10 Gigabit Ethernet

The New Frontier




\\\\\\\\Tgaaﬁucﬂon

o Ethernet Legacy
o New Features

o Implementation
® Conclusion




The Legacy of 10 Gb Ethernet

Frame size
— Minimum frame size 64 bytes
— Maximum untagged frame size 1518 bytes

Half duplex
— Supported from 1 Mb through Gigabit
— No half duplex in 10 Gb Ethernet

Full duplex - no CSMA/CD

— Simultaneous transmission and reception
— No carrier sense and no collision detection
— No frame extension and no frame bursting



~0Mmp arisons
Maintaining Bac\kvards Compatibility

Parameters 1 Base-5 1 Gh/s

10 Mb/s S

100 Mb/s

N

slotTime 512 bit times 4096 bit times
interFrameGap 96 bits 96 bits
attemptLimit 16 16
backoffLimit 10 10
jamSize 32 bits 32 bits

maxUntaggedFrameSize

1518 octets

1518 octets

minFrameSize

512 bits (64 octets)

512 bits (64 octets)

burstLimit

not applicable

65 536 bits




HSSG Objectives - Nov 1999

Support aspeed of 10.0 Gb/ sat the MAC/ PLS
service interface

Define two families of PHY s:
— A LAN PHY, operating at adatarate of 10.0 Gb/ S

— A WAN PHY, operating at a data rate compatible with
the payload rate of OC- 192c/ SDH VC- 4-64c

Define a mechanism to adapt the MAC/ PLS data
rate to the data rate of the WAN PHY



OSI| Model — 10 Gigabit

HIGHER LAYERS

LLC - LOGICAL LINK CONTROL
MAC CON (OPTIONAL) Clause 31

osl
REFERENCE
MODEL
LAYERS

APPLICATION
MAC - MEDIA ACCESS CONTROL
PRESENTATION RECONCILIATION
—
I Clause 46|
SESSION
—
XGXS (Opt)
TRANSPORT
I Clause 47
—
NETWORK
XGXS (Opt)
PHYSICAL
MEDI



Rate Control

3l
HE-ERENRCE

|

10GEBAZEMN

LT = MEDIUM DEFEMDENT IMTERFALE
ORI = 10 EIEABIT MEDEA IMCEFENCENT IMTERFACE
SICAL CONIME SLIELASYFR

WIS = WaM INTERFACE SLIBLAYER
ArAS = PHYSICAL MEDILIM ATTACHMEMNT
MO - FHYSICAL MEDIUY DEFENDENT




MAC - PHY

Rate Control Alternatives

Fine granularity rate control

— Word- by- Word

Packet granularity rate control
— Carrier Sense based

— Busy Idle
— Self pacing inthe MAC



Rate Control Alternatives
Word-by- Word

Addsa*“hold” signal on the XGMII from the PHY
tothe MAC

— MAC stops transmission for one clock cycle

— The MAC inserts “nulls’ into the data stream

| ssues

— Interrupts the flow of data through pipeline stages
— Makes buffer pre- fetching difficult

— Tricky timing

— MAC isno longer ascaled version



Rate Control Alternatives
Busy ldle

PHY sends“Busy Idle’ to MAC during.|PG
— MAC pauses transmission at frame boundary

PHY sends “Normal Idle” to MAC during PG
— MAC resumes transmission

Need a~256 byte FIFO in WAN PHY Tx path

| ssues

— Too much overhead

— PHY hasto monitor FIFO and send blocking signal
— MAC hasto monitor signal and block transmission



Rate Control Alternatives
MAC Self-Pacing

MAC “knows” the PHY is slower and by how much

MAC adapts its average data rate by extending the | PG
after each frame transmission

MAC never exceeds the average data rate in the PHY, with
packet granularity

|PG extension is “dynamic” --- depends on the size of the
last transmitted frame

PHY isonly required to sustain the transmission of one
maximum size packet

Requires arate adaptation FIFO in the PHY of ~64 bytes
(plus framer overhead)



MAC Self-Pacing
Pascal Variables - 4.2.7.2

IfsStretchM ode: Boolean

— Indicates the desired mode of operation,

— Value does not change between invocations of the Initialize procedure
IfsStretchCount: O..(ifsStretchRatio — 1)

— Counts the number of bits during aframe’ s transmission that'are to be
considered for the minimum interFrameSpacing extension
IfsStretchSize: 0..(((maxUntaggedFrameSize + qTagPrefixSize) x 8 +
headerSize + interFrameSpacing + ifsStretchRatio — 1) /
IfsStretchRatio);

— Counts the integer number of octets that are to be added to the minimum
interFrameSpacing

IfsStretchRatio

— Determines the number of bitsin aframe that reguire one octet of
InterFrameSpacing extension

Why is the magic number 104?
— Because 104/112 => .9285714 - approximately the WAN Phy rate



Deference Process

while (real TimeCounter > 0) do { Time out entire interframe gap}
begin
If ifsStretchMode then { Adjust for minimum | FS transmission}
begin
ifsStretchCount := ifsStretchCount + 1; { Count the bits-during minimum IFS}
if (ifsStretchCount = ifsStretchRatio) then { Reached the “magic” number}
begin { Extend the IFS by one more octet and clear the bit-count}
IfsStretchSize ;= ifsStretchSize + 1,
ifsStretchCount := 0
end
end
else nothing;
Wait(2);
real TimeCounter := real TimeCounter — 1
end;
iIf ifsStretchMode then
begin
while (ifsStretchSize > 0) do { Extend the minimum IFS}
begin
Wait(8);
ifsStretchSize := ifsStretchSize— 1
end;
if not frameWaiting then { Don’t roll over the remainder into next frame}
begin
Wait(8);
ifsStretchCount := 0
end
end;



Deference Process - How It works

Rate control occursin the deference process

After the completion of timing the interFrameSpacing, the
Deference process continues to enforce interframe spacing for
an additional number of bit-times

Thisis determined by the Bit-Transmitter process, and is
reflected in the variable ifsStretchSize.

