)chipTPI directly connects the Hewlett-Packard Tachyon Fibre Channel Controller chip to the 

industry standard PCI local bus. The Tachyon does not have a PCI bus interface of its own. The (i)chipTPI 

provides a transparent, high-performance PCI local bus interface for the Tachyon chip. 

 

3.3.1 (i)chipTPI Functional Overview 

The primary function of the (i)chipTPI is to bridge between the PCI bus and the TSI (Tachyon System 

Interface) bus. All PCI specific functions that are required by the PCI specifications are implemented inside 

the (i)chipTPI. The PCI bus interface provided by the (i)chipTPI fully supports 32-bit initiator and target 

modes and it includes a full set of configuration registers. The TSI bus interface connects to the Tachyon 

chip. The interface fully supports TSI bus master and slave cycles and manages arbitration. The (i)chipTPI 

also provides a flexible address translation facility to control byte-swap conversion of little-endian to big-

endian data. This feature is necessary because Tachyon is big-endian. For platforms like x86 which is little-

endian, the conversion to big-endian has to be made before passing the data to Tachyon. The (i)chipTPI 

also generates PCI interrupts depending on PCI and TSI bus conditions. 
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CHAPTER 4  

 
 

IP AND ARP OVER FIBRE CHANNEL 
 

 

This chapter summarizes the contents of  [13]. 

4.1 Introduction 

The Internet Draft “IP and ARP over Fibre Channel” specifies how IP and Address Resolution Protocol 

(ARP) packets are encapsulated over Fibre Channel. The document also describes mechanisms for IP 

address resolution. 

 

4.2 Objective 

The primary objective of [13] is to promote interoperable implementations of IP over Fibre Channel. 

Although the Fibre Channel standard [5] architecturally defines support for IP encapsulation and address 

resolution, it is inadequately specified. Two other documents that specify IP encapsulation are [9] and [10]. 

Each document had its own drawbacks. Since [5] prohibits broadcasts, loops are not covered. [10] has no 

support for Class 3 services. [9] was put together by the Fibre Channel Association, which is a industry 

consortium of Fibre Channel vendor companies and not a standards body. [13] is largely derived from [9].  
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4.3 Summary  

The Internet Draft specifies how to encapsulate IPv4 and ARP packets over Fibre Channel. This 

specification supports all the Fibre Channel topologies, namely, loop, fabric and point-to-point. It also 

supports any Fibre Channel class of service. Figure 2-3 shows the structure of a Fibre Channel frame.  

4.3.1 IP/ARP Encapsulation 

The IP and ARP Sequences are required to carry a Network_Header optional header field that is 16 bytes 

long. When the Fibre Channel payload contains either an IP or ARP payload, only the first frame of the 

sequence will include the Fibre Channel Network_Header. There is a one-to-one mapping between an IP 

packet and a Fibre Channel sequence. The Maximum Transmission Unit (MTU) for IP is the maximum 

length of the IP packet, which is theoretically 65,535 bytes. However, [13] sets the IP MTU that can be 

used to 65,280. The remaining 255 bytes have been reserved for future use. As mentioned in section 2.4, 

Fibre Channel devices are identified by a 64-bit unique nonvolatile World Wide Name (WWN) and a 24-

bit volatile address identifier (Port_ID). The first 4 bits of the WWN, which specifies the Network Address 

Authority (NAA), is set to "0001" to indicate that IEEE 48-bit MAC is used. The next 12 bits are set to 0, 

which is then followed by an IEEE 48-bit MAC address. The payload of a Fibre Channel sequence carrying 

an IP packet uses the format shown in Figure 4-1. Figure 4-2 shows the format when the payload is an ARP 

packet. Both formats use IEEE 802.2 LLC/SNAP encapsulation.  

 

  

LLC/SNAP Header
(8 bytes)

IP Data
(65280 - IP Header) bytes

IP Header
(20 bytes min.)

 

Figure 4-1 Format of Fibre Channel Sequence Payload carrying IP 

 

   

LLC/SNAP Header
(8 bytes)

ARP Packet
(28 bytes)

 

Figure 4-2 Format of Fibre Channel Sequence Payload carrying ARP 
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The Logical Link Control (LLC) header is 3 bytes long and consists of a 1-byte Destination Service Access 

Point (DSAP) field, a 1-byte Source Service Access Point (SSAP) field, and a 1-byte Control field as 

shown in Figure 4-3. The LLC header value is always hex ‘AA-AA-03’. The LLC's DSAP and SSAP 

values of 0xAA indicate that an IEEE 802.2 SNAP header follows. The LLC's CTRL value of 0x03 

specifies an Unnumbered Information Command PDU.  

   

DSAP
(1 byte)

CTRL
(1 byte)

SSAP
(1 byte)

 

Figure 4-3 LLC Format 

The Sub Network Access Protocol (SNAP) header is 5 bytes long and consists of a 3-byte Organizationally 

Unique Identifier (OUI) field and a 2-byte Protocol Identifier (PID) as shown in Figure 4-4. 

                                                  

OUI
(3 bytes)

PID
(2 bytes)

 

Figure 4-4 SNAP Format 

The SNAP OUI value is 0x00-00-00, which means that the PID is a routed non-OSI protocol. With the OUI 

value set to 0x00-00-00, a SNAP PID value of 0x08-00 indicates IP and a SNAP PID value of 0x08-06 

indicates ARP. 

 

The format of the ARP packet that is encapsulated is as shown in Figure 4-4. 

             

HW Type (2 bytes)

Protocol Address of Sender (4 bytes)

HW Address of Sender (6 bytes)

Op Code (2 bytes)

Protocol Address Length (1 byte)

HW Address Length (1 byte)

Protocol (2 bytes)

Protocol Address of Target (4 bytes)

HW Address of Target (6 bytes)

 

Figure 4-5 ARP Packet Format 
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The "HW Type" field is set to either 0x00-06 or 0x00-01. Technically, the correct HW Type value is 0x00-

06 to indicate IEEE 802 networks. The support for HW Type 0x00-01 is for practical reasons. When Fibre 

Channel is bridged to Ethernet, some Ethernet end stations are known to cause rejections when the HW 

Type is set to 0x00-06. To overcome this, the specification supports both HW Types. The "Protocol" is set 

to 0x08-00 to indicate IP. The "HW Address Length" is set to 0x06 to indicate that there are 6 bytes in the 

Hardware Address. The 48-bit IEEE address in the WWN is used as the Hardware Address. The "Protocol 

Address Length" is set to 0x04 to indicate that there are 4 bytes in the IP address. The "Op Code" is set to 

either 0x00-01 for ARP Request or 0x00-02 for ARP Reply. The "HW Address of Sender" is set to the 6-

byte IEEE MAC address of the sender. The "Protocol Address of Sender" is set to the 4-byte IP address of 

the sender. The "HW Address of the Target" is set to zero if the "Op Code" field is set to 0x00-01. 

Otherwise it is set to the 6-byte IEEE MAC address of the original sender of the ARP request. The 

"Protocol Address of Target" is set to the 4-byte IP address of the target. 

 

4.3.2 Address Resolution 

Address Resolution deals with associating IP addresses with Fibre Channel Port addresses. As explained in 

section 2.4, Fibre Channel devices have two types of addresses. One of them is the 64-bit static address 

called the World Wide Name (or World Wide Port_Name). The other address called the Port_ID is 

dynamically assigned. Therefore the Address Resolution mechanism needs two levels of mapping: 

1. A mapping from the 4-byte IP address to the last 6 bytes of the World Wide Port_Name (i.e., 

the 48-bit IEEE MAC address). 

2. A mapping from the 6-byte MAC address to the 3-byte Fibre Channel address identifier 

(Port_ID). 

 

The first mapping is done at the operating system level while the second mapping is done in the driver. The 

World Wide Port_Names are static, but the Port_ID is volatile. That means that the second mapping has to 

be validated by the driver before use.  
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The first mapping, namely the mapping of the IP address to the World Wide Port_Name, is handled by the 

Address Resolution Protocol (ARP). It occurs when an ARP response is received for an ARP request that 

was sent out. This mapping is maintained by the operating system in its ARP table. When an IP packet 

needs to be transmitted, along with the IP packet the driver also receives the destination MAC address from 

the upper layers. This MAC address is provided by operating system by looking up its ARP table. Since the 

MAC address is the last 6 bytes of the World Wide Port_Name, the driver maps the MAC address that was 

received from the upper layers to a Fibre Channel Port_ID. Once this resolution has been done, the packet 

is ready to be transmitted by the driver. The second mapping is performed by the driver for every packet 

that needs to be transmitted. 
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CHAPTER 5  

 
 

LINUX DEVICE DRIVERS 
 

 

This chapter gives an introduction to writing device drivers on Linux for PCI based network interface 

cards. The Interphase 5526 PCI Fibre Channel card has been used as an example for explaining the various 

concepts. [1] has been used as the primary source for this chapter. 

 

5.1 Introduction 

When writing a device driver for a PCI based card, the functions that need to be performed by the device 

driver are two-fold. First, it needs to establish the interface with the underlying hardware and then with the 

operating system. Establishing the interface with the card requires the driver to: 

• detect the PCI card, 

• read/write values from/to the PCI configuration registers on the card, 

• initialize registers (of Tachyon and (i)chipTPI) on the card. 

Establishing the interface with the operating system involves providing functions for: 

• registering the card, 

• requesting an interrupt line for the card, 

• handling interrupts from the card, 

• managing the device, 

• constructing frames using the data provided by the upper layers (like IP) and transmitting 

them, 

• receiving frames from the card and providing the data to upper layers (like IP). 
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5.2 Hardware Interface 

This section discusses how the PCI registers are organized and how the device driver accesses them. It then 

talks about ways to read/write to the registers (of Tachyon and (i)chipTPI) on the card. 

5.2.1 PCI Configuration Registers 

A typical PCI register layout is given in Figure 5-1. It lists the PCI registers and the offsets at which they 

are located. 

 

PCI Register Offset 
Byte 3 Byte 2 Byte 1 Byte 0  

DEVICE_ID VENDOR_ID 0x00 
STATUS COMMAND 0x04 

CLASS_CODE REVISION_ID 0x08 
BIST HEADER_TYPE LATENCY_TIMER CACHE_LINE_SIZE 0x0C 

Memory Base Address Register 0x10 
IOBASEL 0x14 
IOBASEU 0x18 
Reserved 0x1C 
Reserved 0x20 
Reserved 0x24 
Reserved 0x28 

Subsystem ID Subsystem Vendor ID 0x2C 
Expansion ROM Base Address 0x30 

Reserved 0x34 
Reserved 0x38 

Max_Lat Min_Gnt Interrupt Pin Interrupt Line 0x3C 
Reserved 0x40-0xFF 

 

Figure 5-1 PCI Configuration Register Map 

 
A bus number, a device number, and a function number identify each peripheral. The PCI specification 

permits up to 256 buses. PCs normally have only one PCI bus. Each bus hosts up to 32 devices and each 

device can perform up to 8 functions.  

 

As shown in Figure 5-1, the PCI devices have a 256-byte address space. The first 64 bytes are standardized, 

while the rest are device-dependent. Of the first 64 bytes, the registers that have been shaded are required 

and the others are optional. Every PCI device must contain meaningful values in the registers that are 

mandatory. Three PCI registers identify a device: VENDOR_ID, DEVICE_ID and CLASS_CODE. Every 
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PCI device puts its own values in these read-only registers. The device driver looks up these values to 

identify a device.  

