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ABSTRACT

Fairness in a data center

by

Mikkel Hagen
University of New Hampshire, December, 2012

Existing data centers utilize several networking technologies in order to handle the per-

formance requirements of different workloads. Maintaining diverse networking technologies

increases complexity and is not cost effective. This results in the current trend to converge

all traffic into a single networking fabric. Ethernet is both cost-effective and ubiquitous, and

as such it has been chosen as the technology of choice for the converged fabric. However,

traditional Ethernet does not satisfy the needs of all traffic workloads, for the most part,

due to its lossy nature and, therefore, has to be enhanced to allow for full convergence.

The resulting technology, Data Center Bridging (DCB), is a new set of standards defined

by the IEEE to make Ethernet lossless even in the presence of congestion. As with any

new networking technology, it is critical to analyze how the different protocols within DCB

interact with each other as well as how each protocol interacts with existing technologies in

other layers of the protocol stack.

This dissertation presents two novel schemes that address critical issues in DCB net-

works: fairness with respect to packet lengths and fairness with respect to flow control

and bandwidth utilization. The Deficit Round Robin with Adaptive Weight Control (DRR-

AWC) algorithm actively monitors the incoming streams and adjusts the scheduling weights

of the outbound port. The algorithm was implemented on a real DCB switch and shown

to increase fairness for traffic consisting of mixed-length packets. Targeted Priority-based

Flow Control (TPFC) provides a hop-by-hop flow control mechanism that restricts the flow

of aggressor streams while allowing victim streams to continue unimpeded. Two variants

xiv



of the targeting mechanism within TPFC are presented and their performance evaluated

through simulation.
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Chapter 1

Introduction

1.1 Convergence

Data centers use different network fabrics to meet the quality of service require-

ments of different workload types. There are three main workload types, namely,

general networking traffic, storage traffic, and inter-processor traffic. General net-

working traffic is handled by Ethernet, storage traffic is handled by Fibre Channel

(FC), and inter-processor traffic is handled by Infiniband (IB). Each network fabric

is designed to meet the throughput and latency requirements of its workload. Gen-

eral networking traffic is very mixed and includes web traffic along with email and

socket applications, so there are few quality of service requirements. Storage traffic

between storage devices and servers requires high I/O rates, high capacity and non-

disruptive data delivery. Inter-processor traffic requires low latency. General network

traffic does not have stringent latency requirements and is not drastically impacted

by packet loss. Storage and inter-processor traffic have low latency requirements and

require guaranteed delivery of packets. Figure 1-1 shows an example of a converged

datacenter.

Unfortunately there is a major down-side to having several fabrics in a single data
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Figure 1-1: Converged Datacenter

center. There is a high cost to managing and maintaining the various fabrics in a data

center. Having several fabrics in a single data center results in high heat generation

due to additional heat generating hardware as well as reduced air flow, so cooling costs

are high. The cost of purchasing different types of equipment for each technology is

high. Furthermore, staff with various skills and expertise are needed to maintain

the different fabrics, so technical and management costs rise. As a result, there is a

move to using the same fabric for transmitting different workloads. The fabric must

be partitioned into virtual fabrics, where each virtual fabric link is reserved for a

particular workload type. Ethernet is the fabric of choice since it is the cheapest and

most ubiquitous of the three fabrics. However, a major disadvantage of Ethernet is

that under high traffic conditions congestion occurs and Ethernet may start dropping

packets which is unacceptable for most storage and inter-processor traffic. In order

2



to transmit different workloads on Ethernet, it is necessary to ensure that Ethernet

becomes “lossless”.

Ethernet does provide flow control mechanisms to reduce packet loss during con-

gestion. One mechanism classifies traffic workloads into eight priority levels (0-7). The

lower priority traffic classes have to wait until higher priority traffic classes are trans-

mitted, so there is less chance of packet loss in high priority workloads. Workloads

with strict performance constraints, such as SAN traffic, are given a high priority.

Another flow control mechanism available is Ethernet PAUSE [5]. When a computer

(sender) transmits messages faster than some part of the network (receiver) can pro-

cess the message, the receiver transmits a PAUSE frame back to its senders. The

PAUSE message results in the sender halting transmission of data for a specified pe-

riod of time. Unfortunately, the Ethernet PAUSE mechanism does not differentiate

between senders, so all senders have to stop transmitting, not just the sender that

was overwhelming the receiver. The Ethernet PAUSE mechanism is not sophisticated

enough to handle multiple traffic classes on the fabric. With Ethernet, a specific traf-

fic class can only avoid losing packets using higher-level protocols like TCP/IP that

recover from packet loss. However, these reliable protocols have too much overhead

to be useful for storage and inter-processor traffic classes. There is a clear need for a

low-level, sophisticated congestion reduction mechanism that differentiates between

traffic classes.

1.2 Data Center Bridging

Data Center Bridging is a new set of standards defined by the IEEE standards body to

handle the smooth transmission of multiple traffic classes on Ethernet. DCB defines

four protocols, namely, Enhanced Transmission Selection (ETS), Priority-based Flow

Control (PFC), Congestion Notification (CN) and DCB eXchange Protocol (DCBX).
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ETS provides a guaranteed bandwidth allocation for the eight traffic classes. PFC

allows for the independent pausing of traffic from specific classes. For example, if

a switch is getting overwhelmed by packets from a specific class, then PFC allows

the switch to send PAUSE signals back to the transmitter of this traffic class. PFC

is a link by link flow control control protocol, and only works between devices that

are directly connected. A disadvantage of PFC’s link by link behavior is “congestion

spreading” — the congested node sends PAUSE frames to its sender neighbor node;

the neighbor reduces its transmission rate, so the neighbor gets congested and sends

PAUSE frames to its sender neighbor; in this manner, the congestion from the first

congestion point spreads through the network. To prevent congestion spreading, CN

allows a congestion point to send a message across the network that tells the originator

of the heavy traffic to slow down. DCBX provides a mechanism to ease configuration

of the network. DCBX does not affect performance on the network. It only simplifies

the job of network administrators.

The DCB standards seem to have solved the problem of transmitting multiple

classes of traffic streams on Ethernet. Unfortunately, the problem still persists due

to a hardware shortfall, namely, switches not supporting eight traffic queues. In

order to recognize eight traffic classes, switches must implement eight queues for

every port. This is both cost and space expensive, so most switches only support

two traffic queues. Therefore, the eight traffic classes are partitioned into two traffic

queues, and each queue handles up to four traffic classes. If any traffic class starts

causing congestion, the DCB protocols will throttle all the traffic classes assigned to

the corresponding queue. The DCB protocols are ineffective without the supporting

hardware.

Even if hardware technology improves and switches start supporting eight queues,

there is another problem, namely, handling transmission of multiple streams within
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the same traffic class. The Internet supports several workloads - Netflix, Skype,

HTTP file transfer, and BitTorrent are a small sample of typical workloads on a

university subnet. Since there are far more than eight workloads, several types of

workloads are assigned to the same traffic class. For example, all storage workloads

could be in one traffic class. Within this class, there could be two streams. The first

stream may contain packets relating to a large file’s transmission, while the second

stream may contain packets relating to small modifications to files. It is important

to schedule the two streams so that there is minimal packet loss and some degree of

fairness.

DCB is also a new technology and there is currently little research on the per-

formance of real DCB networks. DCB drastically alters the performance characteris-

tics of Ethernet by dividing the network into independent traffic classes that can be

grouped and paused individually. It is important to understand the performance char-

acteristics of DCB enabled Ethernet. In order to understand the benefits of DCB,

it is important to evaluate the performance characteristics of each protocol within

DCB and understand how the protocols interact with each other and with existing

protocols. The three main protocols in DCB networks are: PFC, ETS and CN. Both

PFC and ETS can be implemented with minor changes to existing Ethernet devices,

so these protocols have already been deployed in devices. CN is significantly more

challenging to implement and currently there are no devices that deploy it. Therefore,

at this time, only simulation or analytical analysis of the CN protocol is possible.

1.3 Thesis

This thesis investigates the following questions:

• What is the throughput and latency of different applications such as iSCSI and

Message Passing Interface (MPI) on a converged data center network?
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– How do the different traffic classes respond to congestion in a converged

network?

– How might the different protocols within DCB benefit a converged net-

work?

– What is the effect on throughput and latency when PFC is enabled?

• What is the impact of traditional scheduling algorithms, such as Deficit Round

Robin (DRR), on the performance and fairness of a data center grade network?

– What is the performance of traditional scheduling algorithms on modern

data center switches?

– How do the limitations of DRR on data center switch hardware manifest?

– How can the limitations of DRR be resolved while:

∗ maintaining the low complexity of the DRR algorithm?

∗ maintaining fairness in most situations, including multiple traffic streams

of different sizes and types?

– What is the fairness of the new DRR algorithm on data center hardware as

determined by well-known fairness metrics such as Jain’s Fairness Index?

• How can a modified or new priority-based flow control algorithm improve fair-

ness in a DCB network?

– Is CN the best possible way to target aggressor streams in a network to

reduce congestion?

– Can a new aggressor stream targeting mechanism be developed that:

∗ maintains the low complexity of PFC?

∗ maintains the fast response time of PFC?
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∗ improves the ability to slow down aggressor streams while leaving vic-

tim streams unimpeded?

∗ provides multiple mechanisms by which to decide what streams to

target?

– Will simulations show a marked improvement in aggressor stream targeting

via the new mechanism?

1.4 Summary

This section provided an initial discussion of convergence and its benefits and limi-

tations. To solve the limitations of Ethernet as a converged fabric, DCB was intro-

duced. To better understand DCB, more research will need to be done in several

areas including how traditional scheduling algorithms interact with modern data cen-

ter hardware. Finally, a detailed thesis statement, discussing each area of research

that this dissertation will be addressing, was provided.

The following chapters of this dissertation will examine each area of the thesis

statement in detail. Chapter 2 provides an extensive look at existing research into

the vast field of network fairness, including how it relates to DCB. Chapter 3 pro-

vides additional background on specific protocols within DCB, including challenges

found when working with the protocols. Chapter 4 presents the initial look at how

different traffic classes are affected by convergence and how DCB might benefit the

traffic in a converged network. Chapter 5 examines initial DCB hardware and how

different applications’ throughput and latency are affected when PFC is enabled and

disabled on the network. Chapter 6 explores the interaction of traditional schedul-

ing algorithms, namely DRR, in a modern data center and presents a novel DRR

scheduling algorithm that is shown to improve the fairness of small frames on data

center hardware. Chapter 7 discusses targeting of aggressor streams in a converged
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network and proposes a new mechanism to target aggressor streams on a hop-by-bop

basis with both low complexity of implementation and fast response time. Finally,

Chapter 8 concludes this disseration, summarizing all of the findings and providing

areas of possible future work.
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Chapter 2

Background

2.1 Introduction

By some estimates the Internet is growing at a rate of 70-150% annually [6]. A great

deal of the recent growth in internet traffic can be attributed to some of the new

services, such as video/audio streaming, cloud computing and backup services. This

is causing a great strain on most businesses, which need to continually expand their

Data Centers, or Server Farms, to keep up with the growth. A Data Center is a facility

that houses servers, switches and storage devices all in one place. Data Centers require

multiple fabrics for their inter-process communication, storage and networking needs.

Data Centers are the most efficient way to accomplish the computing needs of the

Internet with the smallest amount of resources, including space and cost.

While being the most efficient for the task, Data Centers still have a large cost

requirement. The cost can be broken up into several large areas such as cooling,

direct power draw and manpower. The design of Data Centers is focused on packing

maximum computing power within the smallest amount of space, which makes it

difficult to keep the hardware cool. The servers are powerful and additional expansion

cards are often needed for inter-process communication, storage, and networking,
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which all draw more direct electrical power. In order to maintain and manage a

large Data Center, a team of engineers specializing in each area within the facility is

needed.

Cooling, direct power draw and manpower can all be reduced by converging the

fabrics within the Data Center to a single fabric. The degree of cooling can be reduced

by allowing more air flow with fewer cables and by generating less heat with less

hardware. The amount of direct power draw is reduced by eliminating hardware and

maximizing the utilization of the existing hardware. The manpower can be reduced

by eliminating different teams specialized in maintaining the different fabrics.

For several years, different technologies have attempted to converge multiple ser-

vices into a single fabric. Recently the Institute of Electrical and Electronics Engineers

(IEEE) has begun defining several standards which make Ethernet a “lossless” fab-

ric. A traditional Ethernet network will often get congested and drop packets. Data

Center Bridging would eliminate dropped packets due to congestion. This enables

the newly defined protocol Fibre Channel over Ethernet (FCoE) to work and allows

Data Centers to converge inter-process communication (iWARP and RoCE), storage

(FCoE) and networking (TCP/IP) onto a single fabric.

The iWARP protocol family defines RDMA (Remote Direct Memory Access) over

TCP/IP [7–13]. The RoCE protocol defines RDMA over Ethernet. In its entirety,

RDMA eliminates all extra copies and allows applications to transfer data directly

into the application buffer of a remote peer [14]. This has the benefit of reducing

latency and maximizing bandwidth utilization. This is why RDMA has been the

protocol of choice for inter-process communications, most commonly MPI (Message

Passing Interface).

The FCoE protocol defines the encapsulation of Fibre Channel frames within

Ethernet frames [15]. FCoE is less disruptive for existing FC installations than a
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wholesale removal of the infrastructure and conversion to iSCSI. FCoE has a stateless

operation that allows FCoE and Ethernet on the same switch and does not have the

overhead associated with TCP/IP for error control. It allows the current investment

in FC equipment to be retained [16].

The TCP/IP protocol is well known and widely used. It is a connection oriented

protocol that guarantees delivery of data packets. Some of the applications that

utilize this protocol are email, web traffic and data backup.

IEEE 1588 is protocol defined to provide sub-microsecond synchronization on an

Ethernet network [17,18]. Professional audio, industrial automation and power supply

systems are some of the applications that can utilize a converged Ethernet solution

through the IEEE 1588 protocol.

iWARP, FCoE, TCP/IP, and IEEE 1588 play an important role in Data Centers.

Without the enhancements to Ethernet provided in Data Center Bridging there would

be no control to make sure that each of the technologies would be able to work well

together. Data Center Bridging consists of four different technologies. Per-Priority

Flow Control, Enhanced Transmission Selection, Congestion Notification and DCB

Capability Exchange. These are designed to work independently to provide enhanced

Ethernet features and together they attempt to eliminate any packet loss due to

congestion.

2.1.1 Priority-based Flow Control

Per-Priority PAUSE, or Priority-based Flow Control (PFC), is defined in the 802.1Qbb

standard [1, 2]. It adds fields to the standard PAUSE frame that allow a device to

inhibit transmission of frames on certain priorities as opposed to inhibiting all frame

transmission. PFC is only defined for full duplex network interface cards (NIC) and

allows link-to-link flow control on a Per-Priority basis. It is invoked by clients of the
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Figure 2-1: PFC frame format [1, 2]
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media access control (MAC) sublayer through MAC Control PFC PAUSE primitives.

PFC is used to inhibit transmission of data frames from one or more of the eight

priorities found in the virtual local area network (VLAN) tag for a specified period of

time. PFC cannot be used to inhibit MAC Control frames. Each PFC PAUSE frame

contains an array of 8 fields containing a 2 octet priority enable vector field and a

2 octet time vector field, see Figure 2-1. The priority enable vector field indicates

for each of the eight priorities which time vector fields are valid and should be acted

upon. The time vector fields indicate a length of time in which traffic for each priority

should be inhibited. The time value is measured in units of pause quanta, equal to

512 bit times of the particular PHY layer. A bit time is the amount of time required

to transmit one bit. The pause quanta is used so that PFC is independent of different

physical layers and works the same from 10 Megabit up through 10 Gigabit Ethernet.

The range of valid pause times is 0-65535 pause quanta.

2.1.2 Enhanced Transmission Selection

Enhanced Transmission Selection (ETS) is defined in the 802.1Qaz standard [19].

ETS provides a means for network administrators to allocate link bandwidth to dif-

ferent priorities on a percentage of total bandwidth basis per egress port. To provide

backwards compatibility with other scheduling mechanisms, ETS defines a concept

called available bandwidth. Available bandwidth refers to the maximum percentage

of available link bandwidth after priorities not controlled by ETS are serviced. Once

allocated, a priority may only use available bandwidth up to the maximum percentage

allocated.

2.1.3 Congestion Notification

Congestion Notification (CN) is defined in the 802.1Qau standard [20]. CN is a

mechanism to transmit congestion information on an end-to-end basis per traffic flow,
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to end stations that are capable of rate limiting. A consequence of link level pausing

(i.e., 802.1Qbb) is “congestion spreading” — the domino effect of buffer congestion

propagating upstream causing secondary bottlenecks. A layer two congestion control

algorithm allows a primary bottleneck to directly reduce the rates of those sources

whose packets pass through it, thereby preventing secondary bottlenecks.

Congestion Notification is broken up into two algorithms. The first algorithm,

Congestion Point (CP) Dynamics, is the mechanism in which a switch buffer samples

incoming packets and generates a feedback message addressed to the source of the

sampled packets with the extent of the congestion. Reaction Point (RP) Dynamics

is the mechanism by which a Rate Limiter (RL) decreases its sending rate based on

feedback and increases its rate without further feedback to recover lost bandwidth

and probe for available bandwidth.

The CP computes a congestion measure indicating the level of congestion of its

buffers. With a probability depending on the severity of congestion, the CP then

selects a frame from the incoming frame buffer and sends a congestion notification

message (CNM) back to the source of the frame. For example, as congestion gets

higher there is a higher likelihood of randomly sampling the buffer and sending a

CNM to the source of the sampled packet indicating congestion level.