If the IfsStretchCount contains a non-integer bit count, and the
next frame is ready for transmission, the process enforces
Interframe spacing for only the integer number of octets

The remainder is saved as part of the bit count for the next
frame's transmission.

If the next frame is not ready for transmission the Deference
process ignores the remainder, and initializes the
IfsStretchCount variable to zero



BitTransmitter Process

while transmitting do
begin
If (currentTransmitBit > lastTransmitBit) then TransmitBit(extensionBit)
else
If extendError then
TransmitBit(extensionErrorBit) {jam in extension}
else
begin
TransmitBit(outgoingFrame] currentTransmitBit]);
If ifsStretchM ode then
begin
ifsStretchCount : = ifsStretchCount + 1;
If (ifsStretchCount = ifsSiretchRatio) then
begin
IfsSretchSze := ifsSretchSze + 1;
IfsStretchCount := 0
end
end
end;



BitTransmitter Process - How It works

BitTransmitter counts the # of bits transmitted in the
current frame, by incrementing ifsStretchCount.

Thisvariableisinitialized by the Deference process to
either avalue of zero or to a value in the range between
zero and (ifsStretchRatio - 1)

This depends on the variable's value at the compl etion of
transmission of the previous frame and the time the current
frame's transmission has been initiated.

When this variabl e reaches the value of 1fsStretchRatio, the
IfSStretchSize variable is incremented, which indicates to
the Deference process that the minimum interframe
spacing should be extended by one more octet

This same procedure occurs during Physical Signal Encap



Additional Changes to Pascal Code

Pascal code has been completely updated

— All figures and references are defined to provide speed
Independence

— Definitions all use bit times
— The code is now 802.1d compliant

FCS Passing feature is now fully specified in the
Pascal Code



MAC - FCS Passing

In the older versions of the 802.3 standard the MAC specifies that an
Implementer is always required to:

— Insert the source address for a transmit frame.

— Generate the CRC for atransmit frame.

— Strip the CRC for areceive frame.

There are several problems with these requirements:
— There are no known implementations that do number one
— A lot of implementations (except some NICs) don't do 2 & 3.

— The 802.1D standard for transparent bridges, violated these requirements,
e Thereason isthat these bridges must forward the frames unmodified.
e Thisallowsfor end-to-end CRC coverage of the headers and data payloads.

— Theresult was an inconsistency between two major |EEE standards

The 802.3ad Link Aggregation Standard forced a change

— LACP protocol initiates frames at the Link Aggregation sublayer (above
the MAC)

— It has a source address that cannot be inserted or substituted by one of the
underlying MACs



MAC - FCS Passing Feature

Pascal Variables

passRecelveFCSMode: Boolean;

— Enables passing of the frame check sequence field of all received frames
from the MAC sublayer to the MAC client

— passRecelveFCSMode is a static variable;

— Does not change between invocations of the Initialize procedure
fcsParamValue:

— FCS passed from MAC client

— When fcsParamPresent istrue: fcsField .= fcsParamValue

— Otherwise fcsField := CRC32(outgoingFrame)
fcsParamPresent

— If the MAC client chooses to generate the FCS field for the frame, it
passes this field to the MAC sublayer via the fcsParamV aue parameter.

— When true, TransmitDataEncap uses the fcsParamValue parameter asthe
frame check sequence field for the frame



FCS Passing - TransmitDataEncap

procedure TransmitDataEncap;
begin
with outgoingFrame do
begin { assemble frame}
view = fields;
destinationField := destinationParam;
sourceField := sourceParam;
lengthOrTypeField := lengthOrTypeParam;
If fcsParamPresent then
begin
dataField := dataParam; { No pad if FCS passed from MAC client}

fcsHield := fcsParamValue { Use the FCS passed from MAC client}
end

else
begin
dataField := ComputePad (dataParam);
fcsField := CRC32(outgoingFrame)
end;



FCS Passing - How It Works

Frame Assembly - TransmitDataEncap - fcsParamPresent:=True
— MAC sublayer uses the client-supplied FCS value, if present.

— If the MAC client provides FCS, the padding field shall also be provided by
the MAC client, if necessary

Frame Assembly - TransmitDataEncap - fcsParamPresent:=False
— The sublayer uses the dataParam to compute the pad if necessary
— The sublayer independently computes the frame check sequence value.

Frame Reception - RecieveDataDecap - fcsParamPresent:=True
— ThefcsParamValueis set by the variable fcsField
— The fcsParamPresent variable is set by the variable passReceiveFCSMode
— MAC sublayer passes the FCS of all received frames to the MAC client
— MAC sublayer leaves the padding and data field of the frame intact.



Conclusion
10 Gigabit Ethernet will succeed

Compatible - from 1 Mb to 10 Gb
Broader application - from Lan to Wan
Scalable using link aggregation

Cost effective