 

The first step taken by the driver is to check if there is a PCI bus in the system. If the motherboard supports 

PCI, it will then be equipped with PCI-aware firmware called the BIOS. The BIOS offers access to the 

device's PCI configuration registers. The BIOS is probed to see if a specific device (Fibre Channel card) of 

a particular vendor (Interphase) is present. If these operations are successful, then the next logical step is to 

allocate system resources like memory for the card. The information required to perform the above 

mentioned operations are obtained by accessing the PCI configuration registers on the card. Some of the 

kernel functions used while dealing with PCI based cards are: 

 

• pcibios_present() 

• pcibios_find_class()  

• pcibios_find_device() 

• pcibios_read_config_byte() 

• pcibios_read_config_word() 

• pcibios_read_config_dword() 

• pcibios_write_config_byte() 

• pcibios_write_config_word() 

• pcibios_write_config_dword() 

 

pcibios_present() checks to see if the computer supports PCI. If the BIOS is PCI-aware, it returns a non-

zero value. It takes no arguments. 

 int pcibios_present(void); 

 

pcibios_find_class() requests information about the class of the device from the BIOS. It returns the bus 

number and device number of the particular device on the PCI bus. A return value of 0 indicates success 

and non-zero values indicate failure. 
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int pcibios_find_class(unsigned int class_code, unsigned short 

index, unsigned char* bus, unsigned char * device); 

where: 

• class_code is the specific class to which the device belongs (for example, the class could 

be Fibre Channel). 

• index is used to identify multiple devices with the same VENDOR_ID /DEVICE_ID 

identifier. 

• bus corresponds to the PCI bus number. On a single system it is conceivable to have multiple 

PCI buses. Normally there is only one PCI bus in a system, and bus is set to 0. 

• device corresponds to the index of the device in the PCI bus. 

 

pcibios_find_device() requests information about the device from the BIOS. It is used to check if a 

particular device of a particular vendor is present. It returns the bus number and device number of the 

particular device on the PCI bus. A return value of 0 indicates success and non-zero values indicate failure. 

int pcibios_find_device(unsigned short VENDOR_ID, unsigned short 

DEVICE_ID, unsigned short index, unsigned char* bus, unsigned 

char* device); 

where: 

• VENDOR_ID is a two-byte number used to uniquely identify a vendor. This information can 

be obtained from the PCI register at offset hex ‘00’. 

• DEVICE_ID is a two-byte number used to uniquely identify a device of a particular vendor. 

This information can be obtained from the PCI register at offset hex ‘02’. 

• index is used to identify multiple devices with the same VENDOR_ID /DEVICE_ID 

identifier. 

• bus corresponds to the PCI bus number. On a single system it is conceivable to have multiple 

PCI buses. Normally there is only one PCI bus in a system, and bus is set to 0. 

• device corresponds to the index of the device in the PCI bus. 
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pcibios_read_config_byte() is used to read a byte from the configuration space of the device identified by 

bus and device.  

int pcibios_read_config_byte(unsigned char bus, unsigned char 

device, unsigned char where, unsigned char *value);  

where: 

• bus and device are the values returned from the pcibios_find_device() function call. 

• where is the offset into the PCI registers. For example, an offset of hex ‘3C’ returns the 

interrupt line used by the PCI card into value. 

 

Other variants of the above function are: pcibios_read_word() and pcibios_read_dword() which are used to 

read 2 and 4 bytes respectively. 

 

pcibios_write_config_byte() is used to write a byte to the PCI configuration space of the device identified 

by bus and device.  

pcibios_write_config_byte(unsigned char bus, unsigned char 

device, unsigned char where, unsigned char value);  

where: 

• bus and device are the values returned from the pcibios_find_device() function call. 

• where is the offset into the PCI registers.  

• value is the value to be written at the offset given by where. 

 

Other variants of the above function are: pcibios_write_word() and pcibios_write_dword() which are used 

to write 2 and 4 bytes respectively. 

 

5.2.2 Accessing the registers on the card 

There are two ways of controlling I/O. One is to have a separate I/O address space and the other is 

memory-mapped I/O. In this section, memory mapped I/O is discussed. Several terminologies exist when 
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referring to PCI memory. There are terms like “shared memory”, “I/O memory” or simply “PCI memory”. 

To access these memory locations, kernel functions that are used are: 

• readb() 

• readw() 

• readl() 

• writeb() 

• writew() 

• writel() 

readb() is used to read a byte from an address in memory.  

unsigned long readb(unsigned long addr);  

where: 

• addr is the address from which a byte should be read. 

Other variants of the above function, namely readw() and readl()are used to read 2 and 4 bytes respectively. 

 

writeb () is used to write a byte into the address in memory that is specified.  

writeb(unsigned char c, unsigned long addr); 

where: 

• c is the byte value that should be written into the address specified. 

• addr is the address to which a byte should be written. 

Other variants of the above function, namely writew() and writel() are used to write 2 and 4 bytes 

respectively. 

 

The type of I/O that a card performs can be determined by looking at /proc/pci. A sample listing of 

/proc/pci is shown below. The information about two devices on a PCI bus is shown below. 

 

Bus  0, device  14, function  0: 

 Network controller: Compaq Unknown device (rev 1). 

      Vendor id=e11. Device id=a0ec. 
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Medium devsel. Fast back-to-back capable. IRQ 3.  Master Capable.  

Latency=64. 

I/O at 0xf000 [0xf001]. 

      I/O at 0xf400 [0xf401]. 

Non-prefetchable 32 bit memory at 0xfedfec00 [0xfedfec00]. 

 

Bus  0, device  15, function  0: 

Fiber Channel: Unknown vendor Unknown device (rev 0).  

Vendor id=107e. Device id=4. 

Slow devsel.  Fast back-to-back capable.  BIST capable.  IRQ 9.  

Master Capable.  Latency=64. 

Non-prefetchable 32 bit memory at 0xfedfe800 [0xfedfe800].  

 

The listing basically interprets the various fields in the PCI registers. The first device, namely device 14, 

has a separate I/O address space as well as memory mapped I/O. The second device, namely device 15, 

does only memory mapped I/O. This is indicated by the absence of a separate I/O address space in the 

listing. The memory listed in the listing cannot be used directly. This is an arbitrary physical address that 

needs to be mapped to kernel address space. This needs to be done when the kernel wants to access the high 

addresses directly. The kernel function that is used to remap the address is called ioremap(). For example, 

for device 15 whose listing is given above, the function ioremap() may be used as follows: 

 

 char * baseptr = ioremap(0xfedfe800, size_of_memory_needed); 

 

This is done as part of the initialization of the driver for the card and is done typically when the driver gets 

loaded. So, for writing a byte value, say, hex ‘10’ into the offset 20 of the area, the following is done: 

  

 writeb(0x10, baseptr + 20); 
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When the driver is unloaded, memory is umapped as shown below: 

 

 iounmap(baseptr); 

 

Thus by using readb/writeb and similar functions, we can read/write to the registers on a PCI card from a 

driver. 

 

5.3 Operating System Interface 

Each device is represented in the operating system by a struct device. The device structure is the 

principal data structure used by network drivers. struct device can be conceptually divided into two 

parts: "visible" and "invisible". The visible part of each device is made up of fields most of which are 

explicitly assigned in the driver. The hidden fields comprise several additional fields that are assigned at 

device initialization. It also has pointers to functions that are part of the interface to the kernel. Most of the 

functions are implemented in the driver itself. If the functionality of a function is common for all devices of 

a particular technology, then those functions are included as part of the kernel itself. These function 

pointers are filled in typically when the device registers itself with the operating system.  

 

5.3.1 Registering the card 

Functions for registering the card are generally built into the kernel. If the driver is written for a card that is 

based on older technologies like Ethernet or Token Ring, then the existing functions can be used for 

registering the device. For technologies (like Fibre Channel) for which support is not present in the kernel, 

the functions will have to be added to the networking code of the kernel. Registration of devices is done 

when the driver gets loaded. The devices get unregistered when the driver gets unloaded. The two functions 

that need to be implemented are register_device() and unregister_device(). During registration, the device 

is assigned a unique name, say fc0, and the operating system adds the device to its list of networking 

devices. Also, the various function pointers and parameters, like the MTU of the device, size of its address 

field and size of the hardware header for the device, are specified during registration. 
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5.3.2 Requesting an IRQ 

Once the device has registered itself, the next step is to request an interrupt line for the card. Interrupts are 

an asynchronous means by which the device tells the device driver that it ready to be acted upon. Whenever 

an event occurs that requires the driver to perform some action, the card sends an interrupt on the IRQ line. 

On seeing the interrupt from the card, the driver is required to perform appropriate action. The kernel 

function used to request an IRQ is request_irq(). The interface provided for the function request_irq() is 

shown below: 

int request_irq(unsigned int pci_irq_line, void (*handler) (int, 

void*, struct pt_regs*), unsigned long flags, const char 

*card_name, void *dev_id); 

 

where: 

• pci_irq_line is the interrupt number retrieved from the PCI registers using the function call 

pcibios_read_config_byte(bus, device, 0x3C, &pci_int_line)  as 

explained in section 5.2.1. 

• The second parameter is the pointer to the function that will handle interrupts from the card. The 

interrupt handler gets installed at this point. 

• flags are related to interrupt management. For example, the flag could be set to SA_SHIRQ to 

show that the interrupt number can be shared with other devices. 

• card_name is a string passed to request_irq() to show the owner of the interrupt when 

displayed by /proc/interrupts. The string could be the device name itself (say fc0) or a string like 

"Interphase 5526 Fibre Channel HBA". 

• dev_id is used for shared interrupt lines to uniquely identify a device and is set to NULL if the 

interrupts are not shared. 

 

The following is a sample listing of /proc/interrupts. 

    

  0:    1867787          XT-PIC  timer 
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  1:       8138          XT-PIC  keyboard 

  2:          0          XT-PIC  cascade 

 11:      14458          XT-PIC  eth0 

 12:      32539          XT-PIC  PS/2 Mouse 

 13:          1          XT-PIC  fpu 

 14:     117963          XT-PIC  ide0 

 15:          4          XT-PIC  ide1  

 

On executing the following piece of code in a driver, 

 pci_irq_line = 9; 

 card_name = "Interphase 5526 Fibre Channel HBA";  

request_irq 

(pci_irq_line,&interrupt_handler,SA_SHIRQ,card_name,dev);  

 

the listing of /proc/interrupts changes as shown below. Notice that the interrupt number 9 has been 

associated with the “Interphase 5526 Fibre Channel HBA”. 

 

  0:    1867787          XT-PIC  timer 

  1:       8138          XT-PIC  keyboard 

  2:          0          XT-PIC  cascade 

  9:         31          XT-PIC  Interphase 5526 Fibre Channel HBA  

 11:      14458          XT-PIC  eth0 

 12:      32539          XT-PIC  PS/2 Mouse 

 13:          1          XT-PIC  fpu 

 14:     117963          XT-PIC  ide0 

 15:          4          XT-PIC  ide1  

 

At this stage, the device has an IRQ and its interrupt handler has been installed. 
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5.3.3 Handling Interrupts 

The card under various circumstances sends interrupts. For example, the card might send interrupts in 

conditions like “received_new_packet”, “transmission_of_packet_complete”, etc. Appropriate bits in the 

status_register of the card are set to reflect what caused the interrupt. When the driver receives an interrupt, 

the interrupt handler that was installed while requesting the IRQ gets invoked. In the interrupt handler, the 

driver checks the status_register of the card to find out the cause for the interrupt. It then performs the 

appropriate action in the interrupt handler. A sample status_register is shown in Figure 5-2. 

 31    30    29    28    27    26   3      2      1      0

 = 1 implies packet received

 = 1 implies packet transmitted  
Figure 5-2 Example of a Register 

 
While handling interrupts, some devices may require that a certain bit on the interface board be cleared to 

prevent other interrupts from being generated while an interrupt is being processed. But generally devices 

will not generate additional interrupts if there is an interrupt pending which will be reflected by the 

interrrupt_pending bit. The interrupt_pending bit gets cleared after the interrupt gets serviced. A simple 

interrupt handler might then look like this: 

  

void interrupt_handler(int irq, void *dev_id, struct pt_regs *regs)  

{ 

 switch(readb(status_register_in_card)) 

 { 

  case PACKET_RECEIVED: 

   . 

   . 

   break; 

  case PACKET_TRANSMITTED: 

   . 
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   . 

   break; 

  . 

