
1000BASE-X Physical Coding Sublayer

(PCS) and Physical Medium Attachment

(PMA) Tutorial

Jon Frain

6/15/98

Edited and Expanded by

Mike Henninger

4/13/2005

Abstract:

The purpose of this tutorial is to provide a detailed explanation of how the PCS and PMA

operate within the confines of Clause 36 of the IEEE 802.3 standard. The reader is provided with

a number of diagrams and tables to aid in understanding the purposes of Clause 36.

Table of Contents

1. 1000BASE-X Physical Coding Sublayer (PCS) and Physical Medium Attachment (PMA)

Tutorial

1. Abstract

2. Table of Contents

3. I) Introduction

4. II) PCS Fundamentals

1. A) 8B/10B Encoding/Decoding

2. B) Running Disparity

3. C) Ordered Sets:

5. III) PCS Functions

1. A) PCS Synchronization Process

2. B) PCS Transmit Process

3. C) PCS Receive Process

4. D) Auto-Negotiation Process

6. IV) Physical Medium Attachment (PMA) sublayer Fundamentals

1. A) PMA Functions

2. B) Start-up Protocol

7. V) Conclusion

I) Introduction:

The PCS and the PMA fit into the ISO/OSI stack model as shown in Figure 1 below:

https://www.iol.unh.edu/services/testing/ge/training/1000BASE-X/PCS_Tutorial.php#mozTocId496917
https://www.iol.unh.edu/services/testing/ge/training/1000BASE-X/PCS_Tutorial.php#mozTocId496917
https://www.iol.unh.edu/services/testing/ge/training/1000BASE-X/PCS_Tutorial.php#mozTocId681851
https://www.iol.unh.edu/services/testing/ge/training/1000BASE-X/PCS_Tutorial.php#mozTocId328713
https://www.iol.unh.edu/services/testing/ge/training/1000BASE-X/PCS_Tutorial.php#mozTocId690202
https://www.iol.unh.edu/services/testing/ge/training/1000BASE-X/PCS_Tutorial.php#mozTocId545287
https://www.iol.unh.edu/services/testing/ge/training/1000BASE-X/PCS_Tutorial.php#mozTocId622178
https://www.iol.unh.edu/services/testing/ge/training/1000BASE-X/PCS_Tutorial.php#mozTocId481546
https://www.iol.unh.edu/services/testing/ge/training/1000BASE-X/PCS_Tutorial.php#mozTocId628771
https://www.iol.unh.edu/services/testing/ge/training/1000BASE-X/PCS_Tutorial.php#mozTocId311089
https://www.iol.unh.edu/services/testing/ge/training/1000BASE-X/PCS_Tutorial.php#mozTocId100416
https://www.iol.unh.edu/services/testing/ge/training/1000BASE-X/PCS_Tutorial.php#mozTocId212873
https://www.iol.unh.edu/services/testing/ge/training/1000BASE-X/PCS_Tutorial.php#mozTocId811881
https://www.iol.unh.edu/services/testing/ge/training/1000BASE-X/PCS_Tutorial.php#mozTocId577754
https://www.iol.unh.edu/services/testing/ge/training/1000BASE-X/PCS_Tutorial.php#mozTocId686864
https://www.iol.unh.edu/services/testing/ge/training/1000BASE-X/PCS_Tutorial.php#mozTocId265924
https://www.iol.unh.edu/services/testing/ge/training/1000BASE-X/PCS_Tutorial.php#mozTocId339678
https://www.iol.unh.edu/services/testing/ge/training/1000BASE-X/PCS_Tutorial.php#mozTocId623689

Figure 1: PCS and PMA relationship to the ISO/OSI model

The PCS and the PMA are both contained within the physical layer of the OSI reference model.

The PCS and the Gigabit Media Independent Interface (GMII) communicate with one another

via 8-bit parallel data lines and several control lines. The PCS is responsible for encoding each

octet passed down from the GMII into ten bit code groups. The PCS is also responsible for

decoding ten bit code groups passed up from the PMA into octets for use by the upper layers.

The PCS also controls the auto-negotiation process which allows two separate gigabit devices to

establish a link of which they are both capable of using.

The PMA is responsible for serializing each ten bit code group received from the PCS and

sending the serialized data to the PMD. The PMA is responsible for deserializing every ten bit

code group received from the PMD and passing it to the PCS. The PMA is also responsible for

aligning the incoming serial data stream prior to passing ten bit code words up to the PCS.

