Overviav of UNH EXS 1.3.5 for Programmers

Robert D. Russell
Patrick MacArthur
Inter Operability Laboratory
University of New Hampshire
Durham, New Hampshire 03824
{rdr,pmacarth}@iol.unh.edu

1. Introduction

The Extended Sockets APKES-API) is a specification published by t@penGroup that
defines extensions to the traditional socket API in order to provide asynchronous I/O and also
memory registration for Remote Direct Memory Access (RDMAhese two major nav fea-
tures enable programmers to @a&lvantage of todag’ multi-core processors and RDMA net-
work hardware, such as InfiniBand, iWARP and RoCE interfaces, in\grent yet eficient
manner.

This document describes version 1.3.5 of the UNH EXS interface, an extended implementa-
tion of the ES-API. Section 11 outlines the differences between version 1.3.5 and the ES-API
standard.

The UNH EXS interface pxddes most of the features specified in the ES-API, and pro-
vides a fev additional features that g the programmer more Ribility. For example, the pro-
grammer can choose to program with synchronous rather than asynchronous I/O, and/or to pro-
gram with or without memory géstration. Theprogrammer can also cemniently “tune” cer
tain aspects of the EXS intade to tak advantage of application requirements in order to pro-
vide better performance.

In addition, the UNH EXS interface is designed to be implemented entirely in user space on
the Linux operating system. This latter featurevtes easy porting, modification and adoption
of EXS, since it requires no changes to existing Linesn&ls. Thecurrent implementation of
the EXS interface is based on tpenFabrics Enterprise Distribution (OFED) (recently
renamed to be th®penFabrics Software (OFS)), a free software package provided by the
OpenFabrics Alliance (OFA). The OFS runs in both user and kernel space, and provifles ef
cient, asynchronous access to various types of RDMA networking hardware, currently Infini-
Band, IWARP and RoCEThe layering structure of this system is shown Wweld@he term
RNIC stands for “RDMA Network Interface Card”, which is the term used b&RW for the
hardware interce card that enables a computer to use zerp{capsfers ver Ethernet fibers
and cables HCA stands for “Host Channel Adapter”, which is the term used by InfiniBand for
the hardware interface card that enables a computer to use zgrtovartgiers ver InfiniBand
fabric. RoCEdoes not seem to Y a pecial name for i§ interface card.We will use the term
Channel Adapter (CA) to refer generically to gnof the 3 hardware interface cards.

March 28, 2013 Russell and MacArthur Page 1

Overview of UNH EXS 1.3.5 for Programmers

user space user program
EXS interface
OFED user stack

kernel space OFED kernel stack
InfiniBand, IWARP or RoCE dver
hardware InfiniBand HCA IWARP RNIC RoCE NIC

InfiniBand netvork | Ethernenetwork | Ethernenhetwork

The principal difference between the UNH EXS interface and the OpenGrigsAPI is
that the UNH EXS integice runs entirely in user space. Therefore, it is not integrated with “nor
mal” kernel sockts. Thismeans EXS functions cannot be used with “normal” sockets, and EXS
soclets cannot be used with “normal” socket functions. This, in turn, means the UNH EXS
interface had to add numerous functions, suckixassocke(), exs bind(), etc., that the ES-API
does not define because the ES-ARleets to be implemented in the kernel and integrated with
“normal” soclets. TheES-API is intended to be an extension to existing “normal” sockets and
therefore does not need to redefine “normal” functions.

Another difference is that the UNH EXS int&ce is designed as a “thin”, efficient layer
between the user and the Channel Adapter via the OFED dtablerefore retains much of the
paclet orientation of the underlying protocols for b@®CK STREAM and SOCK SEQ-
PACKET sockets.

This document gies an overview of the general concepts of EXS, andvihe UNH EXS
interface can generally be used by a programiés not a reference manual.

Section 2
starts by giving anwerview of the style of programming for which the featurefeidd by
EXS are most suitable. Subsequent topics include EXS asynchronous I/O, dealing with
event queues using thexs qcreate(), exs qdeletg) and exs qdequeud) functions, and
the need for memory registration when using RDMA.

Section 3
describes hw a user program initializes the EXS environment with é¢ixs init () function.

Section 4
describes ho users create and manage EXS client and server connections by using the
exs socke(), exs bind(), exs connec{), exs listen(), exs accep{), andexs clos€) func-
tions.