  . 

 } 

 writeb(interrupt_register_in card, interrupt_pending = FALSE);  

} 

5.3.4 Device Methods 

The device structure has pointers to device methods that are part of the interface to the operating system. 

Each network device needs to specify these functions so that they can be acted upon. Device methods for a 

network interface fall into two categories: fundamental and optional. Fundamental methods are those that 

are needed to be able to use the interface. Optional methods are not strictly required and they implement 

more advanced functionalities. Some of the fundamental methods are:  

 

int (*open)(struct device *dev);  

 This method opens the interface. Before a network device can be used, it should be opened. This is 

done when ifconfig activates it and associates an IP address with it. 

 

int (*stop)(struct device *dev); 

 This method stops the interface. An interface is stopped when it is brought down. All operations 

that were performed as part of open should be reversed. 

 

int (*hard_start_xmit)(struct sk_buff *skb, struct device *dev);  

 This method requests the transmission of a packet. The packet is contained in a socket buffer 

(sk_buff) structure. 
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5.3.5 Packet Transmission and Reception 

When the kernel has a packet that needs to be transmitted, it calls the method hard_start_xmit. Each packet 

that is handled by the kernel is contained in a socket buffer structure called struct sk_buff, the 

definition of which is found in <linux/skbuff.h>. The buffer that is passed to hard_start_xmit is the 

actual physical data that needs to be transmitted. It has all the headers in place and is given to the driver to 

be transmitted across the link. After transmission the driver updates the appropriate statistics. 

 

When a packet is received, the driver copies it into a sk_buff. The driver then sets the protocol field in 

the sk_buff to that of the packet received and passes it to the upper layers for processing. The driver does 

this by calling the kernel function netif_rx() with the sk_buff structure as its parameter. The driver then 

updates the appropriate statistics. 
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CHAPTER 6  

 
 

DESIGN OF THE DRIVER 
 

 

6.1 Introduction 

As explained in Chapter 5, a device driver has two parts – an interface to the operating system, and, an 

interface to the card for which the driver is being written. The interface to the operating system is 

established after the operating system detects the card successfully. The interface to the card involves 

setting up the registers on the Tachyon and the Interphase (i)chipTPI chips. Once the interfaces have been 

set up, the Fibre Channel protocol, as described by the Internet Draft, can be implemented. As mentioned 

earlier, the Tachyon Fibre Channel controller performs the functionality up to the FC-2 layer. All other 

Fibre Channel functions like performing login procedures, error control mechanisms and node-validation 

mechanisms have to be implemented in the driver. 

 

6.2 Functions of the Driver 

6.2.1 Operating System Interface 

When the system boots up, the cards are detected and chained together in a list of networking devices. For 

this to happen, the card should be registered as a network device. Prior to registration, the device should 

select a unique name, say fc0, for itself. During registration, it should specify certain parameters like its 

MTU, size of its frame header, size of its address field and the maximum queue size needed at the IP level. 

Once registration is complete, the device should be part of the operating system’s list of networking 

devices. The network code of the Linux Operating System does not have native support for Fibre Channel. 

Currently, it supports technologies like Ethernet, FDDI and Token Ring. So functions to register a Fibre 
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Channel network card have to be added to the networking code in the Linux kernel. As part of the 

initialization process the driver also has to be able to detect multiple Fibre Channel cards of the same type. 

The driver then uses the existing operating system interface to request an Interrupt line for each device. 

Interrupts are the means by which the device communicates with the driver. While requesting an interrupt 

line, the driver also provides a function that will be called each time an interrupt occurs. As part of the 

initialization procedures, the driver also provides functions that can be called by operating system when it 

needs to open/close the device, transmit a packet through the device or get statistics about the device. 

 

6.2.2 Hardware Interface 

As mentioned in Chapter 3, the two pieces of hardware that the driver has to interact with are the Tachyon 

Fibre Channel controller and the Interphase (i)chipTPI. 

 

At system boot time, the driver needs to build the queues for Tachyon (discussed in chapter 3) in the host’s 

virtual memory and write the values of the size and location of the queues to the registers on the Tachyon. 

All entries in each of the queues are 32 bytes in length. Except for the IMQ, all the other queues must 

contain a minimum of two entries. The IMQ must have a minimum of four entries. Base addresses in host 

memory of the queues must be aligned on a sizeof (queue) boundary, i.e., 32 multiplied by the number of 

entries in the queue. The complexity of this task is compounded by the fact that most of these registers on 

the Tachyon are Write-only. The queues that need to be built are the OCQ, IMQ, SFSBQ and the MFSBQ. 

HPCQ, which is used for passing high priority commands, is not needed as all commands are treated with 

equal priority in this implementation of the driver. The MFSBQ is used for holding Multi-frame Sequences. 

If a frame that is larger than 2048 (which is the maximum number of bytes that Tachyon can send/receive 

in one frame) is received, Tachyon transfers it into the MFSBQ in chunks of 2048 bytes each. The driver 

then has to coalesce the 2048-byte buffers to create one large frame and pass it to the upper layers for 

processing. To make this process of coalescing buffers efficient, the MFSBQ is designed such that it 

occupies a huge chuck of contiguous physical memory. This minimizes the number of memcpy()s that are 

needed while coalescing the buffers. 
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6.2.3 Login/Logout Protocols 

Tachyon can be programmed such that it generates an interrupt after a frame is transmitted. Generating an 

interrupt for each frame is inefficient. So frames are transmitted with the interrupt bit set only if the frame 

is a Fibre Channel Extended Link Service (ELS) frame. This helps the driver to map the responses that it 

receives to the ELS frames that were transmitted. This is essential for managing the Login/Logout 

protocols (as mentioned in 2.3.3). Each frame that is transmitted has a field called the transaction_id in the 

ODB structure (Figure 3-2). When a frame has been successfully transmitted, Tachyon generates an 

interrupt (if enabled) and returns the transaction_id in the IMQ. The driver can use the transaction_id to 

keep track of frames that were sent out. 

 

6.2.4 Port Discovery 

Before an ARP request or an IP frame can be transmitted, the destination device should be logged in with 

the source. In Fibre Channel, login is performed by transmitting a frame called the PLOGI (Port LOGIn). 

The source and destination devices are considered to have logged into each other if one of the device 

transits a PLOGI and the recipient of the PLOGI transmits a PLOGI ACC (PLOGI Accept) in response to 

the PLOGI. The frame formats of these frames are defined in [2]. For the device to detect the presence of 

other devices, it needs to go through a process of Port Discovery.  

 

6.2.4.1 Private Loop 

Port Discovery can be performed in several different ways depending on the topology. In a simple 

Arbitrated Loop (with no FL_Port, i.e., in a non-switched environment), the device can poll for each valid 

AL_PA on the Loop. If it detects that there is a device with a particular AL_PA on the Loop, the device can 

go ahead and transmit a PLOGI to that device and get logged in. The Port Discovery process may be 

performed each time the Link gets reset. 

 

6.2.4.2 Public Loop 

In a switched environment, the discovery process is a bit simpler. But the device needs to transmit frames 

of different types to initially log into the Fabric (section 2.2). Fabrics are required to provide various 
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services at specialized addresses. The most important ones are the Directory Server at address hex 

"FFFFFC", Fabric Controller at address hex "FFFFFD" and Fabric F_Port at address hex "FFFFFE". 

When the Link comes up, if a device detects that an FL_Port is present on the Loop, the device should then 

transmit a FLOGI (Fabric LOGIn) to the Fabric F_Port at address hex "FFFFFE". When the device receives 

an ACC to the FLOGI, the device is considered to have logged into the Fabric. The device can then go 

ahead and transmit a PLOGI to the Directory Server at address hex "FFFFFC". The Directory Server 

maintains information about all the devices that have logged into the Fabric. After logging into the 

Directory Server, any device can probe the Directory Server for information about the other devices that are 

logged in to the Fabric. Once the result of the probe to the Directory Server is received, the device can then 

perform PLOGI to those devices. The target devices may be connected to different ports on the Fabric. 

Some of them might be on the same local loop as the source device and some of them might be connected 

to remote ports. If the local Loop gets interrupted, the source device can perform the Port discovery 

procedure as mentioned above for the switched environment and reestablish login. There is the case where 

the state of the remote devices can change. The source device needs to know whenever the state of the 

Fabric changes. This can be accomplished by performing a State Change Registration (SCR) with the 

Fabric Controller at address hex "FFFFFD". Once SCR has been transmitted and it has been accepted by 

the Fabric Controller, then the device that transmitted the SCR will be notified if there is any change in the 

state of the Fabric. The recipient device can then perform the login validation with the devices whose states 

have changed.  

 

 



42 

CHAPTER 7  

 
 

IMPLEMENTATION OF THE DRIVER 
 

 

7.1 Address Maps 

The (i)chipTPI can access all components on the board through memory-mapped I/O. The (i)chipTPI 

requires 1KB of memory space. The base address is written into the PCI Configuration Memory Base 

Address register (Figure 5-1) as part of the initialization process. The driver should retrieve this base 

address from the PCI Configuration space and then map it into a virtual memory address (as explained in 

section 5.2.2). The map of the memory space looks like this: 

  

Function Start Address End Address 
(i)chip registers 0x000 0x0FF 

Repeat of (i)chip registers 0x100 0x1FF 
Tachyon 0x200 0x3FF 

 

    Figure 7-1 Memory Space Map 

 

The actual address in the host system of the driver would be the base address in virtual memory that is 

returned by ioremap() (section 5.2.2) plus the addresses shown in Figure 7-1. 

 

7.2 Register Structure 

This section lists the registers relevant to the driver for the Tachyon and (i)chipTPI chips as described in 

the corresponding user manuals ([11] and [12]). All registers are 32-bit registers. 
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7.2.1 Tachyon Registers 

Tachyon has three different sets of registers: Queue registers, Frame Manager registers and Tachyon 

registers. Each queue has a set of 5 registers. 

Registers for the Outbound Command Queue (OCQ): 

• OCQ Base Address register - stores the base address of the OCQ. 

• OCQ Length register - stores the number of entries in the OCQ. 

• OCQ Producer Index register - points to the next empty entry in the OCQ that the driver can 

use to provide data to Tachyon. 

• OCQ Consumer Index Address register - points to the next OCQ entry that Tachyon will 

process. 

• Host's Copy of Tachyon's OCQ Consumer Index - this resides in host memory. 

Registers for the Inbound Message Queue (IMQ): 

• IMQ Base Address register - stores the base address of the IMQ. 

• IMQ Length register - stores the number of entries in the OCQ. 

• IMQ Consumer Index register - points to the next completion message that needs to be 

processed by the driver. 

• IMQ Producer Index Address register - points to the next empty entry that Tachyon can use to 

post a completion message. 

• Host's Copy of Tachyon's IMQ Producer Index - resides in host memory. 

Single Frame Sequence Buffer Queue (SFSBQ): 

• SFSBQ Base Address register - stores the base address of the SFSBQ. 

• SFSBQ Length register - stores the number of entries in the SFSBQ. 

• SFSBQ Producer Index register - points to the current end of the SFSBQ. 

• SFSBQ Consumer Index register - used by Tachyon to store incoming SFS. 

• SFS Buffer Length register - stores the length of each SFS buffer. 

Multi Frame Sequence Buffer Queue (MFSBQ): 

• MFSBQ Base Address register - stores the base address of the MFSBQ. 
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• MFSBQ Length register - stores the number of entries in the MFSBQ. 

• MFSBQ Producer Index register - points to the current end of the MFSBQ. 

• MFSBQ Consumer Index register - used by Tachyon to store incoming MFS. 

• MFS Buffer Length register - stores the length of each MFS buffer. 