II) PCS Fundamentals

A) 8B/10B Encoding/Decoding

Notation

The PCS examines each incoming octet passed down by the GMII and encodes it into a ten bit

code group, this is referred to as 8B/10B encoding. Each octet is given a code group name

according to the bit arrangement. Each octet is broken down into two groups; the first group

contains the three most significant bits (y) and the second group contains the remaining five bits

(x). Each data code group is named /Dx.y/, where the value of x represents the decimal value of

the five least significant bits and y represents the value of the three most significant bits. For

example:

 /D0.0/ = 000 00000

 /D6.2/ = 010 00110

 /D30.6/= 110 11101

here are also 12 special octets which may be encoded into ten bits. The PCS differentiates

between special and data code words via a signal passed to it from the GMII. Special code words

follow the same naming convention as data code words except they are named /Kx.y/ rather than

/Dx.y/.

Motivation

One of the motivations behind the use of 8B/10B encoding lies with the ability to control the

characteristics of the code words such as the number of ones and zeros and the consecutive

number of ones or zeros. Another motivation behind the use of 8B/10B encoding is the ability to

use special code words which would be impossible if no encoding was performed.

Features

 Every ten bit code group must fit into one of the following three possibilities (This helps

limit the number of consecutive ones and zeros between any two code groups):

1. Five ones and five zeros

2. Four ones and six zeros

3. Six ones and four zeros

 A special sequence of seven bits, called a comma, is used by the PMA in aligning the

incoming serial stream. The comma is also used by the PCS in acquiring and maintaining

synchronization. The following bit patterns represent the comma:

o 0011111 (comma+)

o 1100000 (comma-)

The comma is contained within only the /K28.1/, /K28.5/ and /K28.7/ special code

groups. The comma can not be transmitted across the boundaries of any two adjacent

code groups unless an error has occurred.(1) This characteristic makes it very useful to

the PMA in determining code group boundaries.

 DC balancing is achieved through the use of a running disparity calculation. Running

disparity is designed to keep the number of ones transmitted by a station equal to the

number of zeros transmitted by that station. This should keep the DC level balanced

halfway between the 'one' voltage level and the 'zero' voltage level. Running disparity can

take on one of two values: positive or negative. In the absence of errors, the running

disparity value is positive if more ones have been transmitted than zeros and the running

disparity value is negative if more zeros have been transmitted than ones since power-on

or reset. Running disparity is explained in much more detail in section 2 of PCS

Fundamentals.

 The 8B/10B encoding scheme was designed to provide a high transition density which

makes synchronization of the incoming bit stream easier.

(1). The exception to this rule is if /K28.7/ is followed by any of the following special or data code groups: /K28.x/,

/D3.x/, /D11.x/, /D12.x/, /D19.x/, or /D28.x/, where x is a value in the range 0 to 7, inclusive.

B) Running Disparity

Ten-bit code groups can be categorized into data (Dx.y), special (Kx.y) and invalid code groups.

Each code group has two possible encoding values based upon the current running disparity.

Table 36-1 contains all of the valid encodings of data bits 00-FF. Table 36-2 contains the 12

valid special code groups. Invalid code groups are ten-bit code groups which haven?t been

defined within tables 36-1 or 36-2, and those code groups which are received or transmitted with

the wrong running disparity.

Table 1 (below) gives examples of how four different eight-bit code groups are encoded based

upon the current running disparity value. If the current running disparity is negative then the

encoded value will come from the Current RD- column. If the current running disparity is

positive then the encoded value will come from the Current RD+ column. It is possible for the

ten bit code groups to be identical for both columns of a given code group. An example of this is

D28.5 below.

The Current RD- column contains code groups which do not contain more zeros than ones. This

is because in the absence of errors, the current negative running disparity value shows that more

zeros have been transmitted than ones, and so a code group with more ones than zeros will have

to be transmitted before another code group with more zeros than ones can be transmitted. The

Current RD+ column contains no code groups which contain more ones than zeros for the

opposite reasons.

Code Group Name Data Octet Current RD- Current RD+ Ending RD

D1.0 000 00001 011101 0100 100010 1011 same

D4.1 001 00100 110101 1001 001010 1001 flip

D28.5 101 11100 001110 1010 001110 1010 same

K28.5 101 11100 001111 1010 110000 0101 flip

Table 1: 10B running disparity encoding examples

Subclause 36.2.4.4 defines how the running disparity of transmitted and received ten-bit code

groups is calculated. Each ten-bit code group is broken down into two sub-blocks, the first of

which is the most significant six-bits and the second is the remaining four bits. The running

disparity at the end of the six-bit sub-block is the running disparity at the beginning of the four-

bit sub-block. The running disparity at the end of the four-bit sub-block is the running disparity

at the end of the code group.