Section 5
describes ho users transfer dataver EXS connections by using thexs send) and
exs recv() functions.

Section 6
describes the internal flocontrol mechanisms utilized by the UNH EXS ingeré and their
effects on performance.

March 28, 2013 Russell and MacArthur Page 2

Overview of UNH EXS 1.3.5 for Programmers

Section 7
describes some ways EXS performance can be tuned through the usecxs tbetl ()
function.

Section 8
describes ways to utilize registered and unregistered memory by usiexstheegister()
andexs mderegister() functions, and theXS MHANDLE UNREGISTERED value.

Section 9
describes ways to utilize synchronous and asynchronous I/O and the various flags that con-
trol this.

Section 10
gives a ®ries of sample client programs showingvio corvert from a client using normal
soclets (with no access to RDMA hardware) to a client using EXS sockets (with full access
to RDMA hardware) in asynchronous mode and explicit memory registration.

Section 11
describes the current status of UNH EXS 1.3.5 and the differences between it and the ES-
API standard.

2. Owerview of the EXS style of programming

The general paradigm for programming with EXS is “threads” aments” programming.
Although it is not necessary to use threads in order to use EXS, it is the simpfetst wiilize
the parallelism prnaded by multi-core processors and todaklvantage of the asynchronous 1/0
facilities in EXS. Threads are also utilized internally by the UNH EXS interface.

2.1. Asynchionous I/O

EXS accomplishes asynchronous I/O by partitioning the sugggraction with I/O via the
EXS interface into tw distinct phases: the “start” phase, and the “completion” ph&seh
asynchronous operation starts with a start phase. If that phase fails, then there is no subsequent
completion phase — instead, the user must deal with the &ubnf the start phase succeeds,
the asynchronous EXS operation proceeds in parallel with independent processing by the user
thread that started it. The completion phase begins when the user calls a separate function that
walits for the asynchronous operation to finiskhis function returns detailed results about the
asynchronous operation that can indicate either success or failure of the operation.

In EXS, the start phase of an asynchronous operation is accomplished EBX8efunc-
tions with names similar to the standard socket and UNIX 1/O function calls. These include:
exs accepl), exs clos€), exs connecy), exs recv(), andexs send). Thesefunctions first er-
ify that their user-supplied parameter values enaich an operation possibl&hey then cause
the EXS interface to “start” an operation but do nattvior the operation to actually taldace.
Instead thg immediately return to the user after giving the OFED stack all the information nec-
essary to proceed with the operation in parallel with (i.e., asynchronously to) tisethusads.

As a parameter to thesewnasynchronous EXS functions the user must specify a pointer to
a “gqueue” object previously created by the user (as discussédnnihis section). When the
asynchronous operation completes, either successfully or not, the EXS interface will “post a
completion gent” to that queue.This “event” is a structure which contains detailed information

March 28, 2013 Russell and MacArthur Page 3

Overview of UNH EXS 1.3.5 for Programmers

about the success or failure of the operatibhe user obtains this information by “dequeuing”

the event structure from the queue. If the EXS interface posts \het defore the user tries to
dequeue it, the queue object stores the information until the user performs the dequeue operation.
If the user tries to dequeue avert before the asynchronous operation is finished, the dequeue
operation will block until either the EXS intade posts thevent or an amount of time specified

by the user as a parameter to the dequeue operation eldpgsesan be an indefinite amount of

time. Thereare 3 possible scenarios, as illustrated in the following diagrams.

Step User thread

EXSinterface

1 call asynchronous function

2
3
4 deal with error

check parameter
return error

[92)

Start phase results in an errd® not started.

Step

User thread

EXSinterface

OO ~NOOTDS, WNPE

call asynchronous function

proceed with other ark
proceed with other ark
proceed with other work
dequeue I/O completiornvent
process I/O completiornvent

check parameters

dart 1/0O operation

return ok

proceedvith 1/0 operation
postl/O completion gent

Start phase ok, user thread cals qdequeud) after 1/0 is complete.

March 28, 2013

Russell and MacArthur

Page 4

Overview of UNH EXS 1.3.5 for Programmers

Step User thread EXSinterface
1 call asynchronous function
2 check parameters
3 dart 1/0O operation
4 return ok
5 proceed with other wrk proceedvith 1/0 operation
6 dequeue I/O completiorvent | proceedwith 1/0O operation
7 wait for I/O completioneent | proceedvith I/O operation
8 wait for I/O completioneent | postl/O completion gent
9 process I/O completiornvent

Start phase ok, user thread cals gdequeud) before 1/0O is complete.