The Tachyon registers include: 

• Tachyon Configuration register 

• Tachyon Control register 

• Tachyon Status register 

The Frame Manager registers include: 

• Frame Manager Configuration register 

• Frame Manager Control register 

• Frame Manager Status register 

• Frame Manager Timeout register 

• Frame Manager World Wide Name High register 

• Frame Manager World Wide Name Low register 

• Frame Manager Received AL_PA register 

 

7.2.2  (i)chipTPI Registers 

The (i)TPI consists of several registers, the most important of which are: 

• Hardware Control Register 

• Hardware Status Register 

• Hardware Address Translate Base Register 

 

7.3 Programming (i)chipTPI 

The first step in using the (i)chipTPI is to reset it. This is performed by asserting the reset bit on the 

Hardware Control Register and then de-asserting it. The Hardware Control Register also has bits that 

enable or disable interrupts that come from Tachyon. The bits that correspond to the Tachyon interrupts 
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should be enabled. Each time Tachyon sends an interrupt, the Interrupt Latch on the Interphase (i)chipTPI 

gets set. The bit corresponding to the Interrupt Latch is present on Hardware Status Register. The Interrupt 

Latch should be cleared each time an interrupt gets serviced. If the latch is not cleared, further interrupts 

from Tachyon will not be passed on to the driver. The Tachyon is a Big-Endian device while the Interphase 

(i)chipTPI is natively Little-Endian. By default, the Interphase (i)chipTPI performs a Little-Endian to Big-

Endian conversion before handing out the data to Tachyon. So the bit that enables the byte-swap capability 

of the (i)chipTPI should be asserted in the Hardware Address Translate Base register. 

  

7.4 Reading the NOVRAM 

The World Wide Name of the device is stored in a Non-Volatile RAM (NOVRAM) on the card. The 

NOVRAM stores 1024 bits. The value that is of immediate concern to the driver is the World Wide Name 

that is stored in the NOVRAM. The NOVRAM is read and the World Wide Name is retrieved. The 

retrieved value then needs to be written to the Frame Manager World Wide Name High and Low registers 

as described in section 7.4.3. The driver then sets the MAC address of the device to the last 6 bytes of the 

World Wide Name that was read from the NOVRAM. The base address of the NOVRAM is the same as 

the address of the Hardware Control register of the (i)chipTPI. 

 

7.5 Programming Tachyon 

Before Tachyon can be used, the registers on Tachyon must be programmed correctly. The first step is to 

perform a "software reset" on the Tachyon Configuration register. This initializes the registers to their 

default power-on values. Tachyon is taken to an "offline" state before programming its registers. The 

following section describes how each of the other relevant registers should be programmed. 

 

7.5.1 Taking Tachyon Offline 

Tachyon must be in the "offline" state (power-up state) before the registers of Tachyon are programmed. 

To take Tachyon reliably into the "offline" state, the following needs to be performed. 

If Tachyon is on a Loop and the Loop is up, then, 
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• Clear the Frame Manager Configuration register 

• Write the "Initialize" command into the Frame Manager Control register 

• Write the "Offline" command into the Frame Manager Control register. 

If Tachyon is configured for a Loop topology and if the Loop is down, then, 

• Write the "Host Control" command into the Frame Manager Control register 

• Write the "Offline" command into the Frame Manager Control register. 

• Write the "Exit Host Control" command into the Frame Manager Control register. 

Once Tachyon has been programmed to the "Offline" state, the other registers can be written into. 

 

7.5.2 Building the Queues 

As mentioned in section 6.2.2, at least four of the five queues need to be built by the driver at system boot 

time. Each queue should be contiguous in host’s physical memory. Each queue entry is 32 bytes in length. 

The base addresses of the queues should be aligned on sizeof (queue) boundary, i.e., 32 multiplied by the 

number of entries of the queue. This is achieved by using the kernel function __get_dma_pages() which 

returns contiguous parts of physical memory on the host system that can be used for Direct Memory Access 

(DMA). 

__get_dma_pages() returns a contiguous part of host memory that can be used for DMA. 

unsigned long __get_dma_pages(int priority, unsigned long order)  

where: 

• priority could be flags like GFP_KERNEL or GFP_ATOMIC. The former indicates that 

the allocation is performed in kernel space and the later is used when the allocation is done 

outside the context of the process (like in interrupt handlers).  

• order is the power of two of the number of pages that is being requested. Current versions 

of Linux restricts the value to be less than or equal to 5 which means that the maximum 

amount of contiguous memory that can be allocated is 256KB on the Alpha and 128KB on the 

Intel (Page size is 8KB on Alpha and 4KB on Intel). 
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The OCQ, IMQ, SFSBQ and MFSBQ are allocated using the above function call. As described in section 

3.2.1, each queue has four components. The queue itself, the queue length, the producer index and the 

consumer index. The base address of each queues returned by the __get_dma_pages() function is written to 

the Base Address register corresponding to that queue. The number of entries present in each queue is 

written to the Length register of the corresponding queue. 

 

For the OCQ, the driver on the host system is the producer and Tachyon is the consumer. The driver, as the 

producer, creates ODBs and copies them into the OCQ. After filling in each OCQ entry, the driver 

increments the OCQ Producer Index register. The producer index points to the next empty entry that the 

driver can use to create ODBs. Tachyon, being the consumer, processes the ODB and then increments the 

OCQ Consumer Index. The OCQ Consumer Index resides in host memory. The address in host memory 

where the OCQ Consumer Index should reside is written to the OCQ Consumer Index Address register. 

 

For the IMQ, the Tachyon is the producer and the driver on the host system is the consumer. Tachyon, as 

the producer, fills in IMQ entries. IMQ entries are used up whenever Tachyon posts a completion message. 

After filling in each IMQ entry, the Tachyon increments the IMQ Producer Index register. The producer 

index points to the next empty entry that Tachyon can use to post completion messages. The driver, being 

the consumer, processes the completion message in the IMQ and then increments the IMQ Consumer 

Index. The IMQ Producer Index resides in host memory. The address in host memory where the IMQ 

Producer Index should reside is written to the IMQ Producer Index Address register. 

 

For the SFSBQ and MFSBQ, the driver on the host system is the producer and Tachyon is the consumer. 

The driver, as the producer, fills in entries with pointers to empty data buffers. These addresses are the 

addresses of buffers into which Tachyon will DMA a received Single-Frame or Multi-Frame Sequence. 

The SFSBQ and MFSBQ, like all the other queues has 32-byte entries in it. Each 32-byte entry holds eight 

32-bit addresses. The driver has to allocate 8*(number_of_sfsbq_entry or number_of_mfsbq_entry) buffers 

each of size sfsbq_buffer_length or mfsbq_buffer_length and write the addresses of these buffers into the 

page allocated for the queue. After the driver writes in 8 addresses, it increments the SFSBQ or MFSBQ 
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Producer Index register. The Producer Index points to the current end of queue. At initialization time, the 

driver fills in all the entries and updates the corresponding Producer Index. The size of the buffers that are 

allocated is written to the corresponding Buffer Length register. Tachyon, as the consumer, uses the 

pointers into the queue to store incoming SFS or MFS. When Tachyon completes storing an SFS or an 

MFS, it writes the index of the SFSBQ or MFSBQ entry that is currently being used to store the SFS or the 

MFS into the SFSBQ or MFSBQ Consumer Index register. 

 

Once the queue registers on Tachyon are initialized with the appropriate values, Tachyon DMAs data 

directly to the addresses that were handed down to Tachyon. So the addresses that are handed to Tachyon 

should not be virtual memory addresses. Instead they must correspond to the real physical address (bus 

address) on the system. Also, while retrieving data from address that were handed to Tachyon, the reverse 

function, i.e., conversion from bus address to virtual memory address, should be performed. This is 

achieved by using the kernel functions: 

• bus_to_virt() 

• virt_to_bus() 

bus_to_virt() converts a bus address to a virtual address in host memory. 

 unsigned long * bus_to_virt(unsigned long addr);  

where: 

 addr is the bus address whose virtual address needs to be found. 

virt_to_bus() converts a virtual address in host memory to a bus address. 

 unsigned long virt_to_bus(unsigned long *addr);  

where: 

 addr is the virtual address whose bus address needs to be found. 

 

While passing values to Tachyon or while retrieving data given by Tachyon, it should be kept in mind that 

Tachyon expects the data to be in network byte order (big-endian). Appropriate conversions are made using 

the functions: 
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• ntohs() 

• ntohl() 

• htons() 

• htonl() 

ntohs() converts a 2-byte value from the network byte-ordering to the byte-ordering used by the host. 

 unsigned short ntohs(unsigned short value);  

where: 

 value is the 2-byte number whose byte-ordering needs to be changed. 

Similarly, ntohl()converts a 4-byte value from the network byte-ordering to the byte-ordering used by the 

host. 

htons() converts a 2-byte value from the byte-order used by the host to the network byte-ordering.

 unsigned short htons(unsigned short value);  

where: 

 value is the 2-byte number whose byte-ordering needs to be changed. 

Similarly, htonl()converts a 4-byte value from the byte-order used by the host to the network byte-ordering. 

 

7.5.3 Configuring Frame Manager and Tachyon Registers 

Once the queue registers have been programmed, the Frame Manager and Tachyon registers need to be set 

to the appropriate values. The Frame Manager Configuration register is configured to select an AL_PA in 

the desired phase of Loop Initialization. The Frame Manager Timeout registers are then programmed with 

the values that should be used for E_D_TOV (Error Detect Time Out) and R_T_TOV (Receiver 

Transmitter Time Out). These timers and their use are specified by the Fibre Channel standards [6] and [7]. 

The World Wide Name retrieved from the NOVRAM is then written to the Frame Manager World Wide 

Name High and Low registers. Once the above mentioned registers have been programmed, Tachyon is 

"initialized" by writing the "Initialize" command into the Frame Manager Control register. Tachyon uses 

the values written into its registers to initialize the Loop. When the Loop comes up, Tachyon sends an 

interrupt to the driver informing it that the Loop has been initialized. When the driver receives the "Loop 

Up" interrupt, it can go ahead and perform the Port Discovery procedures described in section 6.2.4. 



 50

 

7.6 Completion Messages 

Tachyon generates completion messages for various events. All completion messages are 32 bytes long. 

Tachyon passes the completion message to the driver by writing it as an entry into the IMQ. The first 4 

bytes of each IMQ entry indicate the type of the completion message. The remaining 28 bytes contain 

additional information or pad words depending on the type of the completion message. The different types 

of completion messages that are relevant at this point are: 

• Outbound completion message with interrupt (outbound_i) 

• Inbound SFS completion message (inbound_sfs) 

• Inbound MFS completion message (inbound_mfs) 

• SFS buffer warning completion message (sfs_buf_warn) 

• MFS buffer warning completion message (mfs_buf_warn) 

• IMQ buffer warning completion message (imq_buf_warn) 

• Frame Manager Interrupt completion message (frame_mgr_interrupt) 

The Outbound completion message indicates that an entry from the outbound queue OCQ has been 

processed or has been interrupted by an error. The Inbound completion message indicates that Tachyon has 

received either a Single or Multi-Frame Sequence. The Buffer warning completion messages are generated 

by Tachyon to warn the driver that the resources available are on the verge of being exhausted. An 

sfs_buf_warn or an mfs_buf_warn completion message is generated when only one SFSBQ or MFSBQ 

entry is available to receive data. Tachyon generates an imq_buf_warn completion message when only 2 

empty entries are left in the IMQ. The Frame Manager may generate a frame_mgr_interrupt completion 

message to inform the driver that the configuration of the link has changed or that an error has occurred. 

The driver should then read the Frame Manager Status register to determine the cause of the completion 

message and take necessary actions. 
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7.7 Transmitting a Frame 

For transmitting a frame, the driver needs to follow the procedures documented in section 3.2.1.1 (Transmit 

Process Overview). The Tachyon Header structure (shown in Figure 3-2) has a one-byte field called 

"AL_PA". This is the last byte of the dynamically assigned 3-byte Fibre Channel address of the target 

device. When Tachyon has a frame to be transmitted, it arbitrates for access to the medium and then opens 

a connection with the target device. It then transmits the frame to the device with which it had opened a 

connection. Once the frame has been transmitted, Tachyon closes the active connection and relinquishes 

control of the medium. This procedure is carried out for each frame that needs to be transmitted. 