RP will decrease rate proportional to the degree of congestion reported in the

CNM received. Since Ethernet does not contain acknowledgments there is no feedback

mechanism in which to increase rate once limited, so a timer is implemented. The rate

increases in the two phases of Fast Recovery and Active Increase. In Fast Recovery

(FR) the RL will increase its rate by 1/2 (Current Rate + Target Rate) every 150

kilobytes transmitted at the reduced rate if no more CNM arrive. This will occur for

5 cycles. Active Increase (AI) phase begins after 5 successful cycles of FR. During

AI, the RL will probe for additional bandwidth by updating the Target Rate and
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Current Rate in 50 packet cycles.

The devices in a DCB network that are configured to support Congestion Noti-

fication form what is called a Congestion Notification Domain (CND). Congestion

Notification Priority (CNP) consists of one priority value such that all devices in a

CND are configured to assign frames at that value to the same CP and/or RP. Differ-

ent priorities coincide with different applications or even single applications. Frames

with the same priority value and all assigned to a single flow queue and RP in the

originating end station form a Congestion Controlled Flow (CCF). Every frame in a

CCF carries a CN-tag. The CN-tag contains a FlowID. The FlowID and destination

address are the means by which to identify a target of a CNM. When a CNM is cre-

ated at a CP, the CP will insert the FlowID and Destination Address from the frame

that is sampled from the incoming frame buffer into the CNM. As both FlowID and

Destination Address are used to identify a unique flow, different end stations can use

the same FlowID without a problem.

2.1.4 DCB Capability Exchange

Data Center Bridging Exchange (DCBX) protocol is defined in the 802.1Qaz stan-

dard [19]. DCBX is used to exchange information between directly connected peers

in order to either detect a misconfiguration or attempt to configure each other. This

allows network administrators to quickly and easily setup a new DCB network or

reconfigure an existing network. DCB exchanged parameters are packaged into orga-

nizationally specific Time/Length/Value (TLV) fields and transmitted via the Link

Layer Discovery Protocol (LLDP) [21]. Exchanged parameters are broken up into

administered and operational parameters. Administered parameters are those that

are configured by the network administrator. Operational parameters are those that

are the current operational state of the device, which may or may not be the same as
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the administered parameters. Operational parameters can change from their original

administered values due to exchanges with the peer and are only present for param-

eters that can be changed by the peer. DCBX is expected to operate only over a

point-to-point link and if multiple peers are discovered, the peer’s TLVs should be

ignored until the multiple peers condition is resolved. DCBX currently only has TLVs

defined for Priority Groups, PFC and Applications.

2.1.5 Summary

In order to study Data Center Bridging thoroughly, several areas need to be ex-

plored. Some of these areas include modeling of DCB networks, analysis of fairness

protocols in DCB networks, and analyzing latency and bandwidth limitations in DCB

networks. This chapter provides a review of the state-of-the-art in fairness and perfor-

mance analysis techniques for networks, with an emphasis on Storage Area Networks,

because SANs are the primary application driving DCB development. Some theo-

retical fairness studies are reviewed, especially a specific area of fairness referred to

as Weighted Fair Queueing (WFQ) which is the most popular and flexible fairness

algorithm. We will also review some of the recent performance analysis studies in FC

and iSCSI.

Prior work on theoretical fairness is presented in Section 2.2. WFQ is presented

in Section 2.3 because it is a popular fairness algorithm that is both simple and

flexible. Section 2.5 presents an overview for the modeling and measuring techniques

of the current research in storage area network performance analysis. Section 2.6

summarizes this chapter and concludes the review.
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2.2 Fairness

The DCB technology allows a network administrator to break up all of the traffic

flows in a network into eight traffic classes. A network administrator has the freedom

to design fairness into the network. For example, the administrator can configure one

traffic class to utilize most of the network or configure the network so that all traffic

classes utilize an equal amount of the network.

One issue that arises from the design of the DCB technology is that the behaviour

within a traffic class is undefined. While the performance characteristics between

each of the eight traffic classes are well defined, it is left up to each implementation

to prioritize the traffic within a traffic class. Storage area networks provide a readily

identifiable, worst case example of this issue. In a storage area network, different traf-

fic flows have drastically different performance characteristics. For example, within

the traffic class priority designated for Fibre Channel over Ethernet there could be

two traffic flows present. The first traffic flow could be made up of users making small

changes to shared documents, which would consist of infrequent minimum sized read

and write messages. The second traffic flow could be made up of a backup algorithm

saving a shared file system to long term storage, which would consist of constant

maximum sized read and write messages. Without a proper fairness algorithm, the

second traffic flow will consume nearly all of the bandwidth provided to the traffic

class.

To begin our examination of various fairness issues within a data center, a survey

of the some of the latest work in general fairness is required in order to provide a

baseline for further work. Most fairness algorithms can be categorized into either per-

flow fairness or per-node fairness. Per-flow fairness algorithms ensure that fairness

is achieved between different traffic flows within a network regardless of where they

originate or are destined. This category of fairness benefits nodes with many flows.
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Per-node fairness algorithms ensure that each node within a network is fairly sched-

uled. This category of fairness penalizes nodes with many flows on them. The field

of formal specification provides us with a mechanism to define and codify fairness.

Figure 2-2: Strong and weak fairness

Strong Fairness: A scheduler is said to be strongly fair, if there are no actions

that are enabled and disabled in an infinite cycle without getting a chance to act [22].

Strong fairness can be visualized in Figure 2-2. In other words, if the NEXT action

is in a constant cycle of being enabled and disabled, then the action must be taken

infinitely often [23]. The definition for Strong Fairness can be related to a device that

attempts to transmit on a network but if the network is busy the device stops trying

to transmit. Eventually the device will need to transmit its data or it will continue

to accumulate more data to transmit and may overflow its buffers.

Weak Fairness: If any action remaining enabled is eventually taken, then such a

scheduler is said to be weakly fair [22]. Weak fairness can be visualized in Figure 2-2.

If the scheduler is in State 2 and the NEXT action is always enabled, then NEXT

must be taken eventually for the scheduler to be Weakly fair [23]. The definition for

Weak Fairness can be related directly to a device on a network that is attempting to

send something and is prevented indefinitely from transmitting, which is also referred

to as starvation.
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Fairness is an often overlooked aspect of network research papers. Many studies

address fairness, but do not provide a proper definition nor analysis. This may be

due to the fact that packet level fairness is an NP-hard problem [24]. The defini-

tions of Strong Fairness and Weak Fairness provide a common baseline in which to

address fairness in networking. The ability to define either a Strong or Weak Fairness

algorithm is highly dependent upon the network architecture and how devices trans-

mit and receive data on the network. Therefore, an overview of some recent studies

exploring different fairness mechanisms on different networks is presented.

2.2.1 Fairness in ring topologies

The most common network architecture in which fairness is studied is a ring topology.

A ring topology consists of nodes connected to each other by full duplex links with

the last node connected back to the first node. A ring topology has the benefit of

requiring less expensive hardware than a fabric topology. The main drawback of a ring

topology is shared bandwidth on the links between nodes. Several research papers

examine fairness algorithms over variable ring topologies that vary the mechanism

used by devices to transmit data [25–29]. Two of the more recent studies are presented

below.

Resilient Packet Ring Architecture

Gjessing [25] presented a fairness algorithm for the Resilient Packet Ring (RPR)

Architecture. The RPR protocol is defined in the IEEE 802.17 working group. RPR

is a full duplex ring topology as shown in Figure 2-3. Nodes are called stations. A

subnet connecting stations and moving traffic in one direction around the ring is called

a ringlet. A full duplex RPR architecture can support up to two ringlets. Multiple

packets can run on different links between stations at the same time. RPR supports

only High and Low priority traffic classes. Each station in the ring has separate
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Figure 2-3: Resilient packet ring architecture

buffers for pass-through traffic and self traffic. Pass-through traffic consists of traffic

that originates from other stations and is destined for other stations but needs to be

passed around the ring. Self traffic consists of traffic that originates from one station

and is destined for the same station.

High priority traffic is assumed to be minimal and far below the total available

bandwidth, so the authors state that the fairness algorithm does not need to control

high priority. The authors propose a fairness algorithm that defines packets in the

pass-through buffer and self buffer to have equal priority. The station chooses a

packet from each buffer every other time, or a byte count is kept if packet sizes vary

greatly. Once a certain threshold is reached in the pass-through buffer, the station is

not allowed to send its own packets. When a station is in this situation, it sends a

congestion notification message upstream to inform the upstream sender to slow its

transmission. The researchers show, using a network simulator, that this establishes

a convergence of rates among stations, so that eventually they are all sending at the

same rate. The algorithm proposed by the author was incorporated into the IEEE
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802.17 standard as RPR Aggressive Mode fairness and became the default fairness

algorithm.

Zhou et al. [29] identify an issue with RPR Aggressive Mode fairness where a

permanent oscillation can occur such that a station will go from transmitting at

maximum rate to not transmitting at all. They propose a fairness algorithm based

on the aggregated flow of ingress traffic. Traditional fairness algorithms Max-Min

and Proportional Fairness are based on flows in the network. The Max-Min Fairness

algorithm is characterized by progressively maximizing the bandwidth of the flows

with the lowest bandwidth requirements [30]. The Proportional Fairness algorithm is

characterized by balancing the desire to maximize the total throughput of the network

with the desire to allow all flows a minimum data rate [30]. The Zhou et al. algorithm

breaks up the network traffic into virtual flows that are defined as continuous packets

from the same source and destination. When a station becomes congested, the Zhou et

al. fairness algorithm will begin forwarding the pass-through traffic and the station’s

own traffic fairly based on the virtual flows and the Proportional Fairness algorithm.

This eliminates the oscillations and produces an overall increase in the throughput of

the system.

2.2.2 Fairness in wireless networks

Another network architecture in which fairness is commonly studied is in wireless

networks [24, 31]. Wireless networks are interesting in that all devices share the

common medium, air, to transmit and receive data. The medium is broken up into

either the time domain or frequency domain. In the time domain, devices take turns

transmitting or receiving data. In the frequency domain, devices break up a large

chunk of wireless spectrum into smaller parts to transmit or receive data. To further

multiplex the medium, protocols can use a combination of frequency domain and

21



time domain mechanisms to allow even more devices to transmit and receive data. A

recent study exploring fairness on a wireless network is presented below.

With the deployment of commercial wireless services, fairness on wireless networks

becomes an increasingly important aspect as customers will need to be guaranteed

a minimum level of service. In wired networks the characteristics of the wire does

not change greatly, while a wireless medium can suffer from drastic changes related

to temperature, humidity or solid object interference. Nandagopal et al. [31] indicate

that defining a fairness model for wired networks is fairly straight-forward, and many

different fairness algorithms have been proposed for wired networks. A new type of

scheme must be created for wireless networks due to features such as spatial contention

for the channel, trade-off between channel utilization and fairness, inaccurate state

and decentralized control.

Spatial contention refers to the use of a location’s wireless spectrum by multiple

devices and is in contrast to temporal contention in which multiple devices take turns

utilizing the medium by breaking up the wireless spectrum based on time. The trade-

off between channel utilization and fairness refers to the balance between maximizing

the amount of data sent on a wireless network and ensuring that every device on the

network is allowed to transmit data. Inaccurate state refers to the fact that wireless

devices work without having a complete view of the entire network. Decentralized

control refers to a wireless ad-hoc network where there is not a single master node

that grants permission to the other nodes to transmit data.

Wireless multiple access protocols consist of collision avoidance and contention

resolution. Collision avoidance is an attempt to ensure that when transmitting data

no other devices are transmitting at the same time. Contention resolution has been

typically achieved through backoff and persistence. Backoff consists of deferring trans-

mission for a period of time governed by a random timer. Persistence is achieved by
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stations maintaining a persistence probability, or the probability that the device will

transmit, and contending for the channel when it detects a clear channel. Thus,

fairness is essentially an algorithm that balances persistence and backoff.

Protocols such as MACAW [32] and CB-Fair [33] use per-flow queues with per-

flow backoffs. IEEE 802.11 uses per-node queue with a per-node backoff. Per-node

solutions ensure that fairness is achieved between different nodes but suffer from the

major problem of head of the line blocking. Head of the line blocking occurs when

multiple flows are active on the same node and one flow is paused which causes

all of the other flows to be blocked. This unfairly penalizes nodes that might have

many flows. The authors [32] propose a fairness algorithm using a per-flow utility

function. They show that system-wide fairness can be achieved without explicit global

coordination as long as each node executes a contention resolution algorithm that is

designed to optimize its local utility function. The authors [32] define an algorithm

with three states of no contend, contend and acquire. When a node wishes to begin

to transmit it will move from no contend to contend. Once in the contend state, it

will begin to detect if the channel is clear at regular intervals. When the node detects

the channel is clear, it will move from the contend state to the acquire state in which

it may transmit. The authors were able to show that their algorithm was able to

approximate the ideal fairness objective closely.

2.2.3 Fairness in arbitrary topologies

Fairness may be achieved by bandwidth reservation. Bandwidth reservation is not

typically provided to applications, so the only way to provide minimum bandwidth

guarantees is by using fairness and controlling packet loss. Historically, the first

fairness algorithms utilized tokens passed around to nodes on the network. A node

can transmit only after it gets a token. This is effective at guaranteeing fairness
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but causes massive link underutilization [34]. The next series of fairness algorithms

proposed using buffer insertion and slotted ring algorithms, but these are inherently

unfair [34]. Buffer insertion fairness algorithms relate to networks that break up

the traffic into different priorities and set aside buffers for each priority. The data

from each buffer is transmitted by priority. Slotted ring algorithms refers to fairness

algorithms that relate to a ring topology in which data transmission is broken up

into time slots and each device on the ring receives a fair number of slots in which

to transmit data. This was resolved using the SAT control signal in the MetaRing

architecture.

The SAT control signal is a frame that gets forwarded around the ring in both

directions and allows a node to transmit data once it receives the SAT control signal

much like the token algorithms [35]. This global fairness provides excellent equal

access, but inevitably underutilizes the local networks since the network is idle for long

periods while waiting for the SAT control signal. So, a stronger fairness algorithm

is required which captures local regulation of conflicting nodes. Max-Min fairness

solves the local regulation problem. In this algorithm a node can increase its access

rate as long as it does not decrease the access rate of a node with an already equal

or smaller access rate. Unfortunately, this has been proven to be non-deterministic

polynomial-time (NP) hard.

In order to generalize fairness algorithms, some studies [22, 34] have attempted

to define algorithms that will work over arbitrary topologies. This survey examines

one of the more recent studies by Mayer, et al. [34] for arbitrary topologies. The

authors [34] define fairness in terms of node access time and frequency and give a

high level overview of fairness algorithms.

The algorithm proposed by Mayer, et al. assumes that convergence routing will

be used. Convergence routing is defined as no packet loss due to congestion under
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arbitrary traffic patterns and with a single buffer per input port. It uses a global

distance metric and both primary and secondary spanning tree links. A spanning

tree is a tree made up of all the nodes in a network and is a common means to

avoid loops while routing traffic. To define a primary and secondary spanning tree is

simply selecting two different roots for each spanning tree. Packets progress through

the network making sure to always make progress according to the global distance

metric and can take short cuts if congestion occurs.

The researchers [34] propose an algorithm that provides fairness via local schedul-

ing that is activated only after some predefined congestion condition is met. The

algorithm utilizes two bit fixed size control messages. It is only triggered when a

node cannot access the network for a given time period. The algorithm works with a

back pressure approach. Fibre Channel and Gigabit Ethernet both use the back pres-

sure approach to achieve lossless routing. Back pressure suffers from head of the line

blocking and possible deadlocking. Thus, there is no possibility to provide minimum

bandwidth guarantees over such networks.

When a node activates its fairness algorithm, it will send a regulate control message

to all upstream nodes telling them to halt transmission after sending a quota of data.

Once the activated node gets to send its quota of data it will send an unregulate

control message to all upstream nodes. Because the algorithm does not maintain any

error detection if a control message is lost, problems can arise. So the authors [34]

propose to implement a timer in case of exceptional events such as a control message

loss. Thus a node can resend the regulate control message after the timer has expired

if the upstream traffic does not halt.
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2.2.4 Summary

It is important to understand the fairness characteristics of different topologies be-

cause the DCB technology is not limited to a specific architecture. In defining fairness,

it is important to understand the difference between Strong Fairness and Weak Fair-

ness. Generalized definitions of both forms of fairness were presented. Several papers

were surveyed that present general fairness algorithms for different topologies such

as rings, wireless networks and arbitrary topologies. One of the more common ring

topologies today, Resilient Packet Ring, was explored. Fairness algorithms designed

for RPR focus on balancing the need to forward data from other nodes with the data

that the local node must transmit. One wireless topology was examined because of its

unique features. Wireless networks provide an interesting area for fairness research

due to the possibility of drastic changes in the transmission medium. Finally, fairness

in arbitrary topologies was presented. One common approach to providing fairness in

an arbitrary topology is to supply back pressure which tells upstream nodes to slow

transmission so that the rest of the network can transmit.

2.3 Weighted Fair Queueing

The Weighted Fair Queuing algorithm breaks up the data to be transmitted into

weighted queues and transmits data from each queue via a fair mechanism, often

a simple round-robin approach. The most basic algorithm breaks the queues into

simple equal weights and transmits in a basic round-robin approach. More complex

WFQ algorithms can provide non-equal weights to the queues and transmit from the

queues in variations of round-robin or other means. WFQ is highly generalizable so

that it can be implemented in many different networks. WFQ is also valued because

of its simplicity.

An example of the basic architecture of a WFQ system can be seen in Figure 2-4.
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Figure 2-4: Weighted fair queuing [3]

Data packets come in from the left and initially reach the Classify unit. In the Classify

unit, the packets are examined and placed in different queues. The technique that

determines which queue each data packet goes into is left open and can be complex

or as simple as placing different protocols into different queues. From the Classify

unit, the packets are sent to their respective queues. From the figure, it can be seen

that there can be any number of queues and each queue has its own weight value.

The number of queues and the weight of each queue is determined by other means

and largely accounts for the generalizability of WFQ. From there, the Scheduler unit

pulls data packets from each queue based on the weight of the queue and a scheduling

algorithm, such as simple round-robin, and places the data packet in the Sending

queue. Once in the Sending queue, the data packets are sent on to their destination.