2.1.1. Ceating an erent queue
A user creates arvent queue by using:
ghandle = exsqcreate(depth);

wheredepth specifies the guaranteed minimum numbenehes that the user ants to be able

to store in this queue. This function dynamically allocates memory to hold at least that number
of event structures.A user can create nhumerousfelient ent queues, but these are valid only

in the contet of the calling process (and its threads) — thesatequeues are not valid inyan

child processes forked by this parent. The value returngtandle will be NULL if there was

an error of some sort, in which case the error code is stored in the glotmal Otherwise, the

value returned irghandle is a “handle” (i.e., a pointer) of typexs ghandle t, which must be
passed as a parameter in subsequent EXS function calls that start asynchronous opEnations.
handle identifies the queue to which an asynchronous operation will post its completion e

2.1.2. Deletingan event queue
A user deletes arvent queue by using:
result = exs qdelete(ghandle);

whereghandle identifies a previously creategteat queue. The value returnedrasult will be
0 if the call toexs gdelete) was successful, or -1 if there was an error of some sort, in which
case the error code is stored in the glapaio.

Note that ap completion @ents posted to, but not yet dequeued from, this queue will be
lost when this function is called. Also note thay autstanding asynchronous operations that
reference this queue and thatvéaeen started but not yet completed will cause the call to
exs qdeletq) to fail.

2.1.3. Usingan event queue
Fadlowing a successful call to one or more EXS asynchronous functions, the user must use:
nevents = exs qdequeue(ghandle, gent_vector, count, timeout);

March 28, 2013 Russell and MacArthur Page 5

Overview of UNH EXS 1.3.5 for Programmers

to wait for those EXS asynchronous functions to complete. In the eatbtqdequeus), ghan-

dle must be the same value used previously in the EXS asynchronous function call that started an
operation.event_vector must be a usegurovided array big enough to hotmunt events of type

exs event_t, and timeout is a pointer to a structure of tyg&uct timeval containing the maxi-

mum amount of time the user wants to wait for aeneto happen.Thetimeout parameter can

be NULL if the user ants to wait indefinitely This call toexs qdequeud) will block until

either thetimeout elapses or at least on@ent is posted to the queue and is copied into
event_vector. The value returned inevents will be 0O if a timeout occurred, a posgivalue if

nevents events were remeed from the queue and copied irgeent_vector, or -1 if there was an

error of some sort, in which case the error code is stored in the glohal

If the nevents value returned byexs gdequeud) is positve, then each of the firstevents
structures of thevent_vector array will have keen filled in by the EXS inteate with informa-
tion to identify the operation that posted tiverg and to covey lback to the user the final results
of that operation For each of these structures in theant vector array the following fields will
be filled in as follows:

exs evt_errno
is O if the asynchronous I/O operation completed successiftiigrwise it contains an error
code (i.e., a Linwerrno value) to indicate wi it failed.

exs evt_socket
is a coy of thefd parameter value used in the EXS asynchronous function to identify the
connection.

exs evt_ahandle
is a copy of the ahandle parameter value used in the EXS asynchronous funclibis
vaue is chosen by the user for identification purposes antyis opaque to (i.e., not used
by) the EXS interface.

exs evt_type
is a constant value indicating which type of EXS asynchronous function causedrihe e
These values will be discussed helwith the indvidual EXS asynchronous functions.
Examples includeEXS EVT ACCEPT, EXS EVT CLOSE, EXS EVT CONNECT,
EXS EVT RECV andEXS EVT_ SEND.

exs evt_union
contains a structure whose type depends orexiseevt type value. Thefields in these
structures will be discussed belavith the individual EXS asynchronous functions.

2.2. Memoryregistration

In order to utilize the direct memory-to-memory transfer feature of the RDMA acterf
hardware, the CA requires that the virtual memompolaed on both ends of a transfer begise
tered”. Thisregistration accomplishesv&@eal necessary functions:

(1) Itestablishes the location and size of a memory area to be utilized in RDMA transfers;

(2) It establishes the read/writgéeute permissions granted to both the local and remote
CAs for accessing that memory area;

(3) It“pins” the users virtual memory area into real (i.e.,y#ical) memory so that a CA can
access the memory without going through the GRREQing hardware.

