10Gig Link Fault Signaling

Updated to IEEE Draft P802.3ae/D3.2

10Gig Link Fault Signaling

UNH INTEROPERABILITY LAB

Motivation

- Simple, easy to upgrade method to indicate certain types of fault messages.
- "... I just powered up or have some sort of problem, so I'm not ready to transmit or receive anything..."
- "... OK, I won't send you anything until you are ready..."

10Gig Link Fault Signaling

UNH INTEROPERABILITY LAB

Method of fault signaling

- Everything gets back to the RS
 - RS controls whether the MAC transmits frames or not
 - RS is the ONLY layer that can generate Remote Fault messages
- Middle layers
 - Pass all fault messages through
 - Allowed to generate Local Fault messages

10Gig Link Fault Signaling

UNH INTEROPERABILITY LAB

- Status messages are four bytes in length and conveyed on a single XGMII clock.
- Indicated by a Sequence control character aligned to lane 0 with status encoded in three data bytes in lanes 1, 2, and 3.

10Gig Link Fault Signaling

UNH INTEROPERABILITY LAB

- The inter-frame period is used to signal link status information.
- Reception of a Sequence control character of 0x9C in lane 0 with data characters of 0x00 in lanes 1 and 2 and a data character of 0x01 in lane 3 signals detection of local fault by PHY.
- Reception of a Sequence control character in lane 0 with data characters of 0x00 in lanes 1 and 2 and a data character of 0x02 in lane 3 signals detection of a remote fault indicated by link partner.

10Gig Link Fault Signaling

UNH INTEROPERABILITY LAB

- Received idle is examined for status messages. Status messages are interspersed with Idle characters
- RS must receive multiple status messages before determining a failure has occurred.
- Failures cause continuous generation of status messages, so failure to receive status messages means problem has gone away.

10Gig Link Fault Signaling

UNH INTEROPERABILITY LAB

- Reception of multiple **local fault** status messages causes local RS to inhibit transmission of frames, and to continuously transmit remote fault across the XGMII.
- Reception of **remote fault** status message indicates that remote RS has detected a fault and causes local RS to inhibit transmission of frames, and to continuously transmit Idle across the XGMII.

10Gig Link Fault Signaling

UNH INTEROPERABILITY LAB

- Upon reception of four **local fault** messages in 128 columns, the RS sets link_fault=Local Fault.
- Upon reception of four **remote fault** messages in 128 columns, the RS sets link_fault=Remote Fault and continuously transmits Remote Fault across XGMII.
- The absence of fault messages for 128 columns resets link_fault=OK.

10Gig Link Fault Signaling

UNH INTEROPERABILITY LAB

XGXS/XAUI

- 10GBASE-X link status conditions include signal and deskew status conditions.
- Link status conditions include local_fault and remote_fault conditions.
- Local_fault is recognized by PCS Receive process when align_status=FAIL.
- Remote_fault conditions are not detected by the PCS, only the RS.

10Gig Link Fault Signaling

UNH INTEROPERABILITY LAB

XAUI/XGXS

- align_status
 - A parameter set by the PCS Deskew process to reflect the status of the lane-to-lane code-group alignment.
 - FAIL if the deskew process is not complete
 - OK if all lanes are synchronized and aligned

10Gig Link Fault Signaling

UNH INTEROPERABILITY LAB

XAUI/XGXS

- When the PCS has detected a local fault condition, it continuously generates local fault messages.
- Lane 0 1 2 3
- RXD <= 0h 9C 00 01
- RXC <= 0b 1 0 0 0

10Gig Link Fault Signaling

UNH INTEROPERABILITY LAB

XAUI/XGXS

- A link_fault condition is recognized by either the PCS Receive or Transmit process upon detection of a single ||Q||, sequence ordered set.
- Link fault messages detected by the PCS Receive process are forwarded directly to XGMII.
- Transmitted link fault messages are forwarded across XAUI to remote XGXS.
 - ||Q|| ordered-sets are placed after ||A|| in outgoing Idle stream.

10Gig Link Fault Signaling

UNH INTEROPERABILITY LAB

64b/66b PCS

- Will generate (for XGMI) Local Fault when
 - reset = true
 - block_lock = false
 - $r_test_mode = true$
 - hi_ber = true
- Will generate (for link partner) Local Fault when
 - reset = true

10Gig Link Fault Signaling

UNH INTEROPERABILITY LAB

64b/66b PCS

- Frame formats that PCS can receive
 - $\ C_0 C_1 C_2 C_3 / O_4 D_5 D_6 D_7$
 - $\ O_0 D_1 D_2 D_3 / S_4 D_5 D_6 D_7$
 - $O_0 D_1 D_2 D_3 / O_4 D_5 D_6 D_7$
 - $\ O_0 D_1 D_2 D_3 / C_4 C_5 C_6 C_7$
- Reception of /Op/ in any other position indicates an error. /Op/ can only be sent/received during Idle stream.
- PCS will pass up and down fault signaling unaltered (remote fault or local fault).

10Gig Link Fault Signaling

UNH INTEROPERABILITY LAB

Status Register Bits

- 1.1.7 Local Fault (PMA)
- 2.1.7 Local Fault (WIS)
- 3.1.7 Local Fault (PCS)
- 4.1.7 Local Fault (PHY XS)
- 5.1.7 Fault (PHY DTE XS)
 - 1=LF detected on transmit or receive path
 - 0=LF not detected on transmit or receive path
- When read as a logic one, this bit indicates that the PMA has detected a local fault signal on the transmit or receive path.

10Gig Link Fault Signaling

UNH INTEROPERABILITY LAB

Normal Operation

	TX Idle or Frames	RX Idle or Frames	
Device A		·	Device B
MAC/RS	/		MAC/RS
	RX Idle or Frames	TX Idle or Frames	

•Device A and Device B are both powered up and operating properly.

•Both devices are capable of transmitting MAC frames.

10Gig Link Fault Signaling

UNH INTEROPERABILITY LAB

Fault Operation

- Device B detects loss of signal. Local fault is signaled by PHY of Device B to RS of Device B.
- RS of Device B ceases transmission of MAC frames and transmits **remote fault** to Device A.
- Device A receives **remote fault** from Device B.
- Device A stops sending frames, continuously generates Idle.
- See diagram on next page

10Gig Link Fault Signaling

UNH INTEROPERABILITY LAB

Fault Example

	TX Idle or Frames	Loss of signal	
Device A	Break in fiber	/	Device B
MAC/RS	1		MAC/RS
	RX Idle or Frames	TX Idle or Frames	

	TX Idle or Frames	Loss of signal	
Device A	Break in fiber	,	Device B
MAC/RS	,		MAC/RS
	RX Idle or Frames	TX Remote Fault	

	TX Idle or Frames	Loss of signal	
Device A	Break in fiber	/	Device B
MAC/RS			MAC/RS
	RX Remote Fault	TX Remote Fault	

	TX Idle	Loss of signal	
Device A	Break in fiber	/	Device B
MAC/RS			MAC/RS
	RX Remote Fault	TX Remote Fault	

10Gig Link Fault Signaling

UNH INTEROPERABILITY LAB

To Learn More

 For more information regarding 10 Gigabit Ethernet, or the 10 Gigabit Ethernet Consortium, feel free to contact me via email: Eric Lynskey <u>elynskey@iol.unh.edu</u> Or visit our website:

UNH IOL 10 Gigabit Ethernet Consortium

UNH INTEROPERABILITY LAB

10Gig Link Fault Signaling