
10 Gigabit Ethernet10 Gigabit Ethernet
The New Frontier

Presentation by Rupert Dance

IntroductionIntroduction

! Ethernet Legacy
! New Features
! Implementation
! Conclusion

The Legacy of 10 Gb Ethernet The Legacy of 10 Gb Ethernet
! Frame size

– Minimum frame size 64 bytes
– Maximum untagged frame size 1518 bytes

! Half duplex
– Supported from 1 Mb through Gigabit
– No half duplex in 10 Gb Ethernet

! Full duplex - no CSMA/CD
– Simultaneous transmission and reception
– No carrier sense and no collision detection
– No frame extension and no frame bursting

ComparisonsComparisons
Maintaining Backwards CompatibilityMaintaining Backwards Compatibility
Parameters 1 Base-5 1 Gb/s 10 Gb/s

10 Mb/s
100 Mb/s

slotTime 512 bit times 4096 bit times not applicable

interFrameGap 96 bits 96 bits 96 bits

attemptLimit 16 16 not applicable

backoffLimit 10 10 not applicable

jamSize 32 bits 32 bits not applicable

maxUntaggedFrameSize 1518 octets 1518 octets 1518 octets

minFrameSize 512 bits (64 octets) 512 bits (64 octets) 512 bits (64 octets)

burstLimit not applicable 65 536 bits not applicable

ifsStretchRatio not applicable not applicable 104 bits

HSSG Objectives HSSG Objectives -- Nov 1999Nov 1999

! Support a speed of 10.0 Gb/ s at the MAC/ PLS
service interface

! Define two families of PHYs:
– A LAN PHY, operating at a data rate of 10.0 Gb/ s
– A WAN PHY, operating at a data rate compatible with

the payload rate of OC- 192c/ SDH VC- 4-64c

! Define a mechanism to adapt the MAC/ PLS data
rate to the data rate of the WAN PHY

OSI Model OSI Model –– 10 Gigabit10 Gigabit

PMD

PMA

PCS

RECONCILIATION

LLC - LOGICAL LINK CONTROL

LAN
LAYERS

HIGHER LAYERS

 MEDIUM

XGMII

MDI

MAC -- MEDIA ACCESS CONTROL

MAC CONTROL (OPTIONAL)
APPLICATION

PRESENTATION

SESSION

TRANSPORT

NETWORK

DATA LINK

PHYSICAL

OSI
REFERENCE

MODEL
LAYERS

Clause 4

Clause 31

XGXS (Opt)

(Optional)

XUAI

XGXS (Opt)

(Optional)

MDI = Medium Dependent Interface
PCS = Physical Coding Sublayer
PMA = Physical Medium Attachment
PMD = Physical Medium Dependent

WIS = WAN Interface Sublayer
XAUI = 10 Gigabit Attachment Unit Interface
XGMII = 10 Gigabit Media Independent Interface
XGXS = XGMII Extender Sublayer

WIS

Clause 46

Clause 47

Clauses 48, 51, 53

Clause 48 & 49

Clause 50

Clause 52 & 54

Rate ControlRate Control

MAC MAC -- PHY PHY
Rate Control AlternativesRate Control Alternatives

! Fine granularity rate control
– Word- by- Word

! Packet granularity rate control
– Carrier Sense based
– Busy Idle
– Self pacing in the MAC

Rate Control AlternativesRate Control Alternatives
WordWord--byby-- WordWord

! Adds a “hold” signal on the XGMII from the PHY
to the MAC
– MAC stops transmission for one clock cycle
– The MAC inserts “nulls” into the data stream

! Issues
– Interrupts the flow of data through pipeline stages
– Makes buffer pre- fetching difficult
– Tricky timing
– MAC is no longer a scaled version

Rate Control AlternativesRate Control Alternatives
Busy IdleBusy Idle

! PHY sends “Busy Idle” to MAC during IPG
– MAC pauses transmission at frame boundary