The algorithm can be altered to improve performance within specific networks.

The WFQ algorithm is implemented in High Speed Wired Networks, Wireless Net-
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works and Time Sensitive Networks. In order to develop a new scheduling algorithm

for data center networks, it is important to survey the state-of-the-art in WFQ algo-

rithms [36–45] as well as examine the more popular Deficit Round Robin which is a

close approximation of WFQ.

2.3.1 High Speed Wired Networks

The challenge for fairness algorithms defined for high speed wired networks is to

ensure that all of the throughput capacity is well utilized. WFQ has been shown

to provide poor bandwidth utilization [40]. Several papers attempt to address the

shortcomings of WFQ in regards to high speed wired networks [36,40,45].

Kim [40] indicates that WFQ algorithms can be categorized into the two ap-

proaches of Start-Time (ST) and Finish-Time (FT). Kim determined that FT suffi-

ciently breaks up total traffic into different flows and provides differentiated Quality

of Service (QoS) so it was used as the scheduling scheme for RSVP (Resource Reser-

vation Protocol), which is a very popular Internet control protocol. One of the major

drawbacks to the original WFQ algorithm is that it sacrifices throughput utilization

for fairness. Decoupled Fair Queuing (DFQ) is one fairness algorithm that was pro-

posed to overcome this drawback for the support of voice traffic. In DFQ, scheduling

rates for flows are over-allocated and then flows are limited to the desired rate when

needed.

The author [40] proposes a new algorithm, General-Time Fair Queuing (GFQ), to

prevent waste by applying a general-time instead of the finish-time to WFQ. GFQ is

identical to WFQ except for the use of GT instead of FT. General-time is based on a

latency index to optimize latency for different flows. The authors show that GFQ was

able to better utilize bandwidth by about 35% than WFQ due to scheduling more

flows by means of not only the resource transformation but also resource optimization.
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Yin and Xie [36] present a new WFQ algorithm called Probability based WFQ

(P-WFQ). The authors identify one of the problems with the original WFQ algorithm

as the calculation of the weight parameter for each packet. The proposed algorithm

uses a random number to find the next packet to be serviced. It additionally groups

a large number of different flows into a smaller number of groups.

Convergence of technologies into a single high speed network has created a problem

of inefficient use of resources. Packet Fair Queuing (PFQ) is a large research area

attempting to efficiently schedule packets at switches and approximate the idealized

generalized processor sharing (GPS) policy. Some important features of GPS include

delay bound, fairness and worst-case fairness. Round-robin based algorithms have the

main advantage of low implementation complexity and so are predominantly used.

The proposed P-WFQ algorithm uses flow grouping, adaptive buffer manager and

queue scheduling. In this paper, the researchers only consider fixed length packet

systems. The algorithm generally works by grouping flows together. After grouping

the flows into larger groups, each group is serviced based on a random number.

Within a group, flows are serviced in a round-robin manner. The researchers were

able to show that P-WFQ can guarantee a bound on the queueing delay according to

a group’s weight.

2.3.2 Wireless Networks

Wireless networks provide several unique challenges to fairness algorithms that are

not found in wired networks. Traditional WFQ algorithms are not optimal in wireless

networks due to location-dependent channel contention, spatial channel reuse and in-

complete scheduling information [43]. In the worst case of highest possible contention,

all wireless nodes may be connected with direct or indirect contention and any single

node must consider all nodes in a global fairness model [43].
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Khawam and Kofman [42] propose utilizing a wireless link by allowing the sched-

uler to make decisions based on a channel state. Their technique provides a dynamic

reassignment of channel allocation over small time scales. Previous algorithms pro-

posed for adapting WFQ to wireless networks have assumed that channel capacity is

constant and try to make short bursts of channel errors transparent to flows. Khawam

and Kofman propose Opportunistic WFQ (OWFQ) which attempts to increase the

system performance through opportunistic scheduling while maintaining QoS require-

ments. The WFQ scheduler assigns a start tag and a finish tag to each arriving packet

and serves packets in the increasing order of their finish tags. In OWFQ, scheduling

is done on finish tags but is further weighted such that flows with higher quality will

have a higher chance of being scheduled first. The paper used simulation to show

that OWFQ provides significant system throughput gains.

Wireless ad hoc networks The Multi-hop ad hoc network is a specialized wire-

less network. A Multi-hop ad hoc network is a collection of nodes that communicate

with each other without any established infrastructure or centralized control. At

any given time a node will have frames from itself and frames from neighbors to

be forwarded in its buffers. Some examples of wireless ad-hoc networks are dis-

tributed sensor networks, zero-configuration teleconferencing during disasters and

data communication on the battlefield [43]. El-Khoury and El-Azouzi [37] propose a

new approach to derive throughput or multi-hop routes and stability of forwarding

queues. Their paper proposes to separate the frames to be transmitted from itself

and frames from neighbors into two different queues, and use WFQ on both queues.

These authors were able to show that end to end throughput between two nodes is

not dependent on the load of the intermediate nodes. Luo et al. [43] propose a couple

of variations on fair queuing for ad hoc networks. They first propose a new algorithm

Maximize-Local-Minimum Fair Queueing (MLM-FQ) which identifies flows that are
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receiving minimal services in their immediate vicinity and ensures that they get access

to the channel. They also propose Enhanced MLM-FQ (EMLM-FQ) which enhances

the original algorithm by offering a larger fair share of the channel to each flow, im-

proves scheduling resilience to collisions, and finally realizes delay and throughput

decoupling which allows better utilization of the channel.

2.3.3 Time Sensitive Networks

Time sensitive applications all have a common need for the lowest possible latency.

Some common time sensitive applications are Voice over IP (VoIP), streaming tele-

vision, tele-diagnosing and e-commerce. During high congestion periods, problems of

loss, jitter and latency become worse [41]. Several of the more recent papers relating

to time sensitive fairness algorithms are explored below [38,39,41,44].

Georges et al. [38] identify that Ethernet cannot be used directly for time-critical

applications due to its Carrier Sense Multiple Access with Collision Detection (CS-

MA/CD) nature. CSMA is a simple probabilistic collision avoidance scheme in which

a device will sense the shared medium and ensure that no other device is transmit-

ting before it starts a new transmission. CSMA/CD adds a mechanism that detects

if a collision occurs after the transmission begins so as to stop transmitting imme-

diately and not waste time finishing the transmission. The collision problem can be

eliminated by bringing in switches, but the problem is then shifted to a congestion

problem in switches. Layer 2 Ethernet switches only provide Classification of Services

(CoS) which is not true QoS. CoS only provides improved services to certain classes

and no guarantee of performance. New Ethernet standards add VLAN tagging and a

Priority tag but use of the standard defined Strict Priority algorithm for scheduling

can result in the lowest priorities never being served. The authors [38] are able to

show that the basic WFQ algorithm in conjunction with round-robin servicing is able
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to prevent starvation and provide an upper bound on delay that can be calculated.

Further, they were able to show that lower priorities in WFQ have a lower delay and

consequently higher priorities will have a higher delay.

Packet traffic on the Internet could be served on a simple First Come First Serve

basis under normal traffic conditions if there was enough bandwidth. Unfortunately,

it has been shown that during disasters, traffic can increase up to ten fold normal

needs. During emergencies, fairness algorithms need to ensure that individual streams

have reasonable latencies so several Class Based Weighted Fair Queuing (CBWQ) al-

gorithms have been proposed. In order to better model and understand CBWFQ

algorithms there needs to be accurate models and simulators. Fischer et al. and

Bevilacqua-Masi et al. [41,44] propose a new simulator for CBWFQ algorithms. CB-

WFQ shares bandwidth based on the weights assigned to traffic classes. It is different

from WFQ in that weights are assigned to traffic classes instead of individual flows.

Classes are served with a probability based on weight assigned to the class. Weights

are determined based on the algorithm. For example, algorithms that favor time

sensitive applications will provide them with higher weights than other traffic classes.

Within a class, packets are served on a first come first serve basis. This is termed a

“random polling model” as opposed to a “cyclic polling model” in which queues are

served one after another in a circular fashion. The authors indicate a large amount

of research has been done on cyclic polling models while random polling models have

received little research attention. The authors conclude the paper by comparing their

simulator to a commonly used commercial simulator. They showed that their simu-

lator provided more efficient analysis capabilities than the commercial simulator by

having shorter run times.

One important aspect of time sensitive applications is the ability to configure

fairness dynamically. Wang et al. [39] first considered WFQ, but determined it was
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not ideal due to the inability to dynamically change the weight assigned to individual

flows so as to accommodate allocation on demand. The authors propose an Adaptive

WFQ algorithm (AWFQ) that essentially determines if the arrival rate of packets is

greater than the amount allocated and adjusts the weight accordingly. The authors

showed that AWFQ is flexible to variable bandwidth requests and prevents starvation

to the best effort class of traffic.

2.4 Deficit Round Robin Scheduling

Weighted Fair Queuing (WFQ) [46] is a well known scheduling algorithm that main-

tains fairness while providing good performance. Unfortunately, WFQ is expensive

to implement in hardware, and has a complexity of O(N), where N is the number of

workloads to be scheduled. As a result, most switches implement the Deficit Round-

Robin (DRR) [47] scheduling algorithm. DRR is comparable to WFQ in fairness and

has a lower complexity of O(1). We explain the DRR algorithm using Figure 2-5,

which presents an example system with three input queues on the left and a single

output queue on the right.

1 1 11 1 1 11 1 1 11

2 2 22 2 2 22 2 2 22

4 4 44 4 4 44 4 4 44

1 1 12 1 4 12 1 2 11

Input Queues  Deficit
Counter

2

2

2

Output Queue

Quantum Size = 2

FIrst Round
Deficit Counter for Queue 3 is given  2 quantum to 
make it 2 and queue skipping occurs due to not 
having enough credits.

Second Round
Deficit Counter for Queue 3 is given  2 quantum to 
make it 4 and a frame is transferred to the output 
queue.

Queue 1

Queue 2

Queue 3

Figure 2-5: DRR example
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Frames that arrive at the switch are assigned to one of the three input queues.

Each input queue is FIFO and holds frames relating to specific workloads. The

scheduling algorithm determines in what order frames are placed in the single output

queue. The frames are transmitted in FIFO order from the output queue. The

numbers in each input queue represent the frame size of the frames in the queue. The

algorithm scans each input queue, starting with queue 1, queue 2, and then queue 3.

During each scan, zero or more frames from each input queue are moved to the output

queue. The number of frames moved from each input queue to the output queue is

determined by 3 variables, namely, quantum size of the algorithm, the deficit counter

value of the queue, and the size of the frames in the queue. The algorithm has a

fixed quantum size; for this example, the quantum size is 2. The deficit counters

are set to 0 initially. The quantum size is the number of credits that accumulate

each round; for this example, it is equivalent to units of frame size. At the start of

each round the quantum size is added to the deficit counter for each input queue.

The deficit counter for each input queue maintains the number of credits placed into

it for each round along with any unused credits from previous rounds. Once each

deficit counter has been incremented with the quantum size for the current round,

the scheduling algorithm begins to move frames from the input queues to the output

queue in consecutive, round-robin fashion. A frame is moved from an input queue

to the output queue when the deficit counter is greater than the size of the frame at

the head of the queue. Once a frame is moved from an input queue to the output

queue, the deficit counter is decremented by the size of the frame that was moved. In

the example given, the dotted line boxes on the output queue represent each round

of the scheduling algorithm. With a quantum size of two, it can be seen in the first

round two one unit frames were moved into the output queue along with one two unit

frame. In the second round, the deficit counter of Queue 3 remembers its leftover

34



credits from the first round and one four unit frame is transmitted with more one

unit and two unit frames. This example shows how smaller quantum sizes can cause

queue skipping to happen, such as with Queue 3. Thus, it is recommended to set the

quantum size no smaller than the largest frame that can be transmitted.

2.4.1 Summary

Weighted Fair Queuing is a specific algorithm that is both balanced and general

enough to work on many different networks. The bulk of research in this area focuses

on fine tuning aspects of the WFQ algorithm to maximize the performance of spe-

cific applications. WFQ research focusing on High Speed Wired Networks, Wireless

Networks and Time Sensitive Networks was presented. High speed wired networks

are characterized by high throughput, but traditional WFQ is not the most opti-

mal for utilizing network throughput. Wireless networks are characterized by limited

throughput and a constantly changing channel, so proposed algorithms focus on dy-

namically changing flow weights in WFQ to accommodate the channel information.

Time sensitive networks are characterized by a need for low latency or determinis-

tic latency, so the proposed algorithms focus on guaranteeing traffic flows a fixed

amount of bandwidth and ensure that none of the flows starve. In addition to the

previous work on WFQ over various networks, we examined DRR which is a close

approximation of WFQ that most current data center switches are now implementing.

Previous work in scheduling algorithms has been based on assumptions that no

longer hold for a network based on the DCB technology. The ability of a DCB

based network to avoid packet loss due to congestion eliminates the most important

assumption that previous scheduling algorithms make. Existing scheduling algorithms

do not consider maintaining fairness within a traffic class when the entire class may

only have a portion of the network bandwidth or may be paused and unable to
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transmit for a period of time. For this reason, a new scheduling algorithm will need

to be devised for the data center networks.

2.5 Performance

Storage area networks are the predominant application that is driving the develop-

ment of the DCB technology, specifically Fibre Channel over Ethernet (FCoE). FCoE

is a new technology that is defined to encapsulate Fibre Channel frames within Eth-

ernet MAC frames. FCoE does not have a reasonable mechanism defined to handle

packet loss, so it requires modifications to Ethernet defined in the DCB technology

to avoid packet loss due to congestion.

iSCSI running over a DCB based network is referred to as Enterprise iSCSI

(eiSCSI). While iSCSI does not need the DCB technology because it handles packet

loss with the TCP protocol, avoiding retransmission of packets can benefit the per-

formance of iSCSI greatly. For this reason, iSCSI is also a major application driving

the development of the DCB technology.

It is important to understand the performance characteristics of both Fibre Chan-

nel and iSCSI because they are two of the strongest drivers defining the DCB technol-

ogy. Both technologies are commonly categorized by large and long transfers of data.

For this reason, a survey of some recent storage area network performance analysis

papers are presented.

Traditional network based storage suffers from latency issues, since SCSI disk

subsystems are slower than FC and neither the network nor the SCSI bus are fault

tolerant. Storage Area Networks (SAN) consist of hosts, storage devices, interfaces,

hubs, and switches [48]. Some of the data currently stored on SANs are storage

consolidation, data replication, backup and recovery, simulations, modeling, Inter-

net and intranet browsing, multimedia, transaction processing, e-business, and data
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warehousing and mining [48,49]. Power outages and natural calamaties such as earth-

quakes and terrorist attacks have created a need for SANs to move further away from

access sites. Fibre Channel, iSCSI, FCIP and iFCP have all been introduced to trans-

port SCSI requests and responses over great distances [50]. This section will examine

several papers that are focused on modeling SANs followed by some recent papers

related to two of the more popular SAN technolgies of Fibre Channel and iSCSI.

2.5.1 SAN Modeling

Analyzing and modeling a SAN before deployment is important to ensure that the

best choice for each specific implementation is made. Molero et al. [49] proposed a

tool for simulating the behavior of SANs using high-speed LAN interconnects. The

simulator focuses on SAN internal design and main implementation features. The

simulator is designed with a wide range of input parameters, such as locations for

both server and disks, network topology, switch architecture, routing algorithms and

maximum packet size. The authors use real world traces with the simulator to show

that latency variations affect control messages more than data messages, and links

generally have low utilization.

Telikepalli et al. [50] proposed models using network and protocol specific vari-

ables. They identified the network parameters of distance, packet loss, available

bandwidth, advances in TCP implementations and increased maximum TCP window,

which control the amount of data in flight at any given time. They also identified the

protocol parameters of data window, frame size, zero copy, TCP processing delays,

I/O writes, I/O block size and command sequence. Performance analysis showed that

the parameters that have a key impact on performance were packet loss and buffer

space at the sender and receiver.
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Figure 2-6: Fibre channel arbitrated loop topology [4]

2.5.2 Fibre Channel

Fibre Channel is the SAN technology with the largest market share. Fibre Channel

is flexible and supports point-to-point, arbitrated loop and switched fabric topolo-

gies. The arbitrated loop and switched fabric topologies are highly scalable. The

biggest drawback to deploying Fibre Channel networks continues to be poor interop-

erability [48]. Another key challenge is dynamically restricting access to files, which

is being addressed by new zoning standards. Dynamically restricting access to files

provides a baseline security measure to network administrators so that they can dic-

tate what files each user has read and write access to. Fibre Channel loop topology

was introduced as a low cost alternative to the switch design [51]. The Arbitrated

Loop topology allows up to 127 active devices, including one fabric element or 126

devices if no fabric element is present. The Arbitrated Loop protocol requires that
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before data are transferred, the sending port must acquire loop access and establish

a connection with the receiving port.

An example of an Arbitrated Loop topology is shown in Figure 2-6. Figure 2-6

shows the transmit port (TX) of each device connected to the receive port (RX) of

its neighbor creating a loop. In this example, data would progress around the loop

counter-clockwise.

Fibre Channel defines three classes of transmission service. Class 1 provides dedi-

cated full-duplex circuit-switched connection. Class 2 provides a frame-switched con-

nection with acknowledgement and flow control. Class 3 provides a connection-less

datagram service with no acknowledgement. [51]

Heath and Yakutis [51] focus on examples of SAN applications such as telecom-

munications billing and online database transactions. They both are characterized

by small data transfers of between 2 and 8 KB. The authors show that Arbitrated

Loop topologies achieve throughput levels adequate to support online transaction

processing (OLTP) applications. The authors also show that a dual Arbitrated Loop

topology can saturate the system in the case of long I/O transfer applications.