March 28, 2013 Russell and MacArthur Page 6

Overview of UNH EXS 1.3.5 for Programmers

Note that ap type of virtual memory can begstered — stack memaryeap memory
global memoryetc. Commonusage will most likely be to register dynamically allocated mem-
ory, but since this is not necessaBXS does NQ alocate the memory it is registering.

The mechanism by which a user explicitly registers andydsees memory is described in
section 8 bela. That section also describes a means by which the user can request dygamic re
istration and deregistration of memory as part of an individual EXS function Aallord of
warning, havever: dynamic registration and deregistration is gpemsve pocedure, and should
be used only as a temporary “bridge” whenwening an &isting application from “normal”
sockets to EXS. The benefits of EXS require explicit memory registration by the user program.

3. Establishingthe EXS environment

Unlike with normal sockets, a program that wants to utilize EXS must explicitly initialize
the EXS environment by using:
result = exs init(version);

whereversion is the version of the EXS interface the user wishes to use. The current version is
given by the global constarEXS VERSION, which is defined in the filexs.hwhich, in turn,

must be included by all programs wishing to utilize EX®we result value is 0 if the &s init()

was auccessful, or -1 if there as an error of some sort, in which case the error code is stored in
the globalerrno.

This function will initialize the EXS interface for the calling procedksnust be performed
exactly once before gmother EXS function is called, and is usually placed near the beginning of
program &ecution.

4. Managingan EXS connection
As with classic sockets, there are three different types of connections a user can create:
(1) aclient connection
(2) aserver listening post
(3) aserver agent connection

4.1. Creating an EXS socket

In order to establish either a client connection or aesdistening post, the user must first
set up the local endpoint for the connection by using:

fd = exs socket(domain, sockettype, protocol);

where the value oflomain must bePF INET or PF INET6 (or equvalently, AF INET and
AF_INET6), socket type must be eitheliSOCK STREAM or SOCK SEQPACKET, and
protocol must belPPROTO_TCP (or equvalently, 0). Thisis a synchronous operation, so
there is no went associated with its completion. The value returned will be -1 if there vas
an error of some sort, in which case the error code is stored in the glotal otherwise, the
vaue returned irfd is a non-ngative integerfile descriptor which must be used to identify this
connection in all subsequent calls to EXS functions.

March 28, 2013 Russell and MacArthur Page 7

Overview of UNH EXS 1.3.5 for Programmers

As of version 1.3.0, a large intermediate reeeiluffer will be allocated for
SOCK STREAM soclets unless this feature is turnedlaf the interhces described in section
7. Thesize of this bffer defaults to 3 Gigbytes, and may also be modified via the iat=$
described in section 7.

Which EXS functions to call after a successful return frexs socke{) depends on
whether the user wants to establish a client connection or a server listening post.

4.2. Establishingan EXS client connection

The client end of a connection is the simplest to establish, although this operation will not
succeed unless the remote setvlistening post has been previously established (discussed in
section 4.3.1). Creation of a client connection is started by:

result = exs connect(fd, sever address, sever addrlen, connect flags, timeout, ghandle, ahandle);

This function is normally the mé EXS function called by a client after a successful call to
exs socke(), andfd identifies the endpoint established by éxe socke(). sewver addressis a
pointer to a structure of typstruct sockaddr into which the user has stored the IPv4/IPv6
address and port number of the sew/listening post.server addrlen is the size in bytes of the
structure pointed to byerver address The value of theonnect flags parameter is usually O,
but see belwv for the other possibilitiestimeout is a structure of typstruct timeval which
specifies the maximum amount of time the client thread is willingatib far theexs _conned)

to complete successfullyf the timeout pointer is NULL,exs_conned) will wait indefinitely.
ghandle identifies an eent queue that will be used to wait for the completion of éxis con-
nect)), andahandleis an arbitrary pointeralue chosen by the user which will be returned in the
exs_evt_ahandldield of the @ent notification (discussed previously in section 2.1.3).

The value returned iresult will be 0 if theexs connec() was successfully started, or -1 if
there vas an error of some sort, in which case the error code is stored in theegtoband no
asynchronous activity is started.

If the exs