Running Disparity of Transmitted Code Groups

Figure 2 (below) demonstrates how running disparity is determined for each transmitted 10-bit

code group. Several variables in the state diagram require explanation. Zeros represents the

number of zeros contained within the sub-block and ones represents the number of ones

contained within the sub-block. 6bit-block contains the most significant six bits of the received

code group and 4bit-block contains the remaining four bits of the received code group. RD is the

current value of the transmitter?s running disparity. The INITIALIZE_RD state is where the

transmitter?s running disparity is set upon start-up. Subclause 36.2.4.4 defines how the

transmitter is to set the running disparity upon start-up as follows:

"After powering on or exiting a test mode, the transmitter shall assume the negative value for its

initial running disparity."

The running disparity at the beginning of a sub-block is only used in calculating the running

disparity at the end of the sub-block when an equal number of ones and zeros are contained

within the sub-block. Otherwise the previous running disparity is irrelevant when calculating the

running disparity of a code group.

Figure 2: PCS transmitter's running disparity state diagram

Running Disparity of Received Code groups

The PCS Receiver's state diagram is identical to the PCS Transmitter?s state diagram with one

exception in the INITIALIZE_RD state. Subclause 36.2.4.4 defines how the receiver is to set the

running disparity upon start-up as follows:

"After powering on or exiting a test mode, the receiver should assume either the positive or

negative value for its initial running disparity."

This allows the vendor to arbitrarily choose which receiver running disparity value to start with.

Because of this, the INITIALIZE_RD state doesn?t specify whether the initial running disparity

is set to positive or negative. And so, it is possible at start-up to receive several code groups and

assign the wrong running disparity to them. This is only possible if the six-bit and four-bit sub-

blocks of these code groups each contain an equal number of ones and zeros and these sub-

blocks don?t contain 111000 or 000111 or 1100 or 0011. Code groups that contain the same

number of ones as zeros maintain the current running disparity, whether it be positive or

negative, and therefore will not be recognized as invalid code groups. This shouldn?t be a

problem because after start-up the device will begin auto-negotiation with the link partner.

Which means that /K28.5/ will be received. The six-bit sub-blocks contained within /K28.5/

consist of either 110000 or 001111, which will correct any preceding running disparity errors. If

the device is a manually configured device, it should receive IDLEs which also contain /K28.5/.

In addition to receiving /K28.5/, any received code group that does not maintain the current

running disparity will be flagged as an error. Even though this code group is marked as an error,

it establishes the correct running disparity on the receiving end so that transmission may continue

error free. An example of this is shown below.

Device Receives:

 101001 0110 +/-D5.6

 101001 0110 +/-D5.6

 001111 1010 -K28.5

 100100 0101 +D16.2

Beginning

RD

6-bit

block

RD after 6-bit

block

4-bit

block

Ending

RD
Code-group

- 101001 - 0110 -
+/-D5.6

(maintain)

- 101001 - 0110 -
+/-D5.6

(maintain)

- 001111 + 1010 + -K28.5 (flip)

+ 100100 - 0101 - +D16.2 (flip)

If the receiver initially chooses RD+

Beginning

RD

6-bit

block

 RD after 6-

bit block

4-bit

block

Ending

RD
Code-group

+ 101001 + 0110 +
+/-D5.6 (Invalid for RD+

column)

+ 101001 + 0110 +
+/-D5.6 (Invalid for RD+

column)

+ 001111 + 1010 +
ERROR invalid code

(Invalid for RD+ column)

+ 100100 - 0101 - +D16.2

The running disparity at the beginning of a sub-block is only used in calculating the running

disparity at the end of the sub-block when an equal number of ones and zeros are contained

within the sub-block. Otherwise the previous running disparity is irrelevant when calculating the

running disparity of a code group.

C) Ordered Sets:

Notation

The notation used for ordered sets is similar to that used for code groups. Code groups are

written as either /Dx.y/ or /Kx.y/. Ordered sets are written in the form of /XY/ where X is a letter

and Y is sometimes used and contains a number. The defined ordered sets are: /C/, /C1/, /C2/, /I/,

/I1/, /I2/, /R/, /S/, /T/ and /V/.

Definition

 Consist of either one, two or four code groups

 The first code group must be a special code group

 The second code group must be a data code group.