2.5.3 iSCSI

Internet Protocol (IP) based storage networking is preferred over other SAN tech-

nologies because of economy and convenience. Two early IP storage based protocols

were encapsulating SCSI over TCP/IP and SCSI and IP protocol conversion at a spe-

cialized switch [52]. Both protocols have severe performance issues due to overhead

and congestion.

In a typical iSCSI network, Xubin et al. [52] found that 58% of TCP/IP packets

were very small (less than 127 bytes long). The authors proposed a new cache scheme

called iCache. Using non-volatile RAM, the authors created a two level hierarchical
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cache for iSCSI systems. iCache converts small packets into large packets, and is

completely transparent to the OS. The authors found that iCache improves the iSCSI

performance by an order of magnitude for 90% of storage requests, while the average

speedup is about 85%.

One of the main challenges for iSCSI is its efficiency and performance against ex-

isting technologies such as Fibre Channel. Aiken et al. [53] compared the performance

of iSCSI and Fibre Channel. They found that commercial iSCSI software compared

quite favorably with Fibre Channel. The performance of open-source iSCSI was very

dependent on the disk throughput. The researchers showed that performance was up

to 50% less with disks versus no disks. iSCSI also benefits greatly from specialized

hardware. The authors examined both network layer parameters and physical layer

parameters. In a typical local area SAN, they found that Ethernet frame size and

other physical layer parameters play a significant role in performance while network

layer parameters such as TCP window buffer size have little effect on performance.

Using a wide-area network emulator, the authors showed that network layer param-

eters played a dominant role compared to physical layer parameters in regards to

performance.

2.5.4 Summary

Storage Area Networks are becoming more popular with the explosion of data in-

tensive applications. SANs are both scalable and reliable. SANs are a large capital

investment, so it is important to model the system prior to the investment and eval-

uate performance limitations. Performance models help in the purchase decision of

what SAN technology to invest in. Fibre Channel and iSCSI are the two SAN tech-

nologies with the largest market share. Fibre Channel is a flexible and reliable SAN

technology with the largest deployment. Part of the reason for its popularity is the
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flexibility provide by its Arbitrated Loop topology. IP based SANs are deployed due

to their convenience and accessibility. iSCSI was shown to perform quite favourably

when compared to Fibre Channel with both commercial products and open-source

products.

FCoE and eiSCSI are two variations of the traditional Fibre Channel and iSCSI

storage area networks that have become available with the introduction of the DCB

technology. In order to define a new fairness algorithm that affects the performance

of traffic flows within a traffic class, it is important to examine the performance

differences between the different technologies. This survey showed that Fibre Channel

is the more popular technology of the two and had better performance, but iSCSI

performance is catching up.

2.6 Background Conclusion

There is a growing number of data intensive applications requiring more data stor-

age. The market for data storage is large and will continue to grow. Storage Area

Networks are becoming an invaluable resource for nearly every organization because

they are both scalable and reliable. Moreover, Ethernet based SANs are convenient

and accessible. In order to increase the value that Ethernet can provide to organi-

zations utilizing converged networks, the IEEE has defined a series of standards in

the Data Center Bridging Working Group. The working group has developed the

new standards for Priority-based Flow Control, Congestion Notification, Enhanced

Transmission Selection and DCBX. In their entirety, the standards make Ethernet

“lossless”, by ensuring that packets do not get dropped when there is congestion.

This chapter examined some of the previous work in the large field of fairness and

performance. It is important to understand how the new DCB protocols affect the

performance and fairness of applications such as storage and inter-processor commu-
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nication over Ethernet. The following chapters will develop new understanding and

mechanisms based on the foundation of previous work laid out in this chapter.
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Chapter 3

Testing Challenges of Data Center

Bridging Networks

After examining previous work on fairness and an introduction to the technologies

that we will be examining throughout this dissertation, this chapter examines in

detail each of the protocols within the DCB standard. We investigate challenges

in measuring and testing devices that have implemented the protocols and provide

examples for several issues that have been seen in DCB devices. It is important to

understand the intricacies of testing and measuring the protocols before beginning to

analyze performance and identifying bottlenecks, so that experimental results are not

attributed improperly to device specific issues.

3.1 Introduction

In the Data Center, a primary driving force is the desire for network convergence.

The notion of one dedicated network for storage, one dedicated network for Inter-

Processor Communication, and one dedicated network for general data networking

has long ago been abandoned. The many reasons include: reducing the expertise

needed to maintain the data center; reducing the power consumed by (and thermal
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load generated by) so many disparate network switches and host channel adapters

(a.k.a., network cards in the servers); reducing the space required; and reducing the

overall cost of the data center equipment.

Ethernet’s ubiquity drives a natural desire to see this technology expand to support

the needs of the data center, but to do so, it needed to grow to support a lossless

layer-2 data transport, while remaining cost effective. One of the major applications

that is benefiting from convergence to Ethernet is storage. Fibre Channel is currently

the predominant technology in the storage space. Storage as an application class

typically utilizes a network with large, long transfer patterns. In order to converge

Fibre Channel onto Ethernet, extensions to Ethernet needed to be introduced in order

to handle the congestion introduced with storage transfer patterns. In large part, this

need for extensions to existing Ethernet bridging drove the work in the IEEE 802.1

Data Center Bridging Task Force to develop collectively what has come to be known

as Data Center Bridging (DCB).

DCB consists of four different technologies: Priority-based Flow Control, En-

hanced Transmission Selection, Congestion Notification and DCB Exchange. Each

technology works independently to provide enhanced Ethernet features and together

they attempt to eliminate any packet loss due to congestion. DCB builds upon the

existing Ethernet priority field in the VLAN tag, which provides up to eight different

priorities. There are two additional technologies being defined by the Data Center

Bridging Task Group within IEEE to address the growing use of server virtualization

in the Data Center. These technologies are called Edge Virtual Bridging and Bridge

Port Extension, but these are still in development, not widely implemented by device

manufacturers and testing is also not yet developed; hence, this chapter will focus

on the previously mentioned four DCB technologies. For a more thorough exami-

nation of the details of each protocol within DCB, please review the tutorial on the
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University of New Hampshire InterOperability Laboratory website [54].

There are significant new Ethernet testing challenges introduced with DCB. Each

of the four protocols must be tested individually, the interaction between the proto-

cols needs to be tested and, finally, the interaction of existing applications with DCB

will be important to test. When considering the process of testing a new technology it

is useful to think in terms of conformance and interoperability. Conformance testing

entails measuring a device’s behavior as it pertains to the standard defined protocol

behavior. Interoperability testing consists of connecting multiple devices within a

technology space and observing the protocol’s interactions with each other. It is im-

portant to consider both conformance and interoperability because full conformance

may not guarantee interoperability and current interoperability does not necessarily

indicate future interoperability.

While it is necessary to perform both conformance and interoperability testing,

both are not always performed as part of a collaborative network testing effort. Some

examples of new technologies that have taken very different approaches to testing

include IPv6 and Wi-Fi. As a result of significant interoperability problems with

early implementations [55], IPv6 early on developed a certification program that

includes both conformance and interoperability in order to address real limitations in

the technology [56]. The industry understood the importance of testing and developed

both the IPv6 Ready Logo program as well as the IPv6 Testing Project [57]. Both

programs combined have greatly increased the success of IPv6 in the market.

Another example of a technology with a well known testing program is Wi-Fi.

Initially there were many examples of failures to successfully set up a wireless net-

work [58]. As a result, Wi-Fi testing from the very beginning focused on interoper-

ability over conformance. One of the issues with an interoperability only program

is development and maintenance of a test bed of devices [59]. Aside from the dif-

45



Figure 3-1: Priority-based flow control space time diagram

ficulty of maintaining the testbed, another issue is the initial cost which can easily

range from $20,000 to $40,000 [60]. Such interoperability-only approaches also tend

to suffer from sensitivities to any non-conformant behavior in the ‘golden devices’

represented in the interoperability testbed.

DCB, IPv6, Wireless and any new networking technology all face the challenge

of providing the balance of conformance and interoperability network testing while

doing so in a timely and cost-effective manner. By detecting issues early, market

acceptance delays can be avoided by mitigating negative experiences of end-users.

This trade-off of cost vs. coverage vs. timeliness is but one of many challenges facing

the adoption of DCB. The rest of this chapter will examine each protocol within

DCB and highlight aspects of how to test the protocol, including early observations

of common issues. Finally, this chapter will discuss applications that run over DCB

and how to test them and their interactions with DCB.
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Before delving into the details of testing the specific protocols within DCB, there

are immediate challenges related to testing DCB across all of the different possible

interfaces. In the 10G Ethernet space there are at least four common interface types

which complicate the testing including: 10GBase-CX4, iPass, 10GBase-SR, 10GBase-

LR and 10GBaseT. Each of these interfaces requires different test gear and adapters

in order to test them as well as complicating interoperability testing if the devices in

the test bed do not have the same interfaces. Additionally, DCB is being defined as

speed independent with announced DCB products including: Gigabit, 10 Gigabit, 40

Gigabit and 100 Gigabit. Each of these speeds have additional interfaces and require

different test stations in order to test them (all increasing the cost of test) as well as

different timing conformance requirements.

3.2 Conformance

3.2.1 Priority-based Flow Control

PFC is defined in the IEEE 802.1Qbb standard. As PFC only operates on a link by

link basis, it can be tested with a simple network topology. In this topology, a device

under test (DUT) is connected directly to a test station. The test station stimulates

the DUT with positive and negative responses and the results are observed. A test

suite has been defined [61] that breaks the testing into several groups including proper

behavior as well as DUT response to some common malformed frames. This testing

has identified several interesting issues with early implementations of devices.

In the first test group, which examines a DUT’s ability to receive properly for-

matted PFC frames, there is a test that examines the ability of devices to pause

each of the eight priorities independently. Many early implementations failed this

test because they only implemented two lossless classes. In group three which ex-

amines the DUT’s proper transmission of PFC frames, there is a test that examines
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the worst case scenario of frames that could be in transit after a device sends a PFC

frame. When a device begins to become congested it needs to send a PFC frame to

its neighbor with enough free buffer space to store the frames that could already be

in the process of being sent to it (bits that are “in-flight” on the wire) as seen in

Figure 3-1. This ensures that the device does not lose any frames even after it sends

a PFC frame and receives a limited additional amount of data. Early testing results

from this test have discovered that many devices do not provide enough buffer space

to ensure frame loss does not occur. The ability to monitor bit-level transmissions

to/from the DUT enable enhanced accuracy of these measurements. Such testing

requires an FPGA (field programmable gate array) that can insert PAUSE frames

into very specific points in a traffic stream, as well as capture and monitor at the

bit-level. This has both a high knowledge cost as well as high development time.

3.2.2 Enhanced Transmission Selection

Enhanced Transmission Selection (ETS) is defined in the IEEE 802.1Qaz standard.

The testing procedure for ETS [61] is divided into end device and switch testing. End

device testing is somewhat limited since there is only one connection to the device.

Additionally, early devices from storage vendors have mapped all non-storage traffic

into a single priority. This mapping only allows up to two different ETS bandwidth

groups to be tested: storage and network traffic classes. Another limitation of early

devices is that many switches are only supporting two different queues, so all eight

priorities can only be broken up into two different bandwidth groups. Even with

these early limitations ETS can provide a useful mechanism to configure network

bandwidth.

ETS is tested by varying the bandwidth percentages of each of the traffic classes.

Before testing, each traffic class needs to be “baselined” by itself. This involves simply
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Figure 3-2: Bottleneck topology for ETS testing
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running each traffic class on its own and verifying that all of the traffic classes can

achieve enough throughput in order to test the different ETS percentages defined

in the test plan. Since storage is one of the major applications, this is especially

challenging if the storage devices cannot achieve close to line rate of 10G Ethernet.

It is important to test that ETS is work-conserving, so that if a traffic class is

not utilizing its assigned bandwidth then the other traffic classes utilize the unused

bandwidth. Multi-port switch testing is more interesting and can be tested using the

standard bottleneck topology in Figure 3-2. Using this topology a switch’s ETS algo-

rithm can be fully stressed. The standard bottleneck topology has multiple inbound

connections leading into the switch with one outbound connection. By transmitting

line rate traffic into each of the input connections with a different priority for each con-

nection, the output port is fully stressed. Utilizing all eight traffic classes supported

in the DCB standard, the output port could be receiving 8 times the traffic that it can

transmit and needs to schedule the traffic down to a single link while managing the

assigned ETS bandwidths. The important testing criteria defined in the standard is

to show that the actual bandwidth does not deviate more than ±10% of the assigned

bandwidth. This could cause any device that is close to the 10% margins to become

very disruptive in the network. This has caused issues in larger DCB networks where

multiple marginal devices together can cause significant variation from the expected

performance.

3.2.3 Congestion Notification

Congestion Notification (CN) is defined in the IEEE 802.1Qau standard. An example

of the Congestion Notification mechanism can be seen in Figure 3-3. This figure shows

that two flows create congestion at the third switch which could cause congestion

spreading. If the Congestion Point (CP) sends a Congestion Notification Message
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Figure 3-3: Congestion notification example

(CNM) back to the Reaction Point (RP) the use of PFC can be avoided and stop the

congestion spreading.

CN is the most complicated and novel of all of the DCB standards. It does not

build on any existing Ethernet technologies; as a result not many vendors have imple-

mented the CN standard yet. Despite that, the CN standard was the first standard

to be completed by the IEEE working group and a test suite [61] was available early.

CN testing utilizes the simple conformance topology that PFC used. The testing

involves sending congestion notification messages to the DUT and observing that its

frame transmission rate decreases appropriately as well as causing congestion in the

DUT and observing that the DUT sends a proper congestion notification message.

Since not many devices have implemented the CN standard, the test procedure has

not been executed yet and test results have not yet been gathered.
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3.2.4 Data Center Bridging eXchange

The Data Center Bridging Exchange (DCBX) protocol is defined in the IEEE 802.1Qaz

standard. Although DCBX does not have any direct effect on performance issues, pre-

vious well attended industry test events have shown that it is the single largest piece

that contributes to observed non-interoperable setups. Prior to the IEEE defining

a standard for DCBX, a group of vendors contributed an early proposal that has

become known as the Baseline version. Once the IEEE began to work on a standard,

the new version became known as IEEE Draft version of DCBX.

The Baseline version and IEEE Draft version are completely non-interoperable.

Currently many vendors are still supporting the Baseline version which is causing

serious interoperability issues similar to the early days of IPv6 as seen in the VTHD

network [55]. An IEEE Draft version test procedure [61] has been defined that utilizes

the simple conformance test setup of PFC and CN. As with all test procedures,

the standard defined requirements (SHALL, SHALL NOT, etc) are extracted and

tested via automated tools emulating a link partner, to exercise as many positive and

negative test cases as is reasonable.

Some of the most interesting tests involve the testing of what is called the willing

bit for each TLV. DCBX is broken up into asymmetric and symmetric parameter

passing procedures. Asymmetric parameter passing does not require agreement on

both sides of the connection, so the willing bit is the only field considered when

determining if a device should accept a recommendation. Symmetrical parameter

passing requires agreement by both peers. In cases where both sides are configured

differently but both are willing, the lowest MAC address of the peers is considered

to “break the tie”. Many devices have been found to fail all or part of these tests.

Another test has shown issues with devices accepting multiple peer scenarios. This

generally causes many issues since it is not clear what DCBX frame to follow when
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a device receives frames from multiple peers. This scenario is commonly seen when

a switch improperly forwards DCBX frames, as is the case with some non-compliant

devices.

3.3 Applications and Interoperability

The previous sections have addressed the testing needs for conformance. In order to

test interoperability of DCB it is beneficial and more informative to observe DCB

performance while applications are running on the network. The main application

driving the development of DCB is storage.

The iSCSI over DCB interoperability test procedure is broken up into two phases [61].

The initial screening phase utilizes a simple topology. Each converged network

adapter (CNA) is connected to a single switch and an iSCSI over DCB target. In

this phase devices are tested in a simple topology in order to ferret out any glaring

interoperability problems before inclusion in the larger fabric later.

The second phase of testing utilizes all of the devices that passed the screening

phase and devices are configured as shown in Figure 3-4, utilizing 3 Initiators, 3

Switches (A,B,C) and 3 Targets at a time. In the second phase of testing, device

interoperability is exercised via a series of iSCSI operations and following each test

run the switches are moved in a simple rotation such that all of the devices see each

other, specifically switches A, B, C are then tested with switch B taking switch A’s

position, switch C taking switch B’s position, etc such that A,B,C is tested, B,C,A

is tested, and C,A,B is tested. It is important to rotate the switches so that each

initiator and target is directly connected to each switch at least once.

As discussed before, DCBX interoperability causes the majority of network con-

nectivity problems in a DCB network. By causing devices to generate and respond
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to PFC, the interoperability of PFC can be observed. Even if both devices pass all

compliance tests within the accuracy of the observations, it is possible that the tim-

ing of PFC generation and response are at the margins and still allow frame loss to

occur. ETS interoperability is tested on the full fabric by injecting non-iSCSI traffic

into the network on different priorities than assigned to iSCSI. Since the margins for

ETS are ±10% of the configured bandwidth value when multiple devices are in a line

significant bandwidth deviations can occur.

Figure 3-4: Interoperability test setup

One of the biggest challenges in interoperability testing involves distributed mon-

itoring. It is important to monitor each link within a network in order to understand

where a protocol error may be occurring. Often times in a large interoperability test

setup there might be a problem between only two devices out of nine or ten in the

network. Each link needs to be actively monitored during startup to ensure that all
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of the devices negotiate DCBX properly. The network also needs to be monitored

during high load to ensure that PFCs are cascading through the network properly

and ETS is throttling the traffic classed bandwidth properly. This can become both

extremely costly to obtain that many network analyzers as well as a coordination

challenge in order to obtain and follow all of those traces.