 

The value of the "AL_PA" field in the Tachyon Header structure depends on the topology.  

• In a Private Loop (section 2.2), i.e., in a topology with no FL_Port, the dynamically assigned Fibre 

Channel address of each device is of the form hex "0000XX", where XX = AL_PA of the device. 

When the driver needs to transmit a frame to an AL_PA "YY", it puts the value "YY" into the 

"AL_PA" field in the Tachyon Header structure and sets the destination address to the address of the 

target device. Tachyon then takes care of opening a connection with the device with AL_PA "YY" and 

then transmits the frame. If a frame needs to be broadcast (as in the case of an ARP request), the driver 

fills in the "AL_PA" field of the Tachyon Header structure with value hex "FF" and sets the destination 

address to hex "FFFFFF". 

• In a Public Loop (section 2.2), i.e., in a topology where there is an FL_Port, the target device can be 

either on the local Loop or it could be connected to a remote port on the switch. If the target device is 

on the same local Loop, the driver then fills in the "AL_PA" field of the Tachyon Header structure in 

the same manner as it did as in the case of the Private Loop scenario. If the target device is not on the 

local Loop, the task of passing on the frame to the target device rests with the switch. For achieving 

this, the driver fills in the value of the "AL_PA" field in the Tachyon Header structure with hex "00", 

which is the AL_PA reserved for the FL_Port. Tachyon then opens a connection with the FL_Port and 

transmits the frame to the FL_Port with the destination address set to the address of the target device. It 

is then the task of the FL_Port to route the received frame to the target device. If a frame needs to be 

broadcast (as in the case of an ARP request), the driver fills in the "AL_PA" field of the Tachyon 
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Header structure with value hex "00" and sets the destination address to hex "FFFFFF". It is the 

responsibility of the switch to broadcast the received frame both to the Loop on which the frame 

originated and also to all other remotely connected devices. 

 

7.8 Login/Logout Protocols 

After the driver has written the "Initialize" command into the Frame Manager Control register, Tachyon 

generates a frame_mgr_interrupt completion message and fills it in as an entry in the IMQ. The driver can 

then read the Frame Manager Status register to see the status of the Loop. If the "Loop Up" bit is set, it 

means that Loop initialization has been completed and that the device has obtained a unique AL_PA. The 

next task of the driver is to detect if it is on a Private or Public Loop. This can be determined by trying to 

transmit a FLOGI. If the FLOGI fails, it implies that an FL_Port does not exist on the local Loop and the 

driver can perform the Port Discovery procedure described in section 6.2.4.1. If the FLOGI completes 

successfully, it implies that an FL_Port is present on the local Loop. The driver can then perform the Port 

Discovery procedure described in section 6.2.4.2. Once the Port Discovery process has been completed, the 

driver has logged in with all the devices that are known to it through the Port Discovery process. Any 

device can log out with any other device by transmitting a Fibre Channel Extended Link Service (ELS) 

frame called the LOGO. The format of the frame is defined in [2]. Upon receiving a LOGO frame, the 

driver frees up all resources and information associated with the device that transmitted the LOGO. Before 

transmitting an ARP response or any IP frame, the devices must be logged in with each other. If an ARP 

response or an IP frame needs to be transmitted and if the target device is not logged in, then the driver 

performs a PLOGI with the target device. Upon receiving an ACC in response to the PLOGI, the ARP 

response or IP frame can be transmitted.  
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7.9 Things to Keep in Mind 

There are several minor details that need to kept in mind while using the Tachyon. The most important ones 

are listed below: 

• If the driver tries to transmit a frame to an AL_PA that does not exist on the local Loop, 

Tachyon posts a frame_mgr_interrupt completion message in the IMQ informing the driver that 

the AL_PA does not exist. Also, the Outbound Sequence Manager (OSM) (Figure 3-2) gets 

frozen. If the OSM is in a frozen state, Tachyon will not be able to transmit further frames. It is 

the responsibility of the driver to unfreeze the OSM. The driver does this by asserting the "Error 

Release" bit and the "OCQ Reset" bit in the Tachyon Control register. 

• The OSM also gets frozen when a link that was "up" goes "down". The recovery procedure is 

the same as the one documented above. 

• While performing an OCQ reset, the reset might not occur the instant the driver asserts the 

"OCQ Reset" bit of the Tachyon Control register. It is the responsibility of the driver to check 

the Tachyon Status register to check if the reset has been completed before proceeding. The bit 

in the Tachyon Status register that informs the driver about the state of the reset is called the 

"OCQ Reset Status" bit. 

• Whenever the driver hands Tachyon an address in host memory, make sure that the driver is 

handing Tachyon the physical address on the host system. Handing out a virtual memory 

address is asking for trouble! 

• While performing Port Discovery in a Private Loop, the driver will try to transmit PLOGI 

frames to all valid AL_PAs sequentially. During the process, whenever Tachyon detects that 

there is no device on the local Loop with the AL_PA that is used, it sets a bit in its internal 

registers to indicate that the AL_PA used was bad. But it erroneously does not clear that bit 

after processing has been completed. It clears the bit only after it has successfully transmitted a 

frame to a valid AL_PA. As a result, the driver should take some action to clear up the mess. 

The technique that this driver uses is to transmit a frame to itself whenever Tachyon informs the 

driver that an AL_PA used is invalid. When Tachyon succeeds in transmitting a frame to itself, 

the bad bits are cleared and sanity is restored. 
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• For an incoming frame, if Tachyon detects an incorrect CRC, it discards the frame.  

• If the driver hands out a frame to Tachyon with a payload size exceeding 2048 bytes (maximum 

payload that Tachyon can transmit in one frame), Tachyon splits the frame into multiple frames 

and then transmits them as a Multi-Framed Sequence by correctly setting the appropriate bits in 

the frame header. 

  

7.10 Clones 

There are other companies in the market that uses Tachyon as their Fibre Channel controller on their Fibre 

Channel cards. The only major difference between those cards and the Interphase 5526 PCI Fibre Channel 

card is the interface to the PCI bus. This driver can be made to work for those cards by changing the 

functions that interact with the PCI interface. 
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CHAPTER 8  

 
 

TESTING AND EVALUATION 
 

 

The driver was run through the test suites developed by the University of New Hampshire's 

InterOperability Lab's Fibre Channel consortium. The test suites that were run on this driver were the FC-

AL (Arbitrated Loop), FC-FLA (Fabric Loop Attachment) and FC-PLDA (Private Loop Direct Attach) test 

suites. Apart from the Fibre Channel conformance-like test suites, tests to measure the performance of the 

driver from an IP standpoint were also made. 

 

8.1 Fibre Channel Conformance Tests 

8.1.1 FC-AL Testing 

The FC-AL test suite tests the conformance of a Device Under Test (DUT) to the Fibre Channel Arbitrated 

Loop standard (ANSI X3.272-1996). The test suite essentially tests the Fibre Channel protocol chip that is 

used. This driver uses the Tachyon Fibre Channel Controller as its protocol chip. Therefore the “passes” 

and “fails” in the test report are attributed mainly due to the features provided or not provided by the 

protocol chip. Since the test report is very detailed and voluminous, it is not included here. Copies of the 

report can be obtained from the University of New Hampshire’s InterOperability Lab’s web page at 

www.iol.unh.edu/consortiums/fc/fc_linux.html. 

 

8.1.2 FC-FLA Testing 

The FC-FLA test suite tests the conformance of the DUT to the Fabric Loop Attachment 2.7 standard. The 

test suite tests the features provided by the driver for working in a switched environment. The driver has 

passed most sections of the test suite. The features that have not been implemented in the driver include 
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Fabric Address Notification (FAN) as documented in [8]. Those have been left for future improvements. 

Since the test report is very detailed and voluminous, it is not included here. Copies of the report can be 

obtained from the University of New Hampshire’s InterOperability Lab’s web page at 

www.iol.unh.edu/consortiums/fc/fc_linux.html. 

 

8.1.3 FC-PLDA Testing 

The FC-PLDA test suite tests the conformance of the DUT to the Private Loop Direct Attach Profile. The 

test suite tests the features provided by the driver for working in a non-switched environment. The driver 

has passed most sections of the test suite. The features that have not been implemented in the driver include 

the ABTS protocol as documented in [7]. Those have been left for future improvements. Since the test 

report is very detailed and voluminous, it is not included here. Copies of the report can be obtained from 

the University of New Hampshire’s InterOperability Lab’s web page at 

www.iol.unh.edu/consortiums/fc/fc_linux.html. 

 

8.2 Performance Testing 

The driver was set up on two platforms. Each machine was a 200MHz Pentium with 64MB RAM running 

Linux 2.2.5. The configuration for the tests is shown below: 

Figure 8-1 Setup for Performance Tests 

 
 

Two different types of tests were performed on the driver. One of them was called the “ping” test and the 

other was called the “blast” test. In the “ping” test, one of the implementations acted as the server and the 

Arbitrated Loop Hub

Node A Node B
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other as the client. One message of fixed size was transferred back and forth between the server and client 

10000 times. The purpose of this test was to measure the Round Trip Time (RTT) for messages of different 

sizes. The “ping” test was run using both UDP and TCP/IP. In the “blast” test, the client generated 10000 

data messages and transmitted these to the server. The server just discarded the data. The purpose of this 

test was to measure the actual throughput achieved in MBps. TCP was used to perform the “blast” test. 

 

The tests were run with the MTU of the driver set to various values. The different MTUs that were used 

were 2024, 4072, 8168, 16360 and 32744 bytes. The reason behind selecting these values as MTUs is 

described below. The maximum payload that Tachyon can transmit in a Fibre Channel frame is 2048 bytes. 

If more than 2048 bytes are handed to Tachyon, it will then fragment the data into chunks of 2048 bytes 

and transmit them. As described in section 4.3.1, for each IP/ARP frame, an eight-byte LLC/SNAP header 

and a sixteen-byte Network Header are added. Each IP frame is transmitted as a single Fibre Channel 

Exchange. So the maximum useful data that a single Fibre Channel Exchange can contain is (payload - 24) 

bytes. So when the MTU is set to 2024, each full IP packet is transmitted as one full sized (2048 bytes) 

Fibre Channel frame. In this case, fragmentation is done by the IP code. Whereas when the MTU is set to 

anything higher than 2024, fragmentation is done in hardware by Tachyon. As MTU size increases, the 

degree of fragmentation done by the IP layer decreases and the degree of fragmentation done by the 

hardware increases. 

 

While using TCP, the factors that come into play when determining performance are: 

• Nagle Algorithm 

• Delayed Acknowledgements 

TCP being a streaming protocol uses the Nagle algorithm. The Nagle algorithm reduces the number of 

small packets sent by a host. The Nagle algorithm works as follows: 

• The first message always gets transmitted. 

• For subsequent messages, if the messages do not form full-sized packets, they are buffered at 

the sender until either a full-sized packet can be transmitted or the acknowledgement for all 

previously transmitted data is received. 
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Thus the Nagle algorithm helps in avoiding the transmission of numerous very small packets and improves 

the ratio of useful data in a packet.  

The purpose of Delayed Acknowledgements is to avoid transmission of explicit acknowledgements with 

the hope that acknowledgements can be piggybacked on outgoing data packets. There are rules that 

determine when the receiver should transmit an acknowledgement to the sender for the data received. The 

receiver will delay sending an acknowledgement until one or more of the following becomes true: 

• It receives two full-sized frames. 

• It receives out-of-order data, or, 

• It receives a window update. 

When it receives a packet and if none of the above conditions is true, the receiver then starts a timer. It 

sends an acknowledgement after the timer expires or when any of the conditions become true. The aim of 

delaying acknowledgements is to minimize traffic caused by transmitting explicit acknowledgement. 