Defined ordered sets

/C/ = Configuration (/C1/ or /C2/)

 /C1/ = /K28.5/D21.5/config_reg[7:0]/config_reg[15:8]/

 /C2/ = /K28.5/D2.2/config_reg[7:0]/config_reg[15:8]/

 /K28.5/ is used as the first code group because it contains a comma which is a unique

data pattern that was defined previously. The reception of this code group will not happen

during a data packet unless there is a data error. This makes it very useful for use with

very specific ordered sets such as Idle and Configuration.

 Continuous repetition of ordered sets /C1/ alternating with /C2/. It is used to convey the

16-bit Configuration Register to the link partner.

 /C1/ will flip the current running disparity after the transmission of /D21.5/. This is

because /K28.5/ will flip the running disparity and /D21.5/ will maintain the current

running disparity.

 /C2/ will sustain the current running disparity after the transmission of /D2.2/. This is

because both /K28.5/ and /D2.2/ flip the current running disparity.

 /D21.5/ and /D2.2/ were chosen for their high bit transition density.

/I/ = IDLE (/I1/ or /I2/)

 /I1/ = /K28.5/D5.6/ * /I2/ = /K28.5/D16.2/

 Transmitted continuously and repetitively whenever the GMII interface is idle (TX_EN

and TX_ER are both inactive). It provides a continuous fill pattern to establish and

maintain clock synchronization.

 /I1/ is transmitted only if the current running disparity value is positive. In which case it

is used to correct to the RD- state.

 /I2/ is transmitted when the current running disparity value is negative. It is used to

maintain the RD- state.

 /D5.6/ and /D16.2/ were chosen for their high bit transition density.

/S/ = Start_of_Packet delimiter

 /S/ = /K27.7/

 Used to delineate the starting boundary of a data sequence.

/T/ = End_of_Packet delimiter

 /T/ = /K29.7/

 Used to delineate the ending boundary of a packet. The EPD is transmitted by the PCS

following each de-assertion of TX_EN on the GMII, which follows the last data octet

composing the FCS of the MAC packet.

 The EPD consists of either /T/R/I/ or /T/R/R/.

/R/ = Carrier_Extend

 /R/ = /K23.7/

 Used to extend the duration of a carrier event.

 Used to separate packets within a burst of packets.

 Used to pad the last or only packet of a burst of packets so that the subsequent /I/ is

aligned on an even-numbered code group boundary.

 Used in the EPD.

 /R/ is required within the EPD to meet the Hamming distance requirement for ending

delimiters.

/V/ = Error_Propagation

 /V/ = /K30.7/

 The presence of Error_Propagation (or an invalid code group) on the medium denotes a

collision artifact or an error condition. Transmitted upon the assertion of TX_EN and

TX_ER from the GMII, or the assertion of TX_ER with the de-assertion of TX_EN while

TXD<7:0> is not equal to 0F.

III) PCS Functions

The PCS can be broken down into four major functions:

 Synchronization Process

 Transmit Process

 Receive Process

 Auto-negotiation Process

Figure 3 below contains a block diagram of the PCS.

Figure 3: PCS Block Diagram

Services provided to the GMII:

 Encoding/Decoding of GMII data octets to/from ten-bit code groups (8B/10B) for

communication within the underlying PMA.

 Carrier Sense (CRS) and Collision Detect (COL) indications.

 Managing the auto-negotiation process by informing it when it has lost synchronization

of the received code_groups. Auto-negotiation can be instructed to restart if /C/

ordered_sets are received from the other station after the link has been established

A) PCS Synchronization Process

Figure 4: PCS Block Diagram with Synchronization Process highlighted

Overview

The purpose of the PCS synchronization process is to verify that the PMA is correctly aligning

code groups from the serial stream it is receiving. Figure 36-9 defines how the synchronization

process must operate. It is highly recommended that the reader have a hard copy of figure 36-9

handy when going through this portion of the tutorial.

Synchronization is acquired upon the reception of three ordered_sets each starting with a

code_group containing a comma. Each comma must be followed by an odd number of valid data

code_groups. No invalid code_groups can be received during the reception of these three

ordered_sets.

Once synchronization is acquired, the synchronization process begins counting the number of

invalid code_groups received. That count is incremented for every code_group received that is

invalid or contains a comma in an odd code_group position. That count is decremented for every

four consecutive valid code_groups received (a comma received in an even code group position

is considered valid). The count never goes below zero and if it reaches four, sync_status is set to

FAIL.

The following section discusses exactly how the PCS acquires synchronization based upon the

code groups being received by the underlying PMA.