Aside from on-demand interoperability testing at UNH-IOL, hosting industry-

wide test events also plays a large role in validating early implementations. The

Fibre Channel Industry Association (FCIA) and the Ethernet Alliance (EA) both

sponsor test events at UNH-IOL. The UNH-IOL also sponsors some events themselves

based on demand within the industry. Since September 2008, between the three

organizations the UNH-IOL has hosted about four events a year for a total of thirteen

events relating to DCB interoperability.

Figure 3-5 shows the number of devices that have participated at each event. The

number of participating devices ranged from six to 35.

Figure 3-6 shows the number of interoperability issues that were seen during each

event. Each event defined a test plan that include a number of “Test Tracks”. A

test track is simply a procedure that is run with a given topology. The number of

issues in the graph is determined by counting each step within a test track for a given

topology that could not complete with the expected behavior.

Many of the issues identified in the previous sections were also seen during the

events as well. Due to the fast paced nature of a test event, extensive debugging

is not generally done but there is a focus on identifying issues with the standards.

One issue identified during an event is that the T11 organization requires FCoE to

be transmitted over a lossless fabric, and if it is not a lossless fabric then the FCoE

traffic should not be transmitted. Historically, the IEEE has been a “best effort”

fabric, so even if it cannot guarantee a lossless fabric, it will still transmit traffic
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Figure 3-5: Number of devices participating in UNH-IOL test events
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including FCoE. This creates a major implementation difference between vendors

implementing T11 and IEEE compliant devices. Another issue seen at an event is

in the situation where there is one core switch as the master switch which should be

unwilling, the two edge switches should be willing on the port connected to the core

switch but unwilling toward the end nodes. The plan was for the core switch to tell

the edge switches how to configure and the edge switches to push that down to the

end nodes, but there is no Indication in the standard how the edge switches are to

take the configuration from the uplink and push it to the down link.

3.4 Conclusion

Interoperability and Conformance between various manufacturer’s iSCSI over DCB

devices is now more important than ever in this nascent space to ensure the industry’s

collective goals of growth and adoption. An iSCSI over DCB Integrator’s List is a co-

operative effort between companies that are dedicated to implementing the IEEE and

IETF standards for DCB and iSCSI and to promote interoperability between devices

from different manufacturers and facilitate industry adoption of the technology. An

Integrator’s List helps ensure high-quality iSCSI over DCB products are recognized

in the marketplace, while simultaneously offering a clearing house of network testing

ideas and best known practices to be centralized from the Industry, thereby enabling

a first hurdle of acceptance before purchasers further investigate the pros and cons of

distinct products.

Without such a program, two approaches, neither of them optimal, tend to domi-

nate interoperability efforts. In the lesser of these two evils, vendors end up spending

an exorbitant amount of money to establish and maintain their own interoperability

facilities, where the focus is more on their product’s interoperability rather than stan-

dard’s based conformance and interoperability of same. A worse-case scenario occurs
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when vendors simply do not perform interoperability testing and hope that the first

(smaller) group of vendors will do the testing against their devices. iSCSI over DCB

interoperability has been improving due to large efforts of the first group of vendors,

despite the high price of pursuing this solution.

Many enterprise customers still see iSCSI over DCB as an unfamiliar and unproven

technology. While implementers have been working aggressively with UNH-IOL to

develop rigorous standards based conformance and interoperability testing, their ef-

forts must become known for confidence to be built. To this end, the voluntary iSCSI

over DCB Integrator’s List is seen as a vehicle to help promote the network testing

efforts of those participating [62].

Looking ahead there continues to be testing and deployment challenges for this new

technology. As more vendors begin to enter the market, it is important to develop a

strong testing program that incorporates both conformance and interoperability. The

first wave of early adopter vendors has already been participating in testing programs

to ensure that they work with each other. Once the second wave of adopters enters the

market it will be very important to test and ensure that these new implementations

interoperate with the early adopters.
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Chapter 4

iSCSI on a Converged Data Center

Network

The previous chapter provided a detailed examination of each protocol within DCB

and some of the challenges involved in trying to measure and test the protocols in

real-world devices. This chapter evaluates the effects of converged traffic classes on

a data center grade network. We examine various traffic streams sharing a modern

data center network prior to receiving actual DCB hardware. Finally this chapter

ends with an analysis of how future DCB enabled hardware will benefit a converged

network.

4.1 Introduction

In order to evaluate the pros and cons of the DCB protocols, it is important to first

understand how the performance of various traffic flows are impacted by a converged

network. However, there are very few papers that analyze traffic flows on converged

networks since this is a relatively new area and standards are still being defined.

Ranganathan and Subhlok [63] analyzed the cost and benefits of a converged network

over a backplane. They performed a broad analysis including cost of each port,
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cost of different interfaces and performance implications of their choices. The paper

examined the implications of different lane widths and PCI Express speeds. The study

concluded that a converged network could reduce cost significantly. They found that

larger fabrics offered the most performance and cost savings only if they are fully

utilized, while smaller fabrics offered better fabric isolation and finer grain scalability.

There are no papers that evaluate the performance of LAN and SAN traffic on

a converged data center network. In this chapter, we examine the performance of

LAN-TCP/UDP and SAN-iSCSI traffic on a converged network. The LAN and SAN

traffic flows have very different characteristics. iSCSI encapsulates SCSI which has a

request response behavior. In the case of a Read, a single request results in a large

amount of response data. In the case of a Write, a large number of requests will likely

be followed by a single response indicating that the operation completed successfully.

TCP is a reliable network transport protocol, which means that for every frame an

acknowledgment will need to be sent back to indicate success, while UDP is unreliable,

which means that there is no returning acknowledgments.

There are no papers that evaluate the performance of iSCSI/TCP/UDP over a

converged network. Most recent iSCSI performance papers either focus on compar-

isons to Fibre Channel [53, 64, 65] or they examine system level improvements such

as caching and protocol tweaking [52,66]. We analyze the impact of congestion when

a network is shared by TCP, UDP, and iSCSI traffic. We use data center grade

equipment and create multiple virtual networks designed to carry iSCSI SAN and

non-storage LAN traffic. By creating the converged network we are able to measure

the effect of loss and other traffic on the performance of the LAN and SAN traffic.

Using multiple, separate virtual networks we are able to isolate the traffic classes

which provides a basic level of security that Data Centers today demand.

We evaluate the impact of congestion on a converged network as the number of
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traffic classes increases and traffic types differ. The devices in the converged network

are of five types: LAN Source, SAN Source, LAN Sink, SAN Sink and a Switch. The

SAN Sources submit I/O requests to the SAN Sinks, the LAN Sources submit TCP

and UDP requests to the LAN Sinks, while the switch transmits data between all of

the devices. The sources and sinks generate traffic over the same network, thereby,

causing congestion.

4.2 Experimental Setup

The experimental setup is shown in Figure 4-1. The server platforms are powerful

multi-core systems with more than 2GB of memory to ensure that the traffic classes

used in this study can utilize a large portion of the network. The Ethernet adapters are

powerful 10 Gigabit Ethernet adapters from leading next generation adapter man-

ufacturers Chelsio and Intel. The switch is a 10 Gigabit cut-through switch from

Fujitsu that provides near wire speed transmission on the network, which ultimately

provides near wire rates of throughput and latency. The iSCSI Initiator and Target

is the open source software provide by the University of New Hampshire InterOper-

ability Laboratory.

The application software we use in this study is the dd and netperf applications

run in a Red Hat Linux Operating System. The dd application is used to exercise

SAN traffic and the netperf application is used to exercise the LAN traffic class.

The dd application is a simple SCSI I/O application that allows the user to specify

whether to do a read or write, the number of operations and the size of each operation.

The netperf application is an industry recognized benchmark tool that uses a client

and server model to exercise several different traffic patterns such as one-way TCP,

one-way UDP, two-way TCP and two-way UDP.

Our experimental SAN workload consists of 2000 one megabyte read and write
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Figure 4-1: Experimental setup

operations. The parameters provided to the dd application to create this workload

consist of count=2000 and bs=1048576. The 2000 count ensures that each experi-

ment runs long enough to be stable, while the megabyte requests in the experimental

workload ensures a large load on the network. Furthermore, this is the largest SCSI

workload that can be handled by the network without overrunning the capacity of

the target. We use the memory I/O mode of the iSCSI Target since it keeps the read

and write operations in memory and does not send traffic to the disks. This allows

the iSCSI Target to provide the most performance available because we want to focus

on the network and not the disk drives.

Our experimental LAN workload consists of one-way TCP and one-way UDP

transactions. The parameters provided to the netperf application to create this work-

load are “-t TCP STREAM” and “-t UDP STREAM”. The converged network is

created by setting up three virtual Ethernet interfaces over the Chelsio adapter in the
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source system on different subnets using the command: ifconfig eth2:1 <ip-address>

<netmask>. The UDP workload is an example of a typical streaming video or audio,

and the TCP workload is an example of web, email, and socket applications.

We first measure baseline performance metrics by running solo traffic classes on

the network. Next, all workloads are submitted to the network in parallel and per-

formance on the converged network is measured. The performance metric analyzed

in our experiments is the throughput of each workload.

4.3 Two Traffic Classes

During the first set of experiments, the SAN Sink and LAN Sink1 (Figure 4-1) are

used. Figure 4-2, Figure 4-3, Figure 4-4, and Figure 4-5 show the results of our

experiments. The LAN traffic on the network varies between TCP and UDP, while

the SAN traffic varies between ISCSI read and write. Each graph plots the throughput

of a traffic class when the network is not shared and when the network is shared. The

lines show how throughput of a traffic class varies when the network is not shared

versus when the network is shared.

Our TCP graphs show that the TCP traffic has higher priority than SAN traffic

since the throughput of both Reads and Writes dropped in the converged network

while the throughput of the TCP traffic remains unchanged. Comparing the TCP

Read and TCP Write graphs, the Read throughput drops less than the Write through-

put. Our UDP graphs show that the UDP traffic does not seem to have higher priority

than SAN traffic. In the UDP and iSCSI Read graph, the SAN throughput is reduced

minimally while UDP throughput decreases significantly on the converged network.

In the UDP and iSCSI Write graph, the SAN line decreases about the same as the

LAN line.

These results show that the type of traffic has a direct effect on the performance
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Figure 4-4: Throughput of UDP converged with iSCSI Read
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Figure 4-5: Throughput of UDP converged with iSCSI Write
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of the traffic classes on a converged network. The UDP and the iSCSI Writes both

have a one-way traffic pattern, while the TCP and the iSCSI Reads have a two-way

traffic pattern. Our results show that two-way traffic patterns have a higher priority

than the one-way traffic patterns on a converged network. Our experiments also show

that similar traffic classes perform similarly.

4.4 Three Traffic Classes

During the three traffic class experiments, all of the devices in Figure 4-1 are used. In

this experiment we vary the traffic between TCP, UDP and Read, Write operations.

Figure 4-6 and Figure 4-7 show the effect of a converged network on the throughput

of three traffic classes. Each graph plots the throughput of various traffic types when

the network is non-converged and converged. The left column of each graph shows

the throughput of each traffic class while running on the network by itself. The right

column of each graph shows the throughput of all three traffic classes while running

on the network simultaneously.

The Three Traffic Class experiment confirms the results from the Two Traffic

Class Experiment. Figure 4-6 shows that the TCP throughput decreases significantly

less than the UDP and iSCSI Write throughput in the converged network. Figure 4-7

shows that the iSCSI Read throughput decreases far less than the throughput of the

other traffic classes. The TCP throughput decreases less than the UDP throughput,

but TCP performance falls far more than iSCSI Read. We believe that the TCP

throughput decreased because of increased congestion in the three-traffic experiments

compared to the two-traffic experiments. The congestion on the network impacted

TCP traffic more than the iSCSI traffic because iSCSI Read traffic only sends small

request packets from the source to the SAN Sink, the network flow direction with

major congestion. The major traffic generated by iSCSI is the large read packets
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from the SAN Sink to the Source, the network flow direction with less congestion.

4.5 Analysis

Our results show that iSCSI Write traffic performance is severely degraded when

it shares the network with TCP and UDP traffic streams. This problem can be

addressed using the ETS protocol which can be used to shape the bandwidth of an

egress port of a device. In this case, the most benefit would be seen on the egress

port of the Traffic Source. The traffic classes can be tagged with priorities such

as TCP=1, UDP=3, SAN=6 and placed in their own Priority Group ID. This setup

allows the bandwidth to be configured to ensure that SAN traffic gets more guaranteed

bandwidth. In the three traffic classes experiments, the iSCSI Write received less than

25% of the total bandwidth. The ETS technique can ensure that iSCSI Write receives

a greater percentage of the total available bandwidth.

The PFC protocol may not be useful for the experimental platform in this chapter.

However, consider a new experimental platform with a single server node (sink) that

provides several services and multiple clients (sources) connect to this server and use

its services. In this setup, the multiple clients could overload the link between the

switch and the new sink. This problem could be addressed using the PFC protocol

which can pause the lower priority TCP and UDP traffic classes to ensure that the

higher priority iSCSI traffic continues unimpeded.

If another switch is added to the new platform, and more clients connect to this

switch, then a situation may arise where the CN protocol would be useful. Without

CN, the first switch could use PFC to pause traffic classes as the link between the

switch and sink gets overloaded. When the first switch pauses traffic, the second

switch could get overloaded resulting in the second switch using PFC to pause traffic.

This lowers the performance of high priority traffic such as iSCSI and UDP within a
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priority that were not necessarily causing the original congestion. The CN technique

could allow the overloaded link to preemptively slow some of the traffic streams and

prevent PFC from being issued.

4.6 Conclusion

As the industry moves toward converged networks, performance analysis of different

traffic classes and protocols combined on a single fabric becomes important. Using a

Data Center grade 10 Gigabit Ethernet network, this study addresses the performance

impact of two and three traffic classes sharing the same network. We found that the

impact of congestion varies with each traffic class. The two-way traffic classes were less

impacted by congestion than the one-way traffic classes. The two-way traffic classes

utilize the network more efficiently, especially in the case of the iSCSI Read because

most of the traffic returns on the less congested side of the network. Our study

suggests how the protocols defined by DCB could be used to mitigate the impact

of congestion. For example, this study shows that iSCSI Write traffic is severely

effected by a converged network. The ETS protocol could be used to guarantee a

minimum bandwidth percentage so that the higher priority SCSI traffic does not slow

down precipitously. In the worst case, PFC protocol could be used to halt the lower

priority TCP traffic and ensure that the mission critical UDP and SAN traffic is not

slowed down. If the fabric significantly more complex than in this study, the CN

protocol could be used to avoid pausing traffic in unrelated streams.

Future work could explore larger and more complex fabrics. We limited the num-

ber of traffic classes due to a lack of access to more hardware. In our platform, each

traffic class needed its own server hardware, which limited the extent of the testing.

Future studies could look at more traffic classes with more switches in the fabric.

These studies can help highlight key problems with congestion in converged networks
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and their impact on the various traffic classes. Since the DCB standards are defined

to solve congestion problems in converged networks, the results of these experimental

studies would be useful to the DCB task group.
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Chapter 5

Performance Evaluation of DCB’s

Priority-based Flow Control

The previous chapter provided a baseline analysis of the performance of different

application’s on data center grade hardware without DCB enabled. This chapter

builds upon that base by utilizing DCB enabled hardware to provide an analysis of the

performance impact on latency and throughput of two common applications: storage

and inter-processor communication. For storage, we examine the effect that enabling

PFC on a network has on the throughput of iSCSI Read and Write operations. For

inter-processor communications, we observe the effect of enabling PFC on the latency

of MPI applications.

5.1 Introduction

We evaluate the impact congestion has on traffic streams within a single priority in a

converged network. DCB allows a network to be broken up into eight different traffic

classes. In data centers there are more than eight applications that will require lossless

behavior; therefore, we are interested in seeing how applications sharing a traffic class

will perform. We experimentally measure the effect of enabling and disabling PFC
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on the throughput of a traffic stream. The experimental setup is shown in Figure 5-

1. The server platforms are powerful multi-core systems with more than 2GB of

memory to ensure the traffic classes used in this study can utilize a large portion of

the network. The Ethernet adapters are dual port X520 Converged Network Adapters

(CNA) with the 82599 processor from a leading next generation adapter manufacturer,

Intel. The switch is a 10 Gigabit cut-through switch from Fulcrum that provides near

wire speed transmission on the network. New hardware is important because DCB

requires significant changes in order to support the technology. Multiple transmit

and receive queues are required in order to support independently pausing different

priorities.

The topology shown in Figure 5-1 was chosen because we believe it is representative

of any current network regardless of its complexity. Current Ethernet networks use

some variation of Spanning Tree Protocol (STP) in order to route traffic through the

network. Loops in a network can cause traffic to be routed indefinitely within the

network and never reach its destination. STP was defined in order to prevent loops in

the network from occurring. STP builds a complete node tree of the network with a

single root and a connection to every node in the network. STP successfully prevents

loops and provides adequate performance for standards compliant Ethernet networks

of less than eight hops in a line. In this case, a hop is equivalent to a switch on the

network.

If the tree formed by STP is broken up into smaller units, it can be observed that

every communication between two end points will be going through a common link

similar to that found in our topology. Near the root, congestion will be especially

high for traffic being routed from one side of the tree to the other. Thus, regardless of

the size of a network, if it is using STP the network can be reduced down to a series of

topologies as seen in Figure 5-1. The Multiple Spanning Tree Protocol (MSTP) was
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defined in order to limit this congestion scenario. MSTP allows different VLANs to

define their own spanning tree thus reducing the congestion between VLANs. Even

with MSTP, complex networks will still reduce down to this common link topology

on a per VLAN basis.