 

The tests were performed for different MTUs with the four possible conditions: 

• Nagle Enabled, Delayed Acknowledgements Enabled 

• Nagle Enabled, Delayed Acknowledgements Disabled 

• Nagle Disabled, Delayed Acknowledgements Enabled 

• Nagle Disabled, Delayed Acknowledgements Disabled 

 

The user program can control enabling and disabling Nagle. This is done by setting the TCP_NODELAY 

option ON or OFF while setting the socket options. On the other hand, disabling Delayed 

Acknowledgements involves changing the kernel source code and recompiling it. 

 

In a high-speed network like Fibre Channel, it might not be very effective to delay the transmission of 

acknowledgements or to try to minimize the number of packets transmitted. The time spent waiting for 

timers to expire before transmitting could be potentially used to transmit useful data. This is the rationale 

behind trying out the above-mentioned combinations. 
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8.2.1 Ping Test  

As mentioned in section 8.2, the "ping" tests were performed using both TCP and UDP.  

8.2.1.1 Ping Tests with TCP  

The graphs for the "ping" test results using TCP are shown in Figures 8.2 - 8.5. The Round Trip Time in 

each case is shown. For each test, one message was sent back and forth 10000 times. The values reported 

are the average from 10 runs of each test. 

When both Nagle and Delayed Acknowledgements are enabled, the graph in Figure 8-2 depicts sharp 

spikes when the message sizes hit MTU boundaries. When the graphs in Figure 8-2 and Figure 8-3 are 

compared, it can be observed that disabling Delayed Acknowledgements avoids the spikes that are seen 

when Delayed Acknowledgements are enabled. In the kernel, the implementation of Delayed 

Acknowledgements is such that the acknowledgements are delayed until the receiver receives at least two 

full frames. When the message size is just above the MTU size, the receiver waits for the second frame to 

arrive before sending an acknowledgement, while the sender waits for the acknowledgement of the first 

frame before transmitting the second frame. The receiver finally transmits an acknowledgement after a 

timer expires. This happens for each iteration of the message and hence the spikes in the graph shown in 

Figure 8-2. 

 

In the other cases shown in Figure 8-4 and Figure 8-5, the performance is almost identical to that shown in 

Figure 8-3. In the cases where Delayed Acknowledgements are disabled, explicit acknowledgements are 

sent by the receiver for each packet. The performance in these cases does not seem to degrade. This is due 

to the fact that the available bandwidth is not utilized completely. 

 

Therefore the conclusion is that Delayed Acknowledgments must be disabled for better performance in the 

“ping” tests. The problem with this is that enabling or disabling Delayed Acknowledgements is not under 

user control. In order to disable it, the source code of the kernel has to be changed. 
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Ping Test with TCP, Nagle Enabled and Delayed ACKs Enabled
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Figure 8-2 TCP Ping with Nagle Enabled and Delayed Acknowledgements Enabled 
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Ping Test with TCP, Nagle Enabled and Delayed ACKs Disabled
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Figure 8-3 TCP Ping with Nagle Enabled and Delayed Acknowledgements Disabled 
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Figure 8-4 TCP Ping with Nagle Disabled and Delayed Acknowledgements Enabled 
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Ping Test with TCP, Nagle Disabled and Delayed ACKs Disabled
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Figure 8-5 TCP Ping with Nagle Disabled and Delayed Acknowledgements Disabled 
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8.2.1.2 Ping Tests with UDP 

The graph for the "ping" test results using UDP is shown in Figure 8-6. 

For each test, one message was sent back and forth 10000 times. The values reported are the average from 

10 runs of each test. The Round Trip Time (RTT) for messages of different sizes when the MTU was set to 

different values is shown below.  
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Figure 8-6 Ping Test with UDP 

UDP does not have the options (Nagle and Delayed Acknowledgements) that were tested with TCP. The 

number of packets transmitted is relatively higher than TCP (because of the absence of optimizing 

algorithms like Nagle) and hence the poorer performance when compared to TCP. For example, comparing 

graphs in Figure 8-3 and Figure 8-6, the maximum round-trip-time for MTU = 32744 bytes is 7 msecs 

using TCP while it is about 7.5 msecs for UDP. 
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8.2.2 Blast Test 

The graphs for the "blast" test results using TCP are shown in Figures 8.7 - 8.10. 

The throughputs for different MTUs under different conditions are shown below. The different conditions 

are: 

• Nagle Enabled and Delayed Acknowledgements Enabled 

• Nagle Enabled and Delayed Acknowledgements Disabled 

• Nagle Disabled and Delayed Acknowledgements Enabled 

• Nagle Disabled and Delayed Acknowledgements Disabled 

For one test, 10000 messages were sent from the client to the server. The values reported are the average 

from 10 runs of each test. 

 

For the case where both Nagle and Delayed Acknowledgements are enabled (Figure 8-7), the throughput 

increases steadily as the message size increases. In the case where Nagle is disabled and Delayed 

Acknowledgement is enabled (Figure 8-8), the graph depicts bad performance. This is attributed to a bug in 

the implementation in the Linux kernel related to the code used when the Nagle algorithm is disabled. 

When sending a bunch of small messages, Linux allocates full MTU sized buffers for each message even 

though only part of the buffer is actually used when Nagle is disabled. The sender does not free them until 

they have been acknowledged. But there is a limit (set by the SO_SNDBUF option) on the buffer space that 

can be allocated to a socket connection. When a lot of small messages are sent, this limit will be exhausted 

rapidly and the sending process will stop transmitting. However, the receiver does not know this, and will 

transmit an acknowledgement only after some delay because the TCP window has not been exhausted.  

 

Comparing Figure 8-9 and Figure 8-10, it can be observed that when Nagle is enabled, the throughput for 

lower message sizes is significantly higher when compared to that when Nagle is disabled. The effect of 

Nagle is not significant as the message sizes increase beyond 1000 bytes. Also, Delayed 

Acknowledgements does not seem to affect performance in the “blast” tests. 

 

From this we conclude that Nagle should be enabled for better performance for the “blast” tests. 
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All the graphs depict an asymptotic behavior as the MTU increases beyond 1000 bytes. This is due to the 

fact that the CPU on the machines that were running the tests was running at 100% utilization. Once the 

CPU utilization reaches 100%, the throughput remains the same no matter what the message size is. 
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Figure 8-7 Blast Test with Nagle Enabled and Delayed Acknowledgements Enabled 
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Blast Tests with Nagle Disabled and Delayed ACKs Enabled
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Figure 8-8 Blast Test with Nagle Disabled and Delayed Acknowledgements Enabled
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Blast Tests with Nagle Enabled and Delayed ACKs Disabled
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Figure 8-9 Blast Test with Nagle Enabled and Delayed Acknowledgements Disabled 
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Figure 8-10 Blast Test with Nagle Disabled and Delayed Acknowledgements Disabled 
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Blast Tests with MTU = 8168
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Figure 8-11 Blast Test with MTU = 8168 bytes 

Although the MTU size did not significantly affect performance in the “ping” test, the graphs in Figure 8-7 

through 8-10 show that the best performance in all four cases of the “blast” test is obtained when the MTU 

is set to 8168 bytes. The graph in Figure 8-11 shows the throughput when MTU is set to 8168 bytes and the 

other factors are varied.  It can be seen that when both Nagle and Delayed Acknowledgements are enabled, 

the performance is the best. However, we have already concluded that enabling Delayed 

Acknowledgements affects the “ping” tests in a bad manner. In order to get the best performance for both 

“ping” and “blast” tests, it is necessary to enable Nagle and disable Delayed Acknowledgements. As shown 

in Figure 8-11, this combination reduces the performance in the “blast” test only slightly from the best 

combination. 
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8.3 Ideal Throughput 

The ideal throughput can be calculated by first calculating the total time taken to transmit a message and 

then determining the number of bytes that can be transmitted in one second.  

Total time to transmit a message = time to transmit a data frame + time due to overhead. 

Time due to overhead = delay introduced by components (cable, node, hub) + time to transmit signaling 

data. 

On a Fibre Channel link running at 1.0625 Gbps, the time to transmit a byte (i.e., 10 bits – due to the 

8B/10B encoding as described in section 2.3.4) = 9.375 nanoseconds. 

Therefore, the time to transmit a word (4 bytes, i.e., 40 bits) on a Fibre Channel link =  

9.375 nanoseconds/byte * 4 bytes/word = 37.5 nanoseconds/word. 

Delay due to components 

• Cable delays 

According to [2], the maximum transmission delay caused by the fibre used = 5 

nanoseconds/meter.  

For the tests performed in this thesis, the distance between each node and the hub = 5 meters. 

The one-way delay due to one cable = (5 nanoseconds/meter)*(5 meter) = 25 nanoseconds. 

Therefore, the one-way delay caused by two cables in terms of words =  

(2*25 nanoseconds)/(37.5 nanoseconds/word) = 1.33 words. 

• Node delays 

According to [2], the maximum delay at each node during transmission in terms of words  = 6 

words. 

Therefore the maximum delay caused on a two-node network during transmission in terms of 

words = 2*6 words = 12 words. 

• Hub delays 

The ports on the hub through which the nodes were connected cause a delay in transmission. The 

delay caused on each port on the hub in terms of words  = 2 words/node. 

Therefore, the delay caused by connecting two nodes through a hub = 2*2 words = 4 words. 
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The total one-way delay caused by: 

• cable = 1.33 words 

• node delays = 12 words 

• hub delays =  4 words 

Therefore, the Round Trip Time (RTT) due to components on a two node network using a 5 meter cable 

through a hub = 2*(1.33 + 12 + 4) words = 34.66 words. 

 

Time to transmit signaling data 

In an Arbitrated Loop, there are three Round Trip Times involved in transmitting a frame.  

• First, the node that wishes to transmit needs to gain control of the Loop (which is a shared 

medium) by a process called arbitrating. To gain access to the Loop, the node transmits a 4-byte 

word called an ARB. When the ARB goes around the Loop and returns to the node that 

transmitted the ARB, it means that there is no other node that wants control of the Loop and that it 

can go to the next step towards transmitting a frame. 

• After the source node has won arbitration, it opens the destination node. A source node opens a 

destination node by transmitting a 4-byte word called an OPN addressed to the destination node. 

Upon receiving the OPN addressed to it, the destination node indicates to the source node that it is 

prepared to receive frames. This is indicated by the transmission of a 4-byte word called R-RDY 

from the destination node. Once the source receives an R-RDY from the destination node, the 

source transmits the frame.  

• After successful transmission of the frame, the source then closes the Loop so that other nodes can 

gain access to the Loop. This is performed by transmitting a 4-byte word called CLS. When the 

CLS goes round the Loop and returns to the node that transmitted it, the frame has been 

successfully transmitted. 
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Therefore, to transmit a frame, the total overhead = 3*RTT + time to transmit signaling data (ARB, OPN, 

R-RDY and CLS). 

3*RTT = 3*34.66 words = 103.98 words. 

Time to transmit ARB, OPN, R-RDY and CLS in terms of words = 4 words. 

Therefore, total overhead time involved in transmitting a frame = 103.98 + 4 words ≅108 words. 

 

Total time to transmit a message 

 Each Fibre Channel frame has the Start of Frame (SOF) delimiter, Fibre Channel header, a maximum of 

2048 bytes of payload, Cyclic Redundancy Check (CRC), End of Frame (EOF) delimiter and Inter-frame 

gap. The optimal throughput values were calculated taking into consideration the transmission time only 

(assuming that there is no processing overhead). For example the time to transmit a 1024 byte message on a 

Fibre Channel Loop can be calculated as shown in Figure 8-12. 