Acquiring Synchronization

After powering on or resetting, the PCS synchronization process does not have synchronization

and it is in the LOSS_OF_SYNC state. The synchronization process looks for the reception of a

/COMMA/ (a code group containing a comma). It then assigns that code group to be an evenly

aligned code group. The next code group received is assigned to be an odd code group. Code

groups received thereafter are alternately assigned to even and odd code group alignments. Table

2 demonstrates this process. The column in bold face type represents the first comma received by

the synchronization process while it's in the LOSS_OF_SYNC state.

 Table 2: Synchronization process: Reception of first comma

rx_code_group /K28.5/ /D21.5/ /Dx.y/ /Dx.y/ /K28.5/ /D2.2/ /Dx.y/ /Dx.y/ /K28.5/ /D16.2/

code group

alignment
EVEN ODD EVEN ODD EVEN ODD EVEN ODD EVEN ODD

For convenience, we use the notation LOS to denote the LOSS_OF_SYNC state. Furthermore,

we will use CDx to represent the state COMMA_DETECT_x, ASy to represent

ACQUIRE_SYNC_y, and SAz to represent SYNC_ACQUIRED_z.

The process begins in the LOS state where sync_status is set to FAIL. When a code_group

containing a comma is detected, the process transitions to the CD1 state, the variable rx_even is

set to TRUE, and the next code_group is examined. If the code_group is a valid data

code_group, the process transitions to the AS1 state and sets rx_even to FALSE. If the

code_group is not a valid data code_group, the process returns to the LOS state.

While in the AS1 state, the process examines each new code_group. If the code_group is a valid

data code_group, the process toggles the rx_even variable. If the code_group contains the

comma character and rx_even is FALSE, the process transitions to the CD2 state and toggles

rx_even. If the code_group does not satisfy either of these conditions, then the variable cgbad is

asserted by the PCS and the process returns to the LOS state.

The same mechanism transports the process to the CD3 state or returns it to the LOS state. If the

process enters the CD3 state and the next code group is a valid data code_group, the process will

transition to the SA1 state where sync_status is set to OK. Otherwise, the process will return to

the LOS state.

Thus, synchronization is achieved upon the reception of three ordered_sets each starting with a

code_group containing a comma. Each comma must be followed by an odd number of valid data

code_groups. No invalid code_groups can be received during the reception of these three

ordered_sets. The following tables give examples of the state transitions that are made in the

synchronization state machine.

Table 3: Acquiring synchronization with /I/ ordered_sets

code-group /D/ /K28.5/ /D16.2/ /K28.5/ /D16.2/ /K28.5/ /D16.2/

state LOS CD1 AS1 CD2 AS2 CD3 SA1

rx_even TRUE FALSE TRUE FALSE TRUE FALSE

sync_status FAIL FAIL FAIL FAIL FAIL FAIL OK

Table 4: Acquiring synchronization with /C/ ordered_sets

code_group /D/ /K28.5/ /D21.5/ /D0.0/ /D0.0/ /K28.5/ /D2.2/

state LOS CD1 AS1 AS1 AS1 CD2 AS2

rx_even TRUE FALSE TRUE FALSE TRUE FALSE

sync_status FAIL FAIL FAIL FAIL FAIL FAIL FAIL

code_group /D0.0/ /D0.0/ /K28.5/ /D21.5/ /D0.0/ /D0.0/ /K28.5/

state AS2 AS2 CD3 SA1 SA1 SA1 SA1

rx_even TRUE FALSE TRUE FALSE TRUE FALSE TRUE

sync_status FAIL FAIL FAIL OK OK OK OK

Synchronization is acquired if three consecutive ordered sets which each begin with a /COMMA/

are received. The /COMMA/ must be followed by an odd number of valid /D/ code groups. The

number of valid /D/?s following the /COMMA/ does not have an upper limit. The

synchronization process moves to the SYNC_ACQUIRED_1 state and sets the flag

sync_status=OK when synchronization is acquired. If at any time prior to acquiring

synchronization the PCS receives a /COMMA/ in an odd code group or if it receives an

/INVALID/, a code group that isn?t found in the correct running disparity column of tables 36-1

or 36-2, the PCS synchronization process returns to the LOSS_OF_SYNC state.

The following section defines how the PCS can lose synchronization once it has been acquired.

Maintaining and Losing Synchronization

For convenience, we use the notation LOS to denote the LOSS_OF_SYNC state, SAz to

represent the SYNC_ACQUIRED_z state and SAzA to represent the SYNC_ACQUIRED_zA

state. We assume that the synchronization process has reached the SA1 state (refer to discussion

from test 36.1.1) and that sync_status has been set to OK.

While in the SA1 state, the PCS synchronization process examines each new code_group. If the

code_group is a valid data code_group or contains a comma when rx_even is FALSE, the PCS

asserts the variable cggood and the synchronization process toggles the rx_even variable.