Fulcrum
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Switch 2

Converged
Network
Adapter

1 (CNA 1)

Converged
Network
Adapter

2

Converged
Network
Adapter

3

Converged
Network
Adapter
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Monaco
Switch 1

Traffic Stream 1

Traffic Stream 2

Figure 5-1: Experimental setup

The application software used in this study is the UNH-IOL developed blaster pro-

gram run in an openSUSE Linux Operating System. The blaster program is a simple

command line application utilizing raw Ethernet sockets to transmit user defined

frames on an Ethernet network in a multi-threaded manner. A raw Ethernet socket

is a low-level socket with syntax similar to a standard TCP socket. Unlike a TCP

Socket, a raw Ethernet socket allows a programmer to define the frame characteristics

all the way down to the Ethernet MAC (Media Access Control) layer. The blaster

program allows users to define a frame in a simple plain text file. It also permits users

to specify the number of threads to use, the delay between frame transmissions and

total number of frames to transmit.
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For the MPI results, we use the Open MPI implementation of MPI [67]. To

measure the latency of the system, we use the Intel MPI Benchmarks [68]. All four

systems are used to measure the performance of MPI with each system having two

processor cores for a total of eight cores.

Our experimental traffic workload consists of 1000-byte unicast UDP frames with

the MAC address fields defined to transmit frames from CNA 1 to CNA 3 and from

CNA 2 to CNA 4 as shown in Figure 5-1. The minimum standard Ethernet frame

size is 64 bytes and the maximum is 1518 bytes. The frame size of 1000 bytes serves

to demonstrate the performance implications on a medium sized standard Ethernet

frame. To generate the normal high bandwidth results, the parameters passed to the

blaster program are: 0 delay, 4 thread and unlimited run time. To generate the low

bandwidth results, parameters passed to the blaster program are: .001 second delay,

16 threads and unlimited run time.

The netstat program is used to record results. Netstat is a simple network moni-

toring tool available in most Linux operating systems. The command line parameter

of ‘-ic’ is used in order to continuously list the throughput from all of the interfaces

in the system. This command reports the throughput numbers once a second. About

300 samples of each experimental run are recorded.

We first measure baseline performance metrics by disabling PFC and running the

blaster program with different values for the number of threads. In the later exper-

iments, all workloads are submitted to the network in parallel and the performance

is measured. The performance metric analyzed in our experiments is the throughput

of each workload as measured from CNA 1.
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Figure 5-2: Throughput as the number of threads increases

79



5.2 Number of Threads

During the first set of experiments, the CNA 1 and CNA 3 devices (Figure 5-1) are

used. Figure 5-2 shows the results of our experiments. PFC is disabled on both

CNA 1 and CNA 3 and the custom UDP traffic is sent from CNA 1 to CNA 3 via the

blaster program. The number of threads are varied from 1 to 6 and the throughput

is measured.

The graph shows as the number of threads increases, the performance levels in-

crease linearly. The throughput scales from about 700 MB/s to over 800 MB/s. At

four threads the throughput approaches the limits of 10 Gigabit Ethernet and as the

number of threads increases further, the limits of 10 Gigabit Ethernet and context

switching between the large number of processes causes the throughput to level off

around 835 MB/s.

These results show that the blaster program is capable of driving enough traffic

to create an adequate level of throughput on the network. Additionally, these results

show four threads saturates the network. This is very important for later experiments

so that we are confident lower throughput numbers are the result of DCB mechanisms

and not a limitation of our traffic generation software. After four threads the through-

put does not increase due to reaching the limits of 10 Gigabit Ethernet and context

switching between too many threads. For the rest of the chapter, 4 threads are used

to generate frames, unless otherwise noted.

5.3 PFC versus No-PFC

During the PFC versus No-PFC experiments, the CNA 1 and CNA 3 devices are used.

We turn PFC on and off on both CNAs and measure the throughput of the blaster

program running the UDP traffic workload. Figure 5-3 shows the effect of turning

PFC on and off on the throughput of the blaster program. The left column shows the
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throughput of the blaster program with PFC turned on and the right column shows

the throughput of the blaster program with PFC turned off. During both tests the

number of threads specified on the blaster command line was four.

The PFC versus No-PFC experiment confirms results from the previous experi-

ment that four threads are sufficient because the receiver cannot handle more than

538 MB/s. Figure 5-3 shows that with PFC turned on, the throughput is reduced

from over 800 MB/s to just over 500 MB/s, showing that CNA 3 is the bottleneck in

the system. As CNA 3 becomes overwhelmed with processing the incoming traffic it

begins to send PFC frames to pause the traffic. The PFCs cascade back through the

network from CNA 3 to the originator of the traffic, CNA 1.

With PFC on, no frames were lost during the experiment. With PFC turned

off, CNA 1 transmitted a total of 429 GB of data during the observation period

and CNA 3 received 260.9 GB of data. The total amount of data lost during the

observation period was 168.1 GB or about 40%.

The results of the PFC versus No PFC experiment confirmed the results of the

threads experiment and showed that the end nodes were the bottleneck in the system.

As the end node became congested trying to process the incoming traffic, it began

to transmit PFC frames to the switch it was directly connected to. The PFC frames

then cascaded backwards through the network to the traffic originator and reduced

the output of the originator from about 800 MB/s to 500 MB/s. This confirms in a

simple traffic source to traffic sink system that PFC works as expected.

5.4 Two Full Throughput Devices

During the Two Full Throughput Devices experiments, all of the devices in Figure 5-1

are used. In this experiment, PFC is enabled on all of the devices in the network.

The throughput is first measured between CNA 1 and CNA 3 running by itself, then
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traffic between CNA 2 and CNA 4 is started. The Victim point, which is a term that

comes from the IEEE working group [69], shows what happens to the throughput

between CNA 1 and CNA 3 when the throughput is temporarily reduced between

CNA 2 and CNA 4. Figure 5-4 shows the effect starting another traffic stream has

on the original traffic stream between CNA 1 and CNA 3.

The Two Full Throughput Devices experiments show the throughput of the streams

is minimally affected by adding another stream. The throughput is reduced from

about 550 MB/s (TS 1 Alone) to about 530 MB/s (TS 1 With TS 2). This shows

both streams are able to completely utilize the theoretical throughput of the 10 Giga-

bit link between the switches and a simple two stream system can converge to be well

balanced using only PFC. Additionally, it shows an excellent level of fairness on the

network for both streams as they both received about the same amount of network

utilization.

The TS 1 as Victim data point shows the limitations of a network with only PFC

enabled and no end-to-end flow control. When the throughput between the other

CNAs is temporarily reduced by increasing the number of PFCs coming from the

CNA 4 system, it can be seen that the throughput between CNA 1 and CNA 3, which

should not be affected, is greatly reduced to less than 400 MB/s. The throughput

of the victim stream was nearly cut in half from 550 MB/s to 350 MB/s and the

network appeared to converge to the lowest throughput capable device. This shows

how PFC meant for one stream impacts other streams with the same priority in a

network. With end-to-end flow control on the network, the number of PFC frames on

the inter-switch link (ISL) would be limited and the impact on other streams could

be reduced.
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5.5 Low Throughput Device on a Converged Network

During the Low Throughput Device on a Converged Network experiments shown in

Figure 5-5, all of the devices in Figure 5-1 are used. In this experiment, PFC is

enabled all of the devices in the network and the throughput is observed on CNA 1.

The throughput is first measured when CNA 1-CNA 3 blaster transmission is running

at low bandwidth by itself labeled LowBW in Figure 5-5. Next, full bandwidth

blaster traffic between CNA 2 and CNA 4 is started. Finally, the full-bandwidth

blaster throughput between CNA 2 and CNA 4 is temporarily reduced by starting a

processor intensive application on CNA 4. During the entire experiment the number

of threads on CNA 1 is set to 16 along with a 0.001 second delay to create the low

throughput load. The number of threads specified on CNA 2 is 4 with no delay to

create the high throughput load.

The experiments show that when utilizing 16 threads and a 0.001 second delay, the

blaster program on CNA 1-CNA 3 gets a throughput of about 250 MB/s on a network

by itself (TS 1 Alone bar in Figure 5-5). When the traffic stream from CNA 2-CNA 4

that supports PFC is added to the network, the throughput is minimally reduced to

about 200 MB/s (TS 1 With TS 2 bar in Figure 5-5). This demonstrates that even

when two streams are not fully utilizing the full bandwidth of the 10 Gigabit network,

the low throughput traffic stream is significantly reduced by the other stream being

added. This corroborates the results of previous experiments. Interestingly, when the

throughput of the second stream is temporarily reduced and more PFC frames are

seen on the network, the throughput of the first stream recovers to about 240 MB/s

(TS 1 as Victim bar in Figure 5-5).

The results of the low throughput test are very surprising. When a full throughput

traffic stream from CNA 2-CNA 4 is converged with a low throughput stream from

CNA 1-CNA 3, the low throughput stream is reduced by about 20% from 250 MB/s
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to 200 MB/s. The low throughput stream by itself did not generate any PFC frames

in the network but as the high throughput link is added, PFCs began to be seen on the

link between the two switches from Switch 2 to Switch 1. As the link between the two

switches became congested, Switch 1 began to send PFC frames to the traffic sources

(CNA 1 and CNA 2). This should have reduced the throughput of the low throughput

stream by more than 20%, but Switch 1 began to aggressively send pause off PFC

messages to the low throughput source at CNA 1. As discussed earlier the PFC frame

is sent with a time value. A PFC frame with a time value of 0 essentially turns pause

off and allows a device to begin transmitting immediately. Most implementations

tend to just send PFC frames with the maximum pause time specified. Through

aggressive use of PFC frames with a time of 0, the switch is able to minimize the

throughput reduction to the low throughput stream and allow it to transmit data

more than expected. The switch was able to transmit more pause off PFC messages

because the ingress queue of the low throughput stream (CNA 1) drained faster than

the ingress queue of the high throughput queue (CNA 2).

When the throughput of the high load stream is temporarily reduced, the results

are even more surprising. Based on the results of the two high bandwidth traffic

streams experiment, the throughput of the low throughput stream was expected to

be reduced even further as more PFCs would be seen on the inter-switch link. In-

stead, the low throughput stream actually recovered some of the lost throughput and

returned to just below what it achieves without another stream on the network. This

is attributed to even more use of time 0 PFC frames by the switch.

These results demonstrate that as more traffic is converged on the network, PFC

begins to show significant limitations. Congestion Notification is designed as an end-

to-end flow control mechanism and should alleviate many of the limitations of PFC.

Unfortunately, CN is the most complicated technology defined in DCB and does not
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have much support in real implementations found in the industry.

5.6 Latency of MPI on a Converged Network
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Figure 5-6: MPI exchange benchmark latency

During the Latency of MPI on a Converged Network experiments, all of the devices

in Figure 5-1 are used. In this experiment, Open MPI is installed on all systems and

Intel MPI Benchmarks are executed on the systems. The latency is first measured

with PFC turned off, then the latency is measured again with PFC on. With PFC

off, MPI relies on TCP for flow control. The figures are based on the Exchange

benchmark with all eight processes in use. This benchmark increases the message
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size between the compute nodes from 0 to 4,194,304 bytes. There are many other

benchmarks that are included with Intel MPI Benchmarks. We select the Exchange

benchmark simply because it is the most demonstrative of the behavior that all of

the benchmarks appear to have.

Figure 5-6 shows the entire results of the benchmark, while Figure 5-7 shows the

results of the same benchmark but only uses the results from message sizes below

4,096 bytes so we can observe the small message size results better. Figure 5-6 shows

that after message sizes of 131,072 bytes the latency of the PFC enabled network

is consistent and increases with message size, while the latency of the network with

PFC disabled jumps up dramatically and is very inconsistent. Figure 5-7 shows the

PFC enabled network continues to have consistent and stable latency results across

message sizes, while the PFC disabled network is inconsistent and fluctuates from

message size to message size.

The results of the MPI experiment shows that MPI can benefit dramatically from

using PFC on a network. Both the low end and full results clearly show that latency

is significantly more consistent and stable across all message sizes. The results show

that without PFC enabled on the network, MPI relies solely on TCP windowing and

retransmission for flow control. Many in the industry believe TCP is a well established

protocol that performs adequately, but we are able to show the significant benefits

that can be had over TCP. We observe that when TCP retransmission occurs, large

latency penalties are incurred. With PFC enabled on the network, retransmission is

avoided and the latency is much more stable.

5.7 Throughput of iSCSI on a Converged Network

During the Throughput of iSCSI on a Converged Network experiments, only the

CNA 1 and CNA 3 devices are used. In this experiment, the open source implemen-
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tations of UNH iSCSI target and initiator are used [70]. Memory mode is used so

the results will focus on the network and not be limited by hard drive throughput.

CNA 1 is the iSCSI initiator and CNA 3 is the iSCSI target and throughput is mea-

sured from the initiator. Many in the industry think iSCSI will not benefit from DCB

due to already having a mature flow control mechanism in TCP. For this reason, we

wanted to look at iSCSI in the simplest possible configuration and see if there were

any benefits by turning on PFC.

Figure 5-8 shows the results of iSCSI read and write operations. First the through-

put is measured with PFC disabled and then with PFC enabled. The results show

that, by enabling PFC on the network, throughput is dramatically increased. In

the case of iSCSI reads, throughput is almost doubled. In the case of iSCSI writes,

throughput is increased by over 25%. This can be explained with an understanding

of how TCP flow control works. TCP flow control works by transmitting data until

a packet is dropped at which point a back off occurs. After the back off, TCP will

then slowly ramp up its throughput again. The use of PFC can significantly increase

utilization of the available bandwidth on the network by avoiding the back off and

the slow ramp up.

The results of the iSCSI experiment confirm the results from the MPI experiment.

The throughput of both iSCSI read and write operations were significantly improved.

By avoiding the overhead associated with TCP flow control, including TCP window-

ing and frame retransmission, throughput is increased by 25% in the case of write

operations and up to 100% in the case of read operations.

5.8 Conclusion

The popularity of Fibre Channel over Ethernet and Data Center Bridging technologies

is growing rapidly, so performance analysis of the base technologies within DCB is
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very important. Using devices from Intel and switches that have implemented some

of these technologies, this chapter analyzes the performance characteristics of a data

center grade network with common links as would be seen when using the Spanning

Tree Protocol. The goal is to understand the characteristics of PFC. Without PFC,

the system drives over 800 MB/s of throughput and loses close to 40% of the data.

With PFC turned on, the throughput is reduced significantly to about 500 MB/s

and frame loss no longer occurs. PFC works as expected in both a simple single

traffic source to traffic sink scenario and two traffic streams scenario. When the

throughput of one traffic stream is temporarily reduced however, it greatly reduces

the throughput of other traffic streams in the same priority. When a high rate traffic

stream was converged with a low throughput stream the low throughput stream

was reduced as well. Surprisingly, when the high throughput stream is temporarily

reduced it increases the throughput of the low throughput stream even though more

PFCs were seen on the inter-switch link.

MPI is one of the most common applications used in computing cluster research.

Typically, MPI relies on small messages to communicate between the compute node

processors. Thus, latency is generally more important to MPI performance than

throughput. Without PFC enabled, the MPI system relies on TCP windowing and

retransmission for flow control which created very inconsistent latency results over

the range of message sizes. When PFC was enabled, the overall latency was reduced

and became very stable across all message sizes. Surprisingly, we were able to show

that DCB can greatly benefit the latency of an MPI system even though TCP is a

well established protocol that some in the industry believe would not benefit from

DCB.

Computing clusters often utilize iSCSI or Fibre Channel to provide large amounts

of fast storage for research. iSCSI is the Ethernet storage application of choice while
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FCoE begins to become available. iSCSI relies on TCP flow control similar to MPI.

Our iSCSI results confirm the results from the MPI experiment. When PFC is enabled

so that TCP flow control and overhead is avoided, significant throughput improve-

ments can be seen.

Future work needs to look at incorporating ETS, multiple priorities and CN func-

tions. Experiments utilizing larger networks with multiple traffic streams on different

priorities with ETS was not considered here due to a desire to examine how a com-

mon link in a Spanning Tree network performed with PFC. The lack of CN support

limited the extent of our study here, but new implementations should support CN

this coming year. The IEEE 802.1Qau standard has been completed and is moving to

final publication at the time of this writing, so analysis of upcoming implementations

will be very important.
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Chapter 6

Deficit Round Robin Scheduling

With Adaptive Weight Control

The previous chapter examined how DCB enabled networks can affect the perfor-

mance of some common data center applications. While the previous chapter looked

at overall application classes, it is important to start to explore the performance of

multiple traffic streams within application classes. Many current data center switches

are now implementing Deficit Round Robin in order to schedule traffic streams within

traffic classes. This chapter examines the performance impact of DRR on current data

center switches and identifies a problem. After exploring the fundamental mechanisms

behind the problem, we propose a new DRR algorithm, implement it in hardware,

and measure the impact the algorithm has on fairness within the network.

6.1 Introduction

Data center grade switches are now implementing deficit round robin (DRR) schedul-

ing over the traditional weighted fair queuing (WFQ). DRR is simple to implement

and has shown a close approximation to WFQ in terms of fairness. This chapter

identifies a fairness issue using experiments on real data center hardware and pro-
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poses a new DRR scheduling algorithm that actively monitors the incoming traffic

streams and adjusts weights accordingly to maintain fairness. We implement the

Deficit Round Robin With Active Weight Control (DRR-AWC) scheduling algorithm

in a commercial data center switch and fairness is observed while running the new

algorithm. It is shown that DRR-AWC provides a significant fairness increase for

traffic flows with small frames.

Scheduling algorithms and queuing theory are a balancing act of fairness, per-

formance and simplicity of implementation. For the last twenty years, research has

focused on Weighted Fair Queuing (WFQ), a well accepted scheduling algorithm,

that offers both high performance and is optimally fair [46]. Unfortunately, WFQ has

been shown to be overly complex and expensive to implement. Due to this complexity,

Deficit Round Robin (DRR) was proposed shortly after WFQ was introduced [47].

Since the introduction of DRR many different researchers have examined the

scheduling algorithm and proposed modifications to it. Some of the variations pro-

posed are: Custom Deficit Round Robin [71], List-based Weighted Round Robin [72],

Multiclass Round Robin [72], Dynamic Deficit Round Robin [73] and Deficit Round

Robin with Fragmentation [74]. One of the more popular variations of DRR is

Weighted DRR which allows the ability to set a different Quantum Value per in-

put queue.