! PHY sends “Normal Idle” to MAC during IPG
– MAC resumes transmission

! Need a ~256 byte FIFO in WAN PHY Tx path
! Issues

– Too much overhead
– PHY has to monitor FIFO and send blocking signal
– MAC has to monitor signal and block transmission

Rate Control AlternativesRate Control Alternatives
MAC SelfMAC Self--PacingPacing

! MAC “knows” the PHY is slower and by how much
! MAC adapts its average data rate by extending the IPG

after each frame transmission
! MAC never exceeds the average data rate in the PHY, with

packet granularity
! IPG extension is “dynamic” --- depends on the size of the

last transmitted frame
! PHY is only required to sustain the transmission of one

maximum size packet
! Requires a rate adaptation FIFO in the PHY of ~64 bytes

(plus framer overhead)

MAC SelfMAC Self--PacingPacing
Pascal Variables Pascal Variables -- 4.2.7.24.2.7.2

! ifsStretchMode: Boolean
– Indicates the desired mode of operation,
– Value does not change between invocations of the Initialize procedure

! ifsStretchCount: 0..(ifsStretchRatio – 1)
– Counts the number of bits during a frame’s transmission that are to be

considered for the minimum interFrameSpacing extension
! ifsStretchSize: 0..(((maxUntaggedFrameSize + qTagPrefixSize) x 8 +

headerSize + interFrameSpacing + ifsStretchRatio – 1) /
ifsStretchRatio);

– Counts the integer number of octets that are to be added to the minimum
interFrameSpacing

! ifsStretchRatio
– Determines the number of bits in a frame that require one octet of

interFrameSpacing extension
! Why is the magic number 104?

– Because 104/112 => .9285714 - approximately the WAN Phy rate

Deference ProcessDeference Process
while (realTimeCounter > 0) do {Time out entire interframe gap}

begin
if ifsStretchMode then {Adjust for minimum IFS transmission}

begin
ifsStretchCount := ifsStretchCount + 1; {Count the bits during minimum IFS}
if (ifsStretchCount = ifsStretchRatio) then {Reached the “magic” number}

begin {Extend the IFS by one more octet and clear the bit-count}
ifsStretchSize := ifsStretchSize + 1;
ifsStretchCount := 0

end
end

else nothing;
Wait(1);
realTimeCounter := realTimeCounter – 1

end;
if ifsStretchMode then

begin
while (ifsStretchSize > 0) do {Extend the minimum IFS}

begin
Wait(8);
ifsStretchSize := ifsStretchSize – 1

end;
if not frameWaiting then {Don’t roll over the remainder into next frame}

begin
Wait(8);
ifsStretchCount := 0

end
end;

Deference Process Deference Process -- How it worksHow it works

! Rate control occurs in the deference process
! After the completion of timing the interFrameSpacing, the

Deference process continues to enforce interframe spacing for
an additional number of bit-times

! This is determined by the Bit-Transmitter process, and is
reflected in the variable ifsStretchSize.

! If the ifsStretchCount contains a non-integer bit count, and the
next frame is ready for transmission, the process enforces
interframe spacing for only the integer number of octets

! The remainder is saved as part of the bit count for the next
frame's transmission.

! If the next frame is not ready for transmission the Deference
process ignores the remainder, and initializes the
ifsStretchCount variable to zero

BitTransmitterBitTransmitter ProcessProcess
while transmitting do

begin
if (currentTransmitBit > lastTransmitBit) then TransmitBit(extensionBit)
else

if extendError then
TransmitBit(extensionErrorBit) {jam in extension}

else
begin

TransmitBit(outgoingFrame[currentTransmitBit]);
if ifsStretchMode then

begin
ifsStretchCount := ifsStretchCount + 1;
if (ifsStretchCount = ifsStretchRatio) then

begin
ifsStretchSize := ifsStretchSize + 1;
ifsStretchCount := 0

end
end

end;

BitTransmitterBitTransmitter Process Process -- How it worksHow it works

! BitTransmitter counts the # of bits transmitted in the
current frame, by incrementing ifsStretchCount.