 

Field Number of words Number of bytes 
SOF 1 4 

Fibre Channel header 6 24 
FC Network header 4 16 
LLC/SNAP header 2 8 

IP header 5 20 
TCP header 5 20 
User data 256 1024 

CRC 1 4 
EOF 1 4 

Inter-frame gap 6 24 
Overhead Round Trip 

Delays 
108 432 

TOTAL 395 1580 

Figure 8-12 Total time Calculation for a user payload of 1024 bytes of data 

 

Ideal throughput 

The best possible time to transmit a frame containing 1024 bytes of payload = 1580*9.375 nanoseconds = 

14812.5 nanoseconds. The throughput for a message size of 1024 bytes = 1024 bytes / 14812.5 

nanoseconds = 69.13 MBps. Using the above calculations, the ideal throughput for a Fibre Channel 

Arbitrated Loop was calculated for different message sizes and is shown in Figure 8-13. 
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Message Size  
(bytes) 

Ideal Throughput 
(MBps) 

Actual Throughput 
as a % of Ideal 

Throughput 
1 0.19 89.5 
2 0.38 94.7 
4 0.76 98.7 
8 1.51 92.1 
16 2.98 79.9 
32 5.80 65.0 
64 11.01 51.8 

128 19.96 35.2 
256 33.63 30.0 
512 51.14 21.9 
1024 69.13 16.2 
2048 69.13 16.3 
4096 75.80 15.0 
8192 79.64 14.6 

16386 81.71 14.2 
32768 82.79 14.0 
65536 82.79 14.1 
131072 82.06 14.0 
262144 83.20 14.0 
524288 83.27 14.0 

Figure 8-13 Ideal Throughput vs. Actual Throughput measured by ‘blast’ test 

 

The performance numbers obtained from the “blast” tests compare poorly to that of Figure 8-13. The major 

limiting factor seems to be the processing capacity of the CPU since the CPUs of the machines used for 

testing were running at 100% utilization when the tests were performed. 

 

8.4 Conclusion 

The "ping" and  "blast" tests measure two totally different aspects of network operation. The “ping” tests 

measure the round-trip-time while the “blast” tests measure throughput. In the “ping” tests we have seen 

that Delayed Acknowledgements should be disabled for better performance while for “blast” tests we have 

seen that Nagle should be enabled for better performance. The effect of Nagle in the “ping” tests and the 

effect of Delayed Acknowledgements in the “blast” tests are minimal. Also, both tests show that the 

performance is the best when the MTU is set to 8168 bytes. Performance increases steadily when the MTU 

is increased from 2024 to 4072 to 8168. This is due to the fact that for MTUs greater than 2024, 

fragmentation is done in hardware by Tachyon whereas when the MTU is 2024, fragmentation is done by 

the IP layer. The performance peaks at MTU = 8168 and then, for some unknown reason, drops for any 
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further MTU increases. Therefore it has been concluded that for getting the best performance under both 

types of tests, Nagle should be enabled, Delayed Acknowledgements should be disabled and the MTU 

should be set to 8168 bytes. 
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CHAPTER 9  

 
 

SUMMARY AND FUTURE WORK 
 
 

9.1 Conclusion 

A Fibre Channel driver for IP on Linux has been designed, implemented and tested. The driver complies 

with most sections of the Internet draft “IP and ARP over Fibre Channel”. Various Fibre Channel 

conformance and general performance tests were performed. The driver has been found to be compliant to 

most of the test suites that were run on the driver. The throughput achieved during performance testing has 

been satisfactory. The performance for both types of tests (“ping” and “blast”) were found to be the best 

when Nagle was enabled, Delayed Acknowledgements were disabled and MTU was set to 8168 bytes. 

 

The driver (which was initially developed on an x86 platform) has also been ported to work on the Alpha 

platform as well. The driver has also been tested on SMP machines and was found to work satisfactorily. 

The driver also can run with multiple cards on the same machine. 

 

9.2 Future Work 

• The implementation could be improved to make it fully compliant with the Internet draft and with 

other UNH-IOL test suites. 

• A large chunk of the driver deals with Fibre Channel protocol related issues. This part could be 

modularized so that all Fibre Channel drivers that will be written in the future for Linux can use it. 

• The performance of this Fibre Channel driver could be compared with drivers of other gigabit 

technologies like Gigabit Ethernet and also with other Fibre Channel drivers written for various other 

operating systems. 
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• The bandwidth utilization for IP over Fibre Channel could be compared with that of SCSI over Fibre 

Channel and the overhead involved in the two protocols could be measured. 

• The performance for both “ping” and “blast” tests were found to be the best when the MTU was set to 

8168 bytes. More research could be done to find out why the performance drops off when the MTU is 

greater than 8168 bytes. 

• The maximum throughput achieved by the driver under the environment in which it was tested was 

around 18 MBps. As mentioned in section 8.3, the CPU utilization was 100% on the machines that 

were used for testing. When one of the 200MHz Pentiums was replaced by an Alpha running at 

450MHz, the CPU utilization on the Alpha was around 5% and the throughput was much higher. 

Future performance tests can be tried on high-end machines to see if throughput gets closer to the 

ideal. 
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APPENDIX A 
 
 
 

Data for Performance Tests 
 

 

Blast Test Results - MTU = 2024 bytes 

 

Message Size 
(bytes) 

T1 
(sec) 

T2 
(sec) 

T3 
(sec) 

T4 
(sec) 

1 0.06 0.14 0.06 0.98 
2 0.05 0.15 0.06 0.99 
4 0.05 0.14 0.06 0.99 
8 0.06 0.14 0.06 0.99 

16 0.06 0.14 1.03 0.98 
32 0.08 0.13 2.00 0.99 
64 0.11 0.13 2.71 1.00 
128 0.17 0.21 0.60 1.01 
256 0.24 0.37 0.26 1.04 
512 0.44 0.54 0.43 1.11 

1024 0.87 0.96 0.86 0.95 
2048 1.74 1.92 1.74 1.91 
4096 3.44 3.82 3.41 3.80 
8192 6.73 7.59 6.70 7.56 
16386 13.42 14.91 13.46 14.83 
32768 26.88 29.71 26.89 29.69 
65536 53.72 59.35 53.60 59.07 

131072 107.31 118.56 107.11 118.63 
262144 214.31 237.74 213.97 236.61 
524288 428.31 474.75 429.14 475.50 

 

T1 - Time taken for 10000 iterations with Nagle Enabled and Delayed Acknowledgements Enabled. 

T2 - Time taken for 10000 iterations with Nagle Enabled and Delayed Acknowledgements Disabled. 

T3 - Time taken for 10000 iterations with Nagle Disabled and Delayed Acknowledgements Enabled. 

T4 - Time taken for 10000 iterations with Nagle Disabled and Delayed Acknowledgements Disabled. 
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Blast Test Results - MTU = 4072 bytes 
 

Message Size 
(bytes) 

T1 
(sec) 

T2 
(sec) 

T3 
(sec) 

T4 
(sec) 

1 0.06 0.14 0.06 0.98 
2 0.06 0.14 0.07 0.98 
4 0.05 0.14 0.05 0.98 
8 0.05 0.14 0.06 0.98 

16 0.06 0.13 2.86 0.98 
32 0.07 0.12 4.03 0.99 
64 0.09 0.11 5.29 1.00 
128 0.13 0.15 5.73 1.01 
256 0.21 0.25 5.59 1.04 
512 0.31 0.45 0.31 1.05 

1024 0.61 0.63 0.61 0.82 
2048 1.20 1.27 1.20 1.26 
4096 2.41 2.53 2.42 2.51 
8192 4.84 4.91 4.82 4.89 
16386 9.57 9.96 9.69 9.95 
32768 19.24 19.68 19.16 19.42 
65536 38.68 39.00 38.60 38.76 

131072 76.90 77.98 76.86 77.99 
262144 153.77 155.60 153.59 155.60 
524288 308.19 311.44 308.13 311.43 

 

T1 - Time taken for 10000 iterations with Nagle Enabled and Delayed Acknowledgements Enabled. 

T2 - Time taken for 10000 iterations with Nagle Enabled and Delayed Acknowledgements Disabled. 

T3 - Time taken for 10000 iterations with Nagle Disabled and Delayed Acknowledgements Enabled. 

T4 - Time taken for 10000 iterations with Nagle Disabled and Delayed Acknowledgements Disabled. 
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Blast Test Results - MTU = 8168 bytes 

Message Size 
(bytes) 

T1 
(sec) 

T2 
(sec) 

T3 
(sec) 

T4 
(sec) 

1 0.06 0.15 1.11 1.01 
2 0.06 0.15 0.87 1.01 
4 0.05 0.14 0.06 1.02 
8 0.05 0.16 2.86 1.01 

16 0.05 0.14 7.63 1.02 
32 0.08 0.13 10.64 1.02 
64 0.08 0.11 11.12 1.03 
128 0.10 0.13 11.58 1.03 
256 0.16 0.19 11.39 1.06 
512 0.28 0.28 0.30 1.12 

1024 0.64 0.56 0.57 0.56 
2048 1.22 1.12 1.18 1.12 
4096 2.26 2.26 2.35 2.23 
8192 4.44 4.50 4.54 4.46 
16386 8.78 9.03 8.94 8.92 
32768 18.30 17.85 18.11 17.83 
65536 36.20 36.04 36.63 35.61 

131072 72.21 71.23 74.06 70.84 
262144 146.51 141.97 148.38 141.80 
524288 289.38 283.76 293.71 283.17 

 

T1 - Time taken for 10000 iterations with Nagle Enabled and Delayed Acknowledgements Enabled. 

T2 - Time taken for 10000 iterations with Nagle Enabled and Delayed Acknowledgements Disabled. 

T3 - Time taken for 10000 iterations with Nagle Disabled and Delayed Acknowledgements Enabled. 

T4 - Time taken for 10000 iterations with Nagle Disabled and Delayed Acknowledgements Disabled. 
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 Blast Test Results - MTU = 16360 bytes 

Message Size 
(bytes) 

T1 
(sec) 

T2 
(sec) 

T3 
(sec) 

T4 
(sec) 

1 0.06 0.15 18.85 0.99 
2 0.06 0.15 17.86 0.99 
4 0.05 0.13 15.65 0.99 
8 0.05 0.14 20.81 0.99 

16 0.05 0.14 22.09 0.99 
32 0.06 0.13 23.41 1.00 
64 0.08 0.11 24.04 1.00 
128 0.11 0.10 0.16 1.02 
256 0.16 0.15 0.31 1.04 
512 0.31 0.30 0.61 1.12 

1024 0.61 0.59 1.21 0.65 
2048 1.21 1.16 2.42 1.19 
4096 2.43 2.32 4.85 2.35 
8192 4.97 4.64 9.95 4.64 
16386 9.80 9.78 19.41 9.75 
32768 19.51 18.52 38.84 18.70 
65536 38.84 37.14 77.83 37.45 

131072 77.84 73.93 77.83 74.20 
262144 155.95 147.26 155.68 147.99 
524288 311.35 294.00 310.76 294.89 

 

T1 - Time taken for 10000 iterations with Nagle Enabled and Delayed Acknowledgements Enabled. 

T2 - Time taken for 10000 iterations with Nagle Enabled and Delayed Acknowledgements Disabled. 

T3 - Time taken for 10000 iterations with Nagle Disabled and Delayed Acknowledgements Enabled. 

T4 - Time taken for 10000 iterations with Nagle Disabled and Delayed Acknowledgements Disabled. 
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Blast Test Results - MTU = 32744 bytes 

Message Size 
(bytes) 

T1 
(sec) 

T2 
(sec) 

T3 
(sec) 

T4 
(sec) 

1 0.06 0.14 51.57 1.03 
2 0.06 0.14 59.06 1.03 
4 0.05 0.14 55.06 1.03 
8 0.05 0.14 49.91 1.03 

16 0.06 0.14 49.91 1.03 
32 0.08 0.15 53.75 1.04 
64 0.11 0.17 49.91 1.06 
128 0.19 0.20 49.91 1.09 
256 0.23 0.25 52.43 1.24 
512 0.47 0.47 49.94 1.40 

1024 0.91 0.92 1.71 1.70 
2048 1.87 1.94 2.46 2.36 
4096 3.65 3.76 3.75 3.50 
8192 7.50 8.22 7.31 8.02 
16386 15.69 16.88 15.75 16.61 
32768 29.34 29.61 29.40 29.46 
65536 58.56 59.01 58.59 58.88 

131072 116.54 117.66 116.59 117.45 
262144 233.40 235.28 233.51 236.04 
524288 466.53 470.83 467.71 470.74 

 

T1 - Time taken for 10000 iterations with Nagle Enabled and Delayed Acknowledgements Enabled. 