Otherwise, the PCS asserts the variable cgbad and the process moves to the SA2 state, toggles

the rx_even variable, and sets the variable good_cgs to 0.

If the next code_group is a valid code_group which causes the PCS to assert the variable cggood,

the process transitions to the SA2A state, toggles the rx_even variable, and increments good_cgs.

Otherwise it continues on to the SA3 state.

While in the SA2A state, the process examines each new code_group. For each code_group

which causes the PCS to assert cggood, the variable good_cgs is incremented. If good_cgs

reaches three and if the next code_group received asserts cggood, the process returns to the SA1

state. Otherwise, the process transitions to the SA3 state.

Once in the SA3 state, the process may return to the SA2 state via the SA3A state using the same

mechanisms that take the process from the SA2 state to the SA1 state. However, another invalid

code_group or comma received when rx_even is TRUE will take the process to the SA4 state.

If the process fails to return to the SA3 state via the SA4A state, it will transition to LOS where

sync_status is set to FAIL.

Thus, once sync_status is set to OK, the synchronization process begins counting the number of

invalid code_groups received. That count is incremented for every code_group received that is

invalid or contains a comma when rx_even is TRUE. That count is decremented for every four

consecutive valid code_groups received (a comma received when rx_even is FALSE is

considered valid). The count never goes below zero and if it reaches four, sync_status is set to

FAIL.

Table 5: Loss of Synchronization

code_group /K28.5/ /K28.5/ /D/ /D/ /D/

state SA1 SA1 SA2 SA2A SA2A SA2A

rx_even TRUE FALSE TRUE FALSE TRUE FALSE

good_cgs 0 1 2 3

sync_status OK OK OK OK OK OK

code_group /D/ /INVALID/ /INVALID/ /D/ /K28.5/ /INVALID/

state SA1 SA2 SA3 SA3A SA4 LOS

rx_even TRUE FALSE TRUE FALSE TRUE FALSE

good_cgs 3 0 0 1 0 0

sync_status OK OK OK OK OK FAIL

B) PCS Transmit Process

Figure 5: PCS Block Diagram with Transmit Process highlighted

The PCS transmit process is responsible for the 8B/10B encoding of the data octets from the

GMII.

The PCS transmit process sends the signal 'transmitting' to the Carrier Sense function of the PCS

whenever the PCS transmit process is sending out data packets. The signal 'receiving' is sent out

by the PCS receive process whenever it is receiving packets. The PCS transmit process is

responsible for checking to see if the PCS is both sending and receiving data. If (receiving = 1

AND transmitting = 1) then the collision signal COL is sent to the GMII.

The Carrier Sense mechanism of the PCS reports Carrier events to the GMII via the CRS signal.

CRS is asserted when (receiving OR transmitting =1) and is de-asserted when (transmitting AND

receiving =0). (Note: CRS is asserted for repeaters when receiving=TRUE and de-asserted when

receiving=FALSE.)

PCS Transmit Data Format

Data packets are transmitted according to the following requirements:

 /I/ must be transmitted in an even code group position.

 /I/ must precede /S/ for the first packet of a burst of packets or the only packet of non-

burst packets.

o This means that /S/ will be transmitted in an even code group position if it follows

/I/.

 /R/ must precede /S/ for the second and subsequent packets within a burst of packets.

 /S/ may be transmitted in an even or an odd code position when following /R/.

Table 6 demonstrates that /S/ must be transmitted in an even code group position when following

/I/.

 Table 6: Transmitting SPD

Ordered_set xx /I/ /S/ xx

Code group xx /K28.5/ /D16.2/ /K27.7/ xx

Alignment xx EVEN ODD EVEN xx

Table 7 shows the EPD sequence when /T/ falls in an even code group position. In this case, /I/

will also fall in an even code group position.

 Table 7: Transmitting SPD with /T/R/K28.5/

Ordered set xx /T/ /R/ /I/

Code group xx /K29.7/ /K23.7/ /K28.5/ /D5.6 or D16.2/

Alignment xx EVEN ODD EVEN ODD

Table 8 shows what happens when /T/ falls in an odd code group position. In this case, the

normal /T/R/K28.5/ EPD will not suffice because it would cause /I/ to fall in an odd code group

position.

 Table 8: Transmitting EPD with /T/R/R/

Ordered Set xx /T/ /R/ /R/ /I/

Code group xx /K29.7/ /K23.7/ /K23.7/ /K28.5/ /D5.6 OR D16.2/

Alignment xx ODD EVEN ODD EVEN ODD

Encodings of TXD<7:0>,TX_EN and TX_ER

When xmit=DATA the PCS transmit process is controlled by the GMII with the TX_EN,

TX_ER and TXD<7:0> signals. Table 9 shows how the PCS transmit process interprets the

values of these signals and the ordered sets transmitted upon their assertion.