Currently many switches now implement Weighted DRR since it is easier to imple-

ment and provides a close approximation to the fairness of WFQ. Specifically, many

of the data center switch implementations have begun to support Weighted DRR as

their scheduling algorithm of choice.

Today’s networks are an ever evolving ecosystem of different traffic classes. As

recently as only ten years ago web traffic, email and Voice over IP (VoIP) traffic

dominated traffic patterns [75]. The creation of cloud computing has ushered in a
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new wave of computing requirements in datacenters. Modern datacenters are focused

on shared processing power as well as storage traffic. The Message Passing Interface

(MPI) is the predominant protocol for sharing processing power and is made up of

mostly small frames (less than 256 bytes). Storage and video traffic streams are

characterized by large packets and very long transfers. This dichotomy has been

described in terms of length as dragonflies (short bursts) vs. tortoises (long and

sustained) and in terms of size as mice vs. elephants [76].
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Figure 6-1: Throughput of typical traffic classes

With such a diversity of traffic classes it is easy to see the importance of studying

existing scheduling algorithms within modern day data centers. It is important to

97



ensure that traffic streams of small frames as well as large frames each utilize the net-

work fairly. Figure 6-1 shows the actual throughput of different frame sizes converged

in a data center network. Along the x-axis you can see how small variable frames

and medium Mixed Web Traffic frames match up against large storage frames that

always have a max size of 1522 bytes. In the most extreme case, 68 bytes, the small

MPI frames are receiving almost 25% less throughput than the storage traffic class.

On a 10 Gbps network there is a minimum of 12-bytes of inter-frame gap and

8-bytes of preamble that are required to be inserted between each transmitted frame

in order to allow a receiver to properly receive the frames. Small frames already have

a usable data penalty due to overhead associated with headers, so by counting inter-

frame gap and preamble in the scheduling algorithm as well, small frame streams

are receiving an additional 29% penalty in throughput as well. With normal frame

overhead as well as 10 Gbps line overhead, small frames will see well over 30% less

usable data throughput than larger frames.

We will provide results from further experimentation that shows exactly how the

unfairness manifests. Following that, a new variation of the DRR algorithm that

resolves the issue is proposed. Then the new algorithm is implemented in a switch

and results of the algorithm working directly are presented. We will measure the

throughput of traffic streams while varying the frame sizes of traffic streams and

observe that the algorithm causes the throughput of the streams to converge.

This chapter will provide an immediate solution for the many switches that cur-

rently implement DRR scheduling algorithms and expand the research understanding

of how traditional scheduling algorithms work in a modern data center.

The motivation of this chapter is two fold:

1. To understand the interaction between an existing scheduling algorithm and

data center technologies.
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2. To propose a new deficit round robin based scheduling algorithm that resolves

fairness issues with deficit round robin scheduling on data center hardware.

The rest of this chapter is organized as follows: Section 6.2 presents the experi-

mental results and analysis. Section 6.3 presents the proposed algorithm along with

a discussion of implementation choices. Section 6.4 presents an evaluation of the

performance and fairness of the implemented algorithm. Section 6.5 summarizes our

conclusions about the current study and outlines ideas for future research.

6.2 Experimental Results

The objective of the following series of experiments is to evaluate the performance

of DRR on data center grade equipment. The motivation for this work is to under-

stand exactly how the unfairness of small frames on a network with DRR enabled

manifests. Initial experiments have shown significant throughput differences between

traffic streams of different frame sizes. Therefore, we developed a method to adjust

the weights of different queues in the switch and measure the throughput using test

hardware from Ixia. Through an iterative process, we perform several experiments to

adjust the weight of the queues until the throughput of each stream was equivalent.

The experimental setup is shown in Figure 6-2. The switch is an early release 10

Gbps cut-through programmable switch that provides near wire speed transmission

on the network. The topology shown in Figure 6-2 was chosen because it is the least

complex topology that provides a congested link and will not obfuscate any of our

results with additional network complexities.

Traffic was generated with the Ixia XM2 Chassis with LSM10GXM4XP load mod-

ules. Utilizing the Ixia test ports allowed us to quickly and easily configure different

traffic streams. The Ixia ports are able to generate line rate 10 Gbps traffic at even

small frame sizes. With this setup we are able to focus our experimentation on the
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Figure 6-2: Experimental setup

switch and the scheduling algorithm without concern for other load generation is-

sues. All traffic streams in the following experiments use Layer 2 traffic in order to

avoid congestion mechanisms of higher layers and allow us to focus on the scheduling

algorithms of the switch.

6.2.1 Experiment 1: jumbo frames

The first experiment utilizes all three of the Ixia ports in the test setup. A large

frame traffic stream (Traffic Stream 1) is generated from Ixia Port 1 to Ixia Port

3 that consists of either 1522, 2500 or 5000 byte frames. Each of the three graphs

(Figures 6-3, 6-4, 6-5) corresponds to a different frame size for Traffic Stream 1. The

second stream (Traffic Stream 2) is generated from Ixia Port 2 to Ixia Port 3 that

consists of variable sized small frames. This setup results in both streams needing to

be scheduled via DRR on the switch port connected to Ixia Port 3.

The goal of this experiment is to find the scheduling weight of Traffic Stream 2

required to make the throughput of each traffic stream equal. The ratio of the weight

for Traffic Stream 2 to the weight for Traffic Stream 1 is plotted on the y-axis and the

frame size of Traffic Stream 2 is plotted on the x-axis. The results show both the range

at each data point and the weight required to create a fair throughput situation. The

results of Figure 6-3, Figure 6-4 and Figure 6-5 show smaller frames are penalized
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Figure 6-3: Experiment 1 - ratio of traffic stream 2 fair queue weight to traffic stream 1

fair queue weight with 1522-byte frames
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greatly and require significantly higher weights in order to equal the throughput

of Traffic Stream 1. Once Traffic Stream 2 reaches a frame size between 200 and

500 bytes, the penalty begins to tail off and slowly approaches the weight of Traffic

Stream 1. For the smallest frames, the weight required to create fair throughput is

almost double the weight of Traffic Stream 1.

6.2.2 Experiment 2: multiple input queues

In the second set of experiments, we investigate when multiple small frame input

queues were used so we connected a fourth Ixia port to the switch. Instead of using

only one input queue of small 68-byte frames and one input queue of large frames, we

use two input queues of small frames of different sizes (68, 128, 256, 512, 1024 bytes)

along with the input queue of large frames. We plot the results from Figure 6-3 in

the graph to allow comparison with the new results. The height of the bars indicates

the scheduling weight of each input queue required to reach fair throughput with the

large frame stream and the location of the bar on the x-axis indicates the frame size

of the input queue. The solid line is the same line from Figure 6-3 included here as a

reference point, to show that the new results completely agree with the results from

the previous experiment.

Figure 6-6 and Figure 6-7 show that the results of Experiment 2 completely co-

incide with the results of Experiment 1. Whether there is a single queue or multiple

input queues of small frames, the weight required to achieve the same throughput as

the large frames traffic stream is the same.

6.2.3 Experiment 3: single input queue with mixed frame size

In the third experiment, we want to understand how mixed traffic within a queue

affects the results. The input queue of large frames was maintained, but now for the

single small frame queue we cause 50% of the frames to be of one size (x bytes) and
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Figure 6-6: Experiment 2 - multiple input queues with different frame sizes

105



 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 0  200  400  600  800  1000  1200  1400  1600

R
a

ti
o

 o
f 

F
a

ir
 Q

u
e

u
e

 W
e

ig
h

ts

Frame Size (Bytes)

Multiple Input Queues of Small Frames
Base Line (Experiment 1 - 1522 Byte Frames)

Figure 6-7: Experiment 2 - multiple input queues with different frame sizes
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50% of the frames to be of another size (y bytes). We vary the sizes of each of the

small frames and plot the results in Figure 6-8.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 0  200  400  600  800  1000  1200  1400  1600

R
a
ti
o
 o

f 
F

a
ir
 Q

u
e
u
e
 W

e
ig

h
ts

Frame Size (Bytes)

Base Line (Experiment 1 - 1522 Byte Frames)
50% 68 Byte Frames

50% 128 Byte Frames

Figure 6-8: Experiment 3 - single input queue with mixed frame size traffic

From Figure 6-8 it can be seen that we perform two series of tests. In the first

series, 50% of the small frames in the queue were 68-byte frames and the size of the

other 50% of the queue varied from 256 to 1024 bytes. In the second series, 50% of

the small frames were 128-byte frames and the other 50% varied from 512 to 1024

bytes. The third line, or Base Line, is again the result from Experiment 1 used as

a reference point. Figure 6-8 shows that the mixed input queue traffic results in an

averaging of the results from the previous experiments. For example, when 50% of
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the input queue was 68-byte frames and the other 50% of the queue was 256-byte

frames it is discovered that the ultimate result (1.39) is about the average (1.4) of the

result found in Experiment 1 for 68-byte frames (1.72) and 256-byte frames (1.08).

6.2.4 Trace analysis

After initial experimentation to understand the extent of the unfairness issue, we

moved to detailed analysis of traces. A WiresharkTM capture was taken of each

port before and after adjusting the weights using an Absolute Analysis Investigator

Protocol Analyzer. Each trace was analyzed to understand the pattern of frame

transmission. It was clear from the traces that significantly fewer small frames were

being transmitted for every large frame in the system. Section 6.3 proposes a solution

to this problem.

6.3 Deficit Round Robin With Active Weight Control Algo-

rithm

The results from Section 6.2 provides enough information to determine the optimal

weight for a given frame size. The objective of this section is to propose a simple

and accurate method to calculate appropriate weights for different traffic flows. The

proposed algorithm relies on a switch’s statistic counters, which are fairly common

and keep track of the number of frames that have been seen of different sizes and

groups a range of sizes into bins (stat bins). Generally speaking, the algorithm goes

through the switch’s stat bins for each input queue in the switch and adjusts the

DRR weight of the input queue based on the proportion of small frames. Input

queues with smaller frames will get their weights adjusted higher than input queues

with large frames. This will cause the throughput of the different input queues to

become close to equal thus ensuring fairness across all of the input queues regardless
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of the average frame size in each input queue.
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Figure 6-9: Small and large frame formulae

Formula 6.1 shows the formula for traffic streams with frames smaller than 146

bytes where x is the average frame size and f(x) is the scheduling weight. Formula 6.2

shows the formula for traffic streams with frames larger than 146 bytes. 146 bytes

is the exact pivot point calculated from the previous results that provides the least

amount of deviation from the original curve and maximizes fairness using line fit-

ting. Figure 6-9 shows both the Small and Large Frame Formulae in relation to the

base line. The formulae are derived by using line fitting from the baseline results.

Algorithm 1 shows the pseudocode of the DRR-AWC algorithm that we actually im-
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plemented on the switch. The switch implementation algorithm is limited by the

capabilities that the switch provides to programmers. One of the major limitations is

that it only provides frame size categories (or bins) so the ultimate accuracy is limited

by the granularity of each of the bins. With more bins the algorithm could be finer

grained and more accurate for frame sizes not explicitly identified by the bins. The

switch utilized in the experiments currently supports five bins for frames between 68

bytes and 1024 bytes (68, 69-128, 129-256, 257-512, 513-1024 bytes). The number of

frames in each bin are reported for each input queue on the switch.

fs(x) = −0.008x + 2.276 (6.1)

fl(x) = −8.555 · 10−5x + 1.106 (6.2)

The algorithm begins with clearing the traffic statistics, accumulating traffic statis-

tics for one minute, then getting the statistics again. This provides a running average

of the number of frames for each frame’s size category per minute. The one minute

to accumulate traffic statistics was chosen as a balance between consuming too much

of the switch’s processing resources and providing adequate fairness over time. The

algorithm then goes through each bin and adds the proportion of the weight to the

total weight based on the number of frames in each bin and the fair weight value

provided by Formula 6.1 and Formula 6.2. If the frame size is 146 or less the propor-

tion of weight added to totalWeight is determined using the small frame algorithm

(Formula 6.1), otherwise it uses the large frame algorithm (Formula 6.2). Finally, the

total weight is multiplied by the maximum frame size and the weight of the input

queue is set for each input queue in the switch. During the next scheduling round

each input queue is then scheduled based on the new weight calculated.
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Algorithm 1 Switch implementation

while true do

clearStats()

accumulateTrafficStats(1 minute)

list statsBin = getStats()

int totalWeight = 0

for each frameCountStat in statsBin do

if frameSize <= 146 then

totalWeight += fs(frameSize)· numberOfFramesPerSizeBin
totalFramesOfAllBins

else

totalWeight += fl(frameSize)· numberOfFramesPerSizeBin
totalFramesOfAllBins

end if

end for

setWeight(totalWeight · maxFrameSize)

end while
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6.4 Evaluation

After implementing the proposed DRR-AWC algorithm in the commercial data cen-

ter switch and running some additional tests, we looked at how the algorithm has

improved the fairness of the system. We re-ran the previous experiments once with

the algorithm turned off (using only the switch’s DRR) and a second time with the

proposed DRR-AWC algorithm turned on and compared the results. In order to un-

derstand the improvements to fairness, we used Jain’s Fairness Index (Formula 6.3).

Jain’s Fairness Index provides a measure of fairness ranging from 1/n, where n is the

number of “users”, to one with one being the most fair [77]:

J =

( n∑
i=1

xi

)2

n·
n∑

i=1

x
2

i

(6.3)

where x is the throughput and n is the number of input queues.

Figure 6-10 show the results of this analysis. The bars labeled DRR are the calcu-

lation of Jain’s Fairness Index when the switch is running the base DRR scheduling

algorithm. The bars labeled DRR-AWC are the fairness calculation when the switch is

running the proposed scheduling algorithm. It can be seen that the fairness increases

significantly, in some cases from less than 0.985 to over 0.999. Jain’s Fairness Index

has an emphasis on starvation, so the values are not largely different over the range

of the index but from 0.985 to 0.999 represents a real world throughput improvement

of almost 33%.

6.5 Conclusion

Cloud computing has created a new wave of shared computing within datacenters.

MPI and storage traffic make up a large part of the traffic mix within modern data-

centers. This creates a mix of traffic within the datacenter with both large and small
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frames that will need to be fairly scheduled. The problem identified in this chap-

ter is that smaller frames get a disproportionately smaller amount of the network

throughput on datacenter grade 10 Gigabit Ethernet hardware.

In analyzing the discrepancy between the throughput of large frames and small

frames, this study proposes a new DRR algorithm called Deficit Round Robin with

Active Weight Control (DRR-AWC). The new algorithm involves monitoring the

queues and frame sizes and periodically adjusting the weight of the DRR scheduling

algorithm to compensate for the unfairness. We then implemented the algorithm in

a commercial data center switch and evaluated the fairness. The new algorithm does

not add greatly to the complexity of the existing scheduling algorithm, yet actively

monitors traffic streams and adjusts queue weights in order to maximize fairness. We

were able to show an increase in fairness as measured by the Jain’s Fairness Index.
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Chapter 7

Targeted Priority-based Flow

Control

The previous chapter examined the fairness of traditional scheduling algorithms in-

teracting with new data center hardware. In this chapter, we continue to address

fairness in the data center with a focus on the DCB protocol mechanisms that tar-

get aggressor streams within a traffic class, in order to prevent other traffic streams

in that class from being caught in congestion when PFC is used on the network.

Congestion notification (CN) is the mechanism defined to target aggressor streams

in DCB. It is a well defined solution that is complex to implement and suffers from

network round trip time feedback latency. We develop and propose a new targeting

mechanism called Targeted priority-based flow control (TPFC) that maintains the

simplicity of PFC, while providing fast hop-by-hop response times.

7.1 Introduction

The IEEE Data Center Bridging (DCB) working group recently approved the stan-

dards for Priority-based Flow Control [1, 2] and Congestion Notification [20]. PFC

allows the independent pausing of up to eight different traffic classes and is designed
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to prevent frame loss due to congestion. It operates on a link by link basis to re-

spond quickly when congestion occurs. Earlier research has shown the benefits [78]

and limitations [79] of PFC. Recent work has proposed a dynamic pause time calcu-

lation method and provided analysis of the benefits of adjusting the pause time [80];

however, in that paper all traffic is subject to the same dynamic pause time and,

therefore, it does not directly offer a way to target aggressor streams.

Congestion Notification is an end-to-end congestion mechanism that attempts to

tell the source of traffic to slow down before PFC forces the transmission to stop. CN

by itself cannot guarantee frames are not lost. Early work showed that up to 10% of

frames could be lost under moderate traffic [81]. An example of the feedback loop

latency can be seen in Figure 7-1. The CN mechanism for targeting streams adopted

by the IEEE is based on a scheme called Quantized Congestion Notification (QCN)

that randomly samples the congested buffer and sends congestion messages to sources

of traffic with greater frequency as the queue fills [82].

Figure 7-1: CN feedback loop
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7.2 Targeted Priority-based Flow Control

As discussed above, PFC grants the capability to pause independent traffic classes.

Within a traffic class, paused streams suffer from fate sharing. Consider two types

of streams: those that utilize less than their fair share of bandwidth and those that

attempt to utilize more than their fair share of bandwidth. All streams in this traffic

class will be paused by a PFC frame, even though some are utilizing less than their

fair share. These victim streams suffer the same fate as those streams utilizing more

than their fair share, so called aggressor streams.

Congestion Notification (CN) was proposed to address the fate sharing problem of

PFC by ultimately reducing or eliminating the use of PFC. This chapter proposes a

new mechanism based on the concepts within CN and PFC to minimize fate sharing.

The proposed mechanism does so by detecting congestion early and sending PFC

frames only to link partners transmitting aggressor streams, while maintaining com-

patibility with CN. By transmitting PFC frames only to link partners transmitting

aggressor streams, fate sharing is eliminated on any victim stream transmitted by any

other link partner. The following discussion focuses first on how to detect congestion

early, then on how aggressor streams are identified.