! This variable is initialized by the Deference process to
either a value of zero or to a value in the range between
zero and (ifsStretchRatio - 1)

! This depends on the variable's value at the completion of
transmission of the previous frame and the time the current
frame's transmission has been initiated.

! When this variable reaches the value of ifsStretchRatio, the
ifsStretchSize variable is incremented, which indicates to
the Deference process that the minimum interframe
spacing should be extended by one more octet

! This same procedure occurs during PhysicalSignalEncap

Additional Changes to Pascal CodeAdditional Changes to Pascal Code

! Pascal code has been completely updated
– All figures and references are defined to provide speed

independence
– Definitions all use bit times
– The code is now 802.1d compliant

! FCS Passing feature is now fully specified in the
Pascal Code

MAC MAC -- FCS PassingFCS Passing
! In the older versions of the 802.3 standard the MAC specifies that an

implementer is always required to:
– Insert the source address for a transmit frame.
– Generate the CRC for a transmit frame.
– Strip the CRC for a receive frame.

! There are several problems with these requirements:
– There are no known implementations that do number one
– A lot of implementations (except some NICs) don't do 2 & 3.
– The 802.1D standard for transparent bridges, violated these requirements,

! The reason is that these bridges must forward the frames unmodified.
! This allows for end-to-end CRC coverage of the headers and data payloads.

– The result was an inconsistency between two major IEEE standards
! The 802.3ad Link Aggregation Standard forced a change

– LACP protocol initiates frames at the Link Aggregation sublayer (above
the MAC)

– It has a source address that cannot be inserted or substituted by one of the
underlying MACs

MAC MAC -- FCS Passing FeatureFCS Passing Feature
Pascal VariablesPascal Variables

! passReceiveFCSMode: Boolean;
– Enables passing of the frame check sequence field of all received frames

from the MAC sublayer to the MAC client
– passReceiveFCSMode is a static variable;
– Does not change between invocations of the Initialize procedure

! fcsParamValue:
– FCS passed from MAC client
– When fcsParamPresent is true: fcsField := fcsParamValue
– Otherwise fcsField := CRC32(outgoingFrame)

! fcsParamPresent
– If the MAC client chooses to generate the FCS field for the frame, it

passes this field to the MAC sublayer via the fcsParamValue parameter.
– When true, TransmitDataEncap uses the fcsParamValue parameter as the

frame check sequence field for the frame

FCS Passing FCS Passing -- TransmitDataEncapTransmitDataEncap
procedure TransmitDataEncap;
begin

with outgoingFrame do
begin {assemble frame}

view := fields;
destinationField := destinationParam;
sourceField := sourceParam;
lengthOrTypeField := lengthOrTypeParam;
if fcsParamPresent then

begin
dataField := dataParam; {No pad if FCS passed from MAC client}
fcsField := fcsParamValue {Use the FCS passed from MAC client}

end
else

begin
dataField := ComputePad (dataParam);
fcsField := CRC32(outgoingFrame)

end;

FCS Passing FCS Passing -- How It WorksHow It Works

! Frame Assembly - TransmitDataEncap - fcsParamPresent:=True
– MAC sublayer uses the client-supplied FCS value, if present.
– If the MAC client provides FCS, the padding field shall also be provided by

the MAC client, if necessary

! Frame Assembly - TransmitDataEncap - fcsParamPresent:=False
– The sublayer uses the dataParam to compute the pad if necessary
– The sublayer independently computes the frame check sequence value.

! Frame Reception - RecieveDataDecap - fcsParamPresent:=True
– The fcsParamValue is set by the variable fcsField
– The fcsParamPresent variable is set by the variable passReceiveFCSMode
– MAC sublayer passes the FCS of all received frames to the MAC client
– MAC sublayer leaves the padding and data field of the frame intact.

ConclusionConclusion
10 Gigabit Ethernet will succeed10 Gigabit Ethernet will succeed

! Compatible - from 1 Mb to 10 Gb
! Broader application - from Lan to Wan
! Scalable using link aggregation
! Cost effective