TX_EN is the transmit enable signal which is asserted whenever a packet is being sent. If the

GMII recognizes an error during data transmission, it will assert TX_ER as well to alert the PCS

to send a /V/ code group. TX_ER is used to indicate a transmission error, except when

transmitting extension.

TX_EN is de-asserted when the CRC field has been transmitted. Carrier extension is transmitted

after the packet when TX_EN and TX_ER are both flipped so that TX_EN=0 and TX_ER=1 and

TXD<7:0> = 0F. If TXD<7:0> is not equal to 0F, then the PCS considers it an error and

transmits a /V/ ordered set.

If TX_EN=0 and TX_ER=0, then the PCS transmits IDLE.

Table 9: Use of TX_EN, TX_ER and TXD<7:0>

TX_EN TX_ER TXD<7:0> Indication Ordered_sets

0 0 00 through FF Normal Interframe /I/

0 1 0F Carrier Extend /R/

0 1 1F Carrier Extend Error /V/

0 1
00 through FF(except 0F

and 1F)

Reserved

(Interpreted as Carrier

Extend Error)

/V/

1 0 XX Normal Data Transmission /S/D/T/R/

1 1 XX Transmit Error Propagation /V/

C) PCS Receive Process

Figure 6: PCS Block Diagram with Receive Process highlighted

The PCS receive process is responsible for decoding the incoming 10-bit code groups into their

corresponding octets for transmission by the GMII. The receive process sends out the signal

'receiving' to the PCS transmit process and the Carrier Sense process for use in notifying the

upper layers that there is carrier on the line or that a collision has occurred.

 Carrier Detection is used by the MAC for deferral purposes and by the PCS transmit

process for collision detection. A carrier event is signaled by the assertion of 'receiving'.

The signal 'receiving' is asserted upon the reception of a code group with at least a two bit

difference from the /K28.5/ code group for code groups received in an even code group

position.

o /K28.5/ = 101 11100

o /K27.7/ = 111 11011

 False Carrier is defined as a carrier event packet not beginning with /S/. The receive

process replaces the beginning code group with 0E and asserts RX_ER when a false

carrier event is received.

The incoming code groups are checked for the existence of /INVALID/ data or mis-aligned

/COMMA/s. The receive process also checks to see if an /I/ or /C/ ordered set is received prior to

receiving the EPD. If this occurs then the packet has ended early because once the /S/ has been

received the receive process expects to see a series of /D/ code groups followed by the /T/R/R/ or

/T/R/I/. If /I/ or /C/ arrived prior to /T/ then an error has occurred.

The /K28.5/ code group is used at the beginning of the /C/ and /I/ ordered sets. While the PCS

receive process is receiving a packet, it expects to see /T/ prior to seeing the next /K28.5/. A one

bit error in some of the data code groups can cause them to become /K28.5/. If this one bit error

happens to be followed by /D21.5/ or /D2.2/ then the beginning of a /C/ ordered_set will have

been created. To account for the possibility that a one bit error has occurred, the PCS receive

process checks the received code groups three code groups at a time. Doing this allows the

receive process to treat /K28.5/ received in an odd code group position as an /INVALID/ code

group rather than assuming a /C/ or /I/ ordered_set had been received. If /K28.5/ is received in an

even code_group position and is followed by /D21.5/ or /D2.2/ the receive process assumes a /C/

ordered _set is being received. If these two code_groups are followed by two more /D/

code_groups, the receive process indicates to the auto-negotiation process that a /C/ ordered_set

has indeed been received via the RX_UNITDATA.indicate(/C/) signal.

Encodings of RXD<7:0>,RX_DV and RX_ER

 Table 10: Use of RX_DV, RX_ER and RXD<7:0>

RX_DV RX_ER RXD<7:0> Indication Ordered Sets

0 0 00 through FF Normal Inter-frame /I/

0 1 00 Normal Inter-frame /I/

0 1 01-1D Reserved -

0 1 0E False Carrier -

0 1 0F Carrier Extend /R/

0 1 10 through 1E Reserved -

0 1 1F Carrier Extend Error -

0 1 20 through FF Reserved -

1 0 00 through FF Normal Data Reception /S/D/T/R/

1 1 00 through FF Data REception Error /V/

D) Auto-Negotiation Process

Figure 7: PCS Block Diagram with Auto-Negotiation Process highlighted

The Auto-Negotiation Process is responsible for determining a common set of abilities supported

by both the local device and the link partner. The auto-negotiation process is defined in Clause

37 of the IEEE 802.3 Standard and so is out of the scope of this tutorial. This process can only

be called if the synchronization process has been completed and, once called, it controls what is

transmitted by the Transmit Process (xmit is set to 'configuration'). Once the auto-negotiation

process has been completed the PCS Transmit process can transmit frame passed down from the

MAC via the GMII (xmit is set to data).