T2 - Time taken for 10000 iterations with Nagle Enabled and Delayed Acknowledgements Disabled. 

T3 - Time taken for 10000 iterations with Nagle Disabled and Delayed Acknowledgements Enabled. 

T4 - Time taken for 10000 iterations with Nagle Disabled and Delayed Acknowledgements Disabled. 
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Ping Test Results using TCP - MTU = 2024 bytes 

 

Message Size 
(bytes) 

T1 
(msec) 

T2 
(msec) 

T3 
(msec) 

T4 
(msec) 

1 2.70 3.32 2.66 3.23 
2 2.74 3.39 2.65 3.44 
4 2.69 3.25 2.66 3.35 
8 2.69 3.25 2.67 3.38 

16 3.08 3.25 2.70 3.35 
32 2.75 3.27 2.73 3.30 
64 2.79 3.42 2.78 3.46 
128 2.93 3.58 2.88 3.57 
256 3.24 3.91 3.10 3.68 
512 3.63 4.16 3.59 4.41 

1024 4.59 5.09 4.49 5.11 
2048 152.58 10.59 7.33 8.35 
4096 12.86 13.69 11.45 12.30 
8192 18.67 20.64 18.10 19.78 
16386 32.47 35.35 31.86 34.77 
32768 60.04 65.43 59.92 65.35 

 

T1 - Time taken for 10000 iterations with Nagle Enabled and Delayed Acknowledgements Enabled. 

T2 - Time taken for 10000 iterations with Nagle Enabled and Delayed Acknowledgements Disabled. 

T3 - Time taken for 10000 iterations with Nagle Disabled and Delayed Acknowledgements Enabled. 

T4 - Time taken for 10000 iterations with Nagle Disabled and Delayed Acknowledgements Disabled. 
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Ping Test Results using TCP - MTU = 4072 bytes 

 

Message Size 
(bytes) 

T1 
(msec) 

T2 
(msec) 

T3 
(msec) 

T4 
(msec) 

1 2.66 3.26 2.77 3.24 
2 2.73 3.23 2.66 3.27 
4 2.67 3.41 2.67 3.23 
8 2.68 3.23 2.68 3.25 

16 2.72 3.39 2.74 3.26 
32 2.73 3.28 2.73 3.30 
64 2.85 3.44 2.91 3.52 
128 2.87 3.45 2.89 3.55 
256 3.13 3.83 3.15 3.69 
512 3.55 4.17 3.58 4.11 

1024 4.47 5.29 4.49 5.22 
2048 6.18 6.73 6.00 6.78 
4096 150.01 13.44 10.29 11.67 
8192 17.26 18.11 16.40 17.42 
16386 28.60 28.88 26.68 28.03 
32768 104.10 51.51 46.19 49.41 

 

T1 - Time taken for 10000 iterations with Nagle Enabled and Delayed Acknowledgements Enabled. 

T2 - Time taken for 10000 iterations with Nagle Enabled and Delayed Acknowledgements Disabled. 

T3 - Time taken for 10000 iterations with Nagle Disabled and Delayed Acknowledgements Enabled. 

T4 - Time taken for 10000 iterations with Nagle Disabled and Delayed Acknowledgements Disabled. 
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Ping Test Results using TCP - MTU = 8168 bytes 

 

Message Size 
(bytes) 

T1 
(msec) 

T2 
(msec) 

T3 
(msec) 

T4 
(msec) 

1 2.68 3.24 2.69 3.34 
2 2.69 3.23 2.71 3.25 
4 2.78 3.23 2.77 3.26 
8 2.70 3.24 2.69 3.26 

16 2.79 3.24 2.78 3.29 
32 2.73 3.39 2.73 3.33 
64 2.82 3.36 2.78 3.34 
128 2.90 3.65 2.88 3.49 
256 3.18 3.73 3.17 3.90 
512 3.58 4.25 3.58 4.15 

1024 4.52 5.12 4.50 5.12 
2048 6.01 6.84 6.09 6.73 
4096 9.38 10.35 9.42 10.74 
8192 200.01 20.10 17.73 19.59 
16386 28.42 30.29 28.29 29.38 
32768 50.74 50.97 47.59 49.61 

 

T1 - Time taken for 10000 iterations with Nagle Enabled and Delayed Acknowledgements Enabled. 

T2 - Time taken for 10000 iterations with Nagle Enabled and Delayed Acknowledgements Disabled. 

T3 - Time taken for 10000 iterations with Nagle Disabled and Delayed Acknowledgements Enabled. 

T4 - Time taken for 10000 iterations with Nagle Disabled and Delayed Acknowledgements Disabled. 
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Ping Test Results using TCP - MTU = 16360 bytes 

 

Message Size 
(bytes) 

T1 
(msec) 

T2 
(msec) 

T3 
(msec) 

T4 
(msec) 

1 2.77 3.26 2.80 3.35 
2 2.94 3.27 2.72 3.24 
4 2.75 3.25 2.75 3.24 
8 2.87 3.38 2.87 3.28 

16 2.81 3.24 2.73 3.27 
32 2.79 3.27 2.78 3.30 
64 2.82 3.37 2.87 3.35 
128 3.04 3.56 2.97 3.46 
256 3.12 3.80 3.23 3.75 
512 3.55 4.12 3.62 4.16 

1024 4.52 5.17 4.67 5.12 
2048 6.10 6.68 6.05 6.96 
4096 9.50 10.35 9.46 10.39 
8192 17.38 18.07 17.37 18.26 
16386 207.70 35.39 33.53 35.31 
32768 54.70 55.09 53.89 55.08 

 

T1 - Time taken for 10000 iterations with Nagle Enabled and Delayed Acknowledgements Enabled. 

T2 - Time taken for 10000 iterations with Nagle Enabled and Delayed Acknowledgements Disabled. 

T3 - Time taken for 10000 iterations with Nagle Disabled and Delayed Acknowledgements Enabled. 

T4 - Time taken for 10000 iterations with Nagle Disabled and Delayed Acknowledgements Disabled. 
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Ping Test Results using TCP - MTU = 32744 bytes 

 

Message Size 
(bytes) 

T1 
(msec) 

T2 
(msec) 

T3 
(msec) 

T4 
(msec) 

1 2.72 3.31 2.69 3.41 
2 2.71 3.26 2.69 3.36 
4 2.72 3.25 2.70 3.23 
8 2.74 3.27 2.71 3.37 

16 2.75 3.48 2.73 3.28 
32 2.73 3.45 2.74 3.32 
64 2.92 3.64 2.80 3.58 
128 2.92 3.63 3.01 3.62 
256 3.17 3.87 3.15 3.78 
512 3.68 4.28 3.65 4.22 

1024 4.69 5.21 4.61 5.22 
2048 6.29 7.02 6.41 7.10 
4096 9.73 10.73 9.91 10.81 
8192 18.56 19.09 18.76 19.22 
16386 34.22 35.62 34.25 35.71 
32768 68.52 69.78 68.21 69.03 

 

T1 - Time taken for 10000 iterations with Nagle Enabled and Delayed Acknowledgements Enabled. 

T2 - Time taken for 10000 iterations with Nagle Enabled and Delayed Acknowledgements Disabled. 

T3 - Time taken for 10000 iterations with Nagle Disabled and Delayed Acknowledgements Enabled. 

T4 - Time taken for 10000 iterations with Nagle Disabled and Delayed Acknowledgements Disabled. 
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Ping Test Results using UDP 
 
 

Message 
Size (bytes) 

T1 
(msec) 

T2 
(msec) 

T3 
(msec) 

T4 
(msec) 

T5 
(msec) 

1 2.05 2.08 1.99 1.93 1.97 
2 2.03 2.02 2.10 1.93 2.00 
4 1.99 1.99 1.98 2.14 2.01 
8 2.13 2.05 2.04 2.01 1.98 

16 2.11 2.04 2.05 2.10 2.03 
32 2.15 2.05 2.07 2.02 2.07 
64 2.08 2.17 2.11 2.09 2.14 
128 2.30 2.26 2.26 2.21 2.26 
256 2.41 2.43 2.46 2.40 2.45 
512 2.82 2.84 2.89 2.79 2.87 

1024 3.66 3.70 3.80 3.63 3.78 
2048 7.39 5.26 5.17 5.08 5.38 
4096 11.19 11.74 8.27 8.10 8.57 
8192 18.46 18.51 20.10 15.25 16.27 
16386 33.25 31.54 33.05 37.18 32.31 
32768 61.77 58.17 58.47 61.85 73.73 

 

T1 - Time taken for 10000 iterations with MTU = 2024 bytes. 

T2 - Time taken for 10000 iterations with MTU = 4072 bytes. 

T3 - Time taken for 10000 iterations with MTU = 8168 bytes. 

T4 - Time taken for 10000 iterations with MTU = 16360 bytes. 

T5 - Time taken for 10000 iterations with MTU = 32744 bytes. 
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APPENDIX B 

Installation Guide 

 

Steps Involved in installing the driver: 
 

• Create a clean Linux 2.2.5 source tree. 
• From the directory /usr/src/linux, run “patch –p1 < patch_file” to apply the patch for the driver. 
• From the directory /usr/src/linux, run “make config” and configure the driver to be loaded as a 

module or as part of the kernel. 
• From the directory /usr/src/linux, run “make dep; make bzImage”. Once the kernel has been 

compiled, copy to the bootable image to the /boot/ directory. Run LILO. 
• In the directory /etc/sysconfig/network-scripts/, create an entry for the Fibre Channel interface. 

 
 
Files that were added/modified: 
 
The patch includes several files that were either newly added or modified. The contents of the patch are 
given below. 
 
New Files 
 
The core driver specific files are present in a separate directory called “fc” under the 
/usr/src/linux/drivers/net  directory. The files present in the directory /usr/src/linux/drivers/net/fc are: 

• Makefile  - Makefile for the “fc” directory. 
• iph5526.c  - The main driver file. 
• iph5526_ip.h  - It has definitions specific to IP. 
• iph5526_novrom.c - It has routines to read the NOVROM on the card. 
• tach.h   - It has definitions for Tachyon and (i)chip TPI. 
• tach_structs.h  - It has the definition for the structures used by the driver. 

 
The other newly added files include: 

• /usr/src/linux/include/linux/fcdevice.h - It has definitions for Fibre Channel kernel  
functions. 

• /usr/src/linux/include/linux/if_fc.h  - It has global definitions for Fibre Channel. 
• /usr/src/linux/net/802/fc.c   - It has routines used to build headers for  

Fibre Channel network devices. 
 

Modified Files 
 

• /usr/src/linux/Makefile   - Added entry for the  
/usr/src/linux/drivers/net/fc directory. 

• /usr/src/linux/drivers/net/Config.in  - Added entry for configuring Fibre Channel  
network devices. 

• /usr/src/linux/drivers/net/Makefile  - Added entry to include the directory  
/usr/src/linux/drivers/net/fc. 
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• /usr/src/linux/drivers/net/Space.c  - Added routines to detect Fibre Channel  
network devices. 

• /usr/src/linux/drivers/net/net_init.c  - Added routines to support Fibre Channel  
network devices. 

• /usr/src/linux/net/netsyms.c  - Added entries to export Fibre Channel  
kernel functions. 

• /usr/src/linux/include/linux/netdevice.h - Added entries for supporting bootable and  
loadable versions of Fibre Channel network  
drivers. 

• /usr/src/linux/include/linux/pci.h  - Added entries for vendor and device  
identifiers for the Interphase 5526 card. 

• /usr/src/linux/net/802/Makefile  - Added entry to include Fibre Channel  
specific files. 

 
 