Figure 7-2: State diagram of PFC link states
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In the current PFC mechanism, a queue implements a low watermark (LW) and

a high watermark (HW). When the queue fills to the HW, a PFC frame is sent to

all link partners. When the queue drains to the LW it sends a PFC frame with a

pause time of zero in order to allow the link partners to transmit again (Figure 7-

2). The LW must be set such that the queue does not completely drain so that

the congested link does not become underutilized. The HW must be set such that

the queue maintains enough margin to accommodate all possible frames in flight,

preventing frame loss. This chapter proposes to add a third watermark called the

target watermark (TW). When the queue fills to the TW, a PFC frame is sent only to

link partners with aggressor traffic streams (Figure 7-4). Implementation of aggressor

stream identification requires keeping track of the ingress port for each traffic stream,

a requirement that is already present in CN. Figure 7-3 shows the queue layout with

each of the watermarks defined. The TW is set so that there is enough queue space

to handle frames in flight on the link:

TW = N · F (7.1)

where N is the number of link partners with aggressor streams to be targeted and F

is the number of frames in flight for each link partner with aggressor streams. This

allows implementors to choose how many link partners with aggressor streams they

wish to target, N , as a trade off between cost and capability.

The next question is how to determine which link partners have aggressor streams.

This chapter proposes two mechanisms: a random sampling approach [20] and a

fair bandwidth approach. Similar to how QCN targets streams, the first proposed

approach randomly samples a frame from the queue when the TW is reached and

sends a PFC frame to the link partner that sent the sampled frame. By randomly

sampling the queue, link partners with aggressor streams have a higher chance of

being sampled and paused. In the fair bandwidth approach, the bandwidth assigned
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Figure 7-3: Targeted PFC Queue Layout

Figure 7-4: State diagram of TPFC link states
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to stream i is calculated using the formula

bi =
b

N
(7.2)

where bi is the bandwidth assigned to stream i, b is the total available bandwidth, and

N is the number of different link partners that have sent frames to the queue. Any

link partner exceeding this limit is deemed a link partner with aggressor streams and

is paused when the TW is reached. The fair bandwidth mechanism is a simple fairness

algorithm and future work can investigate more sophisticated ways to determine the

link partners with aggressor streams. It is important to note that the proposed scheme

is work-conserving such that if there are link partners with streams under-utilizing

their fair share, the link partner with aggressor streams is allowed to over-utilize

the fair bandwidth limit without being paused until the combined load exceeds the

congested link’s capacity, at which time the TW will be reached.

7.3 Experimental Setup

Utilizing the ns-2 simulator [83], a lossless queue that models the standard PFC be-

havior was implemented. After verifying the initial implementation, the behavior of

PFC was extended with the proposed random sampling and fair bandwidth mecha-

nisms. The topology used in the simulations is a simple congested link with three

ingress ports and a single egress port. Since TPFC is a Layer 2 mechanism that oper-

ates in a hop-by-hop manner, more complex topologies do not provide any additional

information. The traffic is limited to Layer 2 to avoid competing with other flow

control mechanisms.

The memory model in the simulations follows the shared memory queue model.

Traditional switches (see Figure 7-5) consist of an ingress queue, an egress queue and a

switching element. This architecture worked well for a store-and-forward approach in
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Figure 7-5: Traditional memory queue switch architecture

which packets are received in their entirety before being switched to their destination.

A shared memory queue (see Figure 7-6) provides the benefits of easier memory

management, fewer intra-switch packet copies and lower latencies. For all of these

benefits, modern data center bridging switches are commonly shared memory queue

architectures.

Figure 7-6: Shared memory queue switch architecture

The following parameters were used in the simulation.

Link Delay

Link delay was based on the formula used to determine how much buffer is needed

above the HW in order to ensure no frame loss, and was taken from the IEEE stan-

dard [1]. This value represents a worst case delay between nodes. The total link delay
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is about 11 full size frames:

TotalDelay = 2M + P + 2C + 2I + H (7.3)

where M is the maximum possible frame size, P is the size of a PFC frame, C is

the cable delay, I is the delay caused by the interface, and H is the delay caused by

higher layers. The formula assumes a port type of 10GBASE-SR, the predominant

technology in the data center today, and assumes a 300 meter cable between nodes,

the maximum length defined in the standard.

Queue Size

The size of each queue in the simulation was set to 100 frames.

Pause Time

The maximum pause time is about 3.4 ms as specified by the IEEE standard [2]:

MaximumPauseT ime = 65, 535Q (7.4)

where Q is a pause quantum equal to 512 bit times at 10 Gbps line rate.

7.4 Results

The baseline PFC implementation was first validated by examining the congested out-

put link to ensure that no frames were lost. Through the simulations, it was observed

that by varying the HW frame loss could be eliminated. It was also determined that

both the Lossless-HW and the Lossless-HW-LW implementations showed the desired

lossless behavior.

The goal of the next experiment was to examine the throughput of the outbound

link with three traffic sources starting simultaneous transmissions at 1 ms. Figure 7-

7 shows the throughput of the outbound link. A lossy FIFO (without PFC) queue
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results in the full link utilization but is not lossless. Lossless-HW is lossless but

results in the lowest link utilization of the outbound link. It can be seen that by

implementing a LW (Lossless-HW-LW), the lossless queue is able to maintain close

to full utilization of the link.
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Figure 7-7: Outbound link throughput with no watermarks, with HW, and with HW

and LW

With the confidence that the HW-LW mechanism can successfully maintain the

utilization of the congested outbound link and remain lossless, the following experi-

ments focus on the throughput of the inbound links. In the next experiment, a simple

HW-LW System is observed (Figure 7-8). Two of the inbound traffic streams (the
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victim streams) start to transmit at 1 ms with a steady rate of about 2.5 Gbps (1/4

the 10 Gbps line rate). The third inbound traffic stream (the aggressor stream) starts

to transmit at 1 ms with the same 2.5 Gbps rate as the two victim streams. At 3 ms

the aggressor stream stops and 1 ms later it starts to transmit again at line rate,

which congests the network.

While the three streams are transmitting at 1/4 line rate, it can be seen that the

three streams evenly split the available bandwidth without any congestion and no

pause is seen. After the aggressor stream starts to transmit at line rate the network

quickly becomes congested. Although the victim streams continue to transmit at the

same rate, less than their fair share of bandwidth, the throughput of all incoming

traffic streams are disrupted. Each traffic stream’s transmission rate has a saw-

tooth pattern, in which all three incoming traffic streams transmit as fast as possible

followed by stopping until the queue drains all the way to the LW.

7.4.1 Random Sampling

The same experiment was then run with the proposed random sampling mechanism

implemented. The results of this experiment show that the fates of the streams start

to decouple (Figure 7-9). The two victim streams are now only affected infrequently,

when they are targeted by the random sampling. When a link partner transmitting

a victim stream is targeted by the pause, the queue continues to grow because the

aggressor stream is over-saturating the link until the HW is triggered and throttles

all of the traffic. It takes a period of time to settle the streams, then the link partner

with the aggressor stream is accurately targeted for a span of time again. Pseudo

code for an example implementation of the Random Sampling mechanism is provided

in Appendix A.
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Figure 7-8: Input link throughput with HW and LW with no aggressor stream tar-

geting
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Figure 7-9: Input link throughput with random sampling targeting
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7.4.2 Fair Bandwidth

The fair bandwidth mechanism targets the link partner with the aggressor stream

only (Figure 7-10). There are several ways in which to implement this in a real

system. Naively, an implementation could simply search the queue whenever the

TW is reached and count the number of different link partners to assign the fair

bandwidth. This approach would not require any additional memory, but would cost

processing power and would be too slow for data center needs. Pseudo code for an

example implementation of this version of the Fair Bandwidth mechanism is provided

in Appendix B.

Many switches today already keep extensive statistics, so a less processor intensive

implementation might keep track of the frames as they enter and leave the queue to

calculate the fair bandwidth in real time. Modern switches keep running hardware

statistics, including: size, priority, multicast or broadcast address, that do not require

any processing power for every packet traversing the switch. It would be trivial to

extend the existing statistics to monitor the number of frames in the queue from

different ingress ports. This would require a small increase in memory to store the

statistics, but would be fast and require minimal additional processing power.

7.4.3 Throughput standard deviation of victim stream

The standard deviation of the throughput of the victim streams is used to measure the

impact of the aggressor stream on the victim streams. As the accuracy of the aggressor

stream targeting improves, the standard deviation of the victim streams is decreased

(Table 7.1). It can be seen that the random sampling mechanism significantly reduces

the standard deviation from the baseline HW-LW experiment of 3.4 Gbps down to

0.9 Gbps. The fair bandwidth mechanism reduces the standard deviation further

down to 0.5 Gbps. The standard deviation of victim stream 2 was found to be similar
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Figure 7-10: Input link throughput with fair bandwidth targeting
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Table 7.1: Throughput standard deviation of victim stream 1

HW-LW Random Sampling Fair Bandwidth

3.4 Gbps 0.9 Gbps 0.5 Gbps

to victim stream 1 and the standard deviation of the aggressor stream is not of concern

as it will purposefully increase as the aggressor stream is targeted more accurately.

7.5 Variable traffic and large topologies

TPFC builds upon well-known mechanics of Ethernet flow control consisting of IEEE

802.3x Flow Control [84] as well as its extension, IEEE 802.1Qbb Priority-based

Flow Control [1]. Ethernet flow control has been shown to smooth bursty traffic [80].

Additionally, as discussed in Section 7.3, the IEEE standard [1] defines a link delay

calculation that determines where to set the HW to prevent frame loss in a worst-case

burst of traffic. Together, both features of Ethernet flow control handle any length

burst of traffic as well as smooth out the burst across the network. TPFC then builds

upon this base and minimizes fate sharing amongst traffic streams.

Since TPFC builds upon well-known Ethernet flow control mechanisms and works

on a hop-by-hop basis, it will operate the same regardless of the complexity of the

topology. The point of congestion in a network will send TPFC frames to its neigh-

bors, the neighbors will then send TPFC frames to their neighbors as they become

congested. In this manner, TPFC will target aggressor streams at the point of con-

gestion and at each hop along the way back to the source of the aggressor stream, as

can be seen in the example in Figure 7-11. The Ethernet flow control link layer pause

mechanism has been shown in practice to scale well with network size and complex-

ity. Since TPFC does not alter the nature of Ethernet flow control, it should scale
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Figure 7-11: Targeted PFC over a multi-hop network: (1) When Switch A becomes

congested, it sends a TPFC to Switch B only. (2) When Switch B becomes congested,

it sends a TPFC to Device A.

similarly.

7.6 Interworking of TPFC and CN

As discussed in Section 7.1, CN by itself does not prevent frame loss and its effec-

tiveness is constrained by the round trip time from the point of congestion to the

source of congestion. TPFC operates on a hop-by-hop basis for a rapid local response

to congestion. By combining TPFC and CN, TPFC responds quickly to bursts of

congestion while CN reduces the transmission rates of aggressor stream sources.

The TPFC random sampling mechanism is similar to how QCN works. Imple-

mentations of both mechanisms can share the same watermarks. Upon reaching a

watermark, the queue will be randomly sampled. Since PFC is priority-based and

CN is not, TPFC frames will be sent based on sources within a priority class of sam-
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pled packets. CN congestion notification messages (CNM) will be generated based

on information from all sampled packets regardless of priority class. This will pause

the aggressor stream before victim streams can be disrupted and eventually the CNM

will reach the source of the aggressor stream to cause it to reduce its transmission

rate as well.

The TPFC fair bandwidth mechanism and CN do not share the same watermarks.

As a result, CN will start to sample the queue early and send a CNM to instruct the

aggressor source to reduce its transmission rate and, if a rapid burst of traffic occurs

and CN is not fast enough, the watermark for TPFC will be reached and a TPFC

frame will be sent in order to rapidly pause aggressor streams.

TPFC complements CN and improves its responsiveness to rapid increases in

traffic load.

7.7 Conclusion

This chapter builds upon the concepts found in PFC and CN and proposes a new

mechanism called TPFC that can target link partners with aggressor streams on

a hop-by-hop basis in order to rapidly respond to network congestion. With the

introduction of a TW below the HW within the queue, the new proposed mechanisms

can target link partners with aggressor traffic streams before the HW is reached.

Performance of the proposed mechanisms were evaluated using the ns-2 simulator.

An easy to implement random sampling mechanism that targets an aggressor stream

with higher frequency than the victim streams showed a decoupling of stream fates.

The implementation complexity was increased using a fair bandwidth mechanism in

order to target only aggressor streams. Both the random sampling mechanism and

the fair bandwidth mechanism showed significant reductions in the standard deviation

of victim stream throughput from the base HW-LW implementation.
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Chapter 8

Conclusion

Data Center Bridging (DCB) is a series of new extensions to Ethernet in order to

allow Ethernet to become a better media for convergence. Converging storage, inter-

processor communication and general networking into a single transmission media

provides many different benefits. Some of the benefits include reducing power costs,

reducing cooling and reducing the knowledge required to maintain multiple trans-

mission media. This research began by observing that DCB significantly changes

the behavior of Ethernet and it would be important to understand the performance

benefits and limitations of these changes.

Chapter 3 provided further understanding beyond the background for each of the

individual protocols within DCB [85]. This study examined some of the typical pitfalls

involved with trying to meausure and test the different DCB protocols. Finally, it

provided some interesting case studies on problems found within devices that have

implemented the protocols.

Chapter 4 involved understanding what the performance implications were of con-

verging storage traffic (iSCSI) and web traffic (TCP/UDP) over data center grade

hardware without the DCB protocols enabled [78]. This study focused on converging

iSCSI on a network with either 2 or 3 streams of TCP and UDP traffic, then mea-
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suring the throughput before and after being converged. It was observed that when

iSCSI contends directly with TCP/UDP it suffers a larger throughput reduction than

the TCP/UDP streams. Also, when iSCSI does not contend directly with TCP/UDP

due to more traffic flowing in the reverse direction of the TCP/UDP traffic streams,

it is better able to utilize the network and suffers less of a reduction of throughput.

Finally, it was discussed how the different technologies within DCB, specifically PFC

and ETS, could improve the performance of the iSCSI traffic stream.

Chapter 5 investigated actual DCB hardware and examined the performance ben-

efits and limitations of PFC in a small network [79]. This study began by looking

at PFC with generic traffic streams and was able to show a significant (about 40%)

reduction in frame loss by simply enabling PFC when the receiver on a network can-

not handle as much as the transmitter is sending. We also looked at the limitations

of PFC when multiple streams are configured within the same priority and the effect

on victim streams in that priority class when PFC starts to be seen on the network

due to aggressor traffic streams in that priority class over utilizing the network. This

study ended with a look at the performance of two major applications, iSCSI and

MPI, when PFC is enabled and disabled on the network. We were able to show a

significant throughput increase for both iSCSI write and read operations when PFC

is enabled. Using MPI, we were able to show that latency, which is the key metric in

MPI applications, was more consistent and on average lower when PFC is enabled.

Both applications were able to benefit from avoiding the overhead associated with

TCP when frame loss occurs.

Chapter 6 examined the performance effects of traditional scheduling algorithms

like Deficit Round Robin (DRR) scheduling within a DCB network and proposed a

new DRR scheduling algorithm to deal with one of the major performance limita-

tions [86]. When DRR is enabled on a network where the switch includes inter-frame
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gap in the DRR scheduling algorithm, it was observed that small frames suffered re-

duced performance compared to larger frames. Utilizing a programmable switch, we

were able to adjust the weights of the queues within the switch in order to overcome

the throughput deficit of small frames. Using this data, we developed a new algo-

rithm called DRR-AWC, to adjust the weights and included this in a new scheduling

algorithm. We then implemented the algorithm in the programmable switch in order

to test the accuracy of the algorithm. In the end we were able to show a significant

improvement to the fairness of the streams with Jain’s Fairness Index.

Chapter 7 began by observing the device manufacturers were not implementing

CN due to its complexity. It became clear that a new algorithm should be developed

that was able to provide the benefits of CN without the penalty of such complexity

and slow response time. We subsequently developed a new algorithm called Targeted

Priority-based Flow Control (TPFC) [87]. Using simulations, we were able to develop

two different mechanisms to target aggressor streams and provide a significant increase

in the fairness of the network.

This research serves as a starting point for much more research that needs to be

done on DCB. Priority-based Flow Control, Enhanced Transmission Selection and

Congestion Notification need to continue to be researched individually and together.

It will be interesting to see the performance implications of a network when all three

protocols are enabled at the same time. Will the system work as planned? Are there

any surprising interactions? Finally, applications have been developed over the past

decades with the assumption that frame loss will occur during congestion, so how do

applications need to change if this basic assumption is eliminated?
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Appendix A

Random Sampling

Algorithm 2 Enque Function

if queueLength+1 ≥ queueLimit then

dropPacket

else

if queueLength ≥ High Watermark then

send PFC to all ports

enquePacket

else if queueLength ≥ Target Watermark then

randomly sample Packet P from the queue

send PFC to the source of Packet P

enquePacket

else

enquePacket

end if

end if
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Algorithm 3 Deque Function

if queueLength ≤ Low Watermark then

for each port do

sendPFC 0

end for

end if

if not paused then

dequePacket

end if
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Appendix B

Fair Bandwidth

Algorithm 4 Enque Function

if queueLength+1 ≥ queueLimit then

dropPacket

else

if queueLength ≥ High Watermark then

send PFC to all ports

enquePacket

else if queueLength ≥ Target Watermark then

N = the number of different sources in the queue

b = the number of frames from one source in the queue

send PFC to each source that exceeds bi = b
N

enquePacket

else

enquePacket

end if

end if
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Algorithm 5 Deque Function

if queueLength ≤ Low Watermark then

for each port do

sendPFC 0

end for

end if

if not paused then

dequePacket

end if
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