IV) Physical Medium Attachment (PMA) sublayer

Fundamentals

Figure 8: PMA Block Diagram

A) PMA Functions

The PMA sublayer is responsible for aligning the incoming serial stream of data. The PMA

receive process is allowed to lose up to four 10-bit code groups in the alignment process. This is

referred to as code slippage. The PMA receive process aligns the incoming code groups by

finding /COMMA/s in the data stream and aligning the subsequent code groups according to the

/COMMA/. Alignment by the PMA is essential if the PCS receive process is to operate correctly.

If misaligned /COMMA/s and/or data are repeatedly sent by the PMA, synchronization cannot be

obtained by the PCS.

The PMA is responsible for the serialization of the incoming 10-bit code groups from the PCS.

This is accomplished through the use of a 10x clock multiplier. The PCS transmits the code

groups in parallel at 125 MHz and the PMA sends them out bitwise at a rate of 1.25 GHz.

The PMA is also responsible for the deserialization of the data coming in from the PMD. The

data arrives serially at a rate of 1.25 GHz and is transmitted in parallel to the PCS at a rate of 125

MHz.

The PMA is also responsible for recovering the clock from the incoming data stream. A Phased

Lock Loop circuit is included in both the PMA receive and transmit circuitry.

B) Start-up Protocol

The PCS start-up protocol for auto-negotiating devices can be divided into two components:

1. Synchronization Process

2. Auto-Negotiation Process

Auto-negotiating, and manually configured, devices are unable to interpret any received

code_group until synchronization has been acquired. Once synchronization has been acquired the

PCS is then able to receive and interpret the incoming code_groups.

Auto-negotiating devices begin with the variable xmit set to CONFIGURATION. Before data

transmission can begin, auto-negotiating devices first need to receive three consecutive,

consistent /C/ ordered_sets. Consistent /C/ ordered_sets must contain the same code_groups

within the last two code_groups of each /C/ ordered_set, (ignoring the ACK(nowledge bit). Once

three consecutive, consistent /C/ ordered_sets have been received the auto-negotiation process

looks for three consecutive, consistent /C/ ordered_sets which have the ACK bit set to 1. After a

period of time the variable xmit is set to IDLE at which point the device begins transmitting /I/

ordered_sets After a specific amount of time xmit is set to DATA and the auto-negotiating

device is then able to transmit and receive data, assuming the partner device also received three

consecutive, consistent /C/ ordered_sets followed by three consecutive, consistent /C/

ordered_sets with the ACK bit set to 1.

Figure 9 contains a time-space diagram outlining the process. (Note: manually configured

devices skip the process of transmitting /C/ ordered_sets and begin with xmit=DATA.)

Figure 9: Start-up Protocol

V) Conclusion

Whether a device is an auto-negotiating device or a manually configured device, synchronization

is the heart of the entire PCS transmit and receive process. The PMA is responsible for

monitoring the incoming serial bit stream and aligning it into code_groups. If the PMA fails to

recognize and properly align commas, the PCS will be unable to receive any code_groups from

its link partner.

Manually configured devices require properly aligned commas in order to acquire and maintain

synchronization from the incoming /I/ ordered_sets. Auto-negotiating devices have the added

burden of needing to recognize /C/ ordered_sets and differentiating them from /I/ ordered_sets.

Prior to transmitting data, auto-negotiating devices are required to receive a certain number of

consecutive, consistent /C/ ordered_sets. This is essential in order to ensure that both auto-

negotiating devices will be communicating on the same terms.

Once synchronization has been acquired and the communication protocol has been determined

between the link partners, the devices are allowed to transmit data to one another. To help ensure

that the devices will be able to correctly interpret the received code_groups, an 8B/10B encoding

scheme is utilized. Such a coding scheme along with the use of running disparity allows for a

predictable and controlled set of code_groups that will be transmitted across the channel.

Because of the number of extra code_groups created by the encoding scheme, special control

words can be implemented for use in the interpacket gap, start-of and end-of packet delimiters,

and configuration ordered_sets among others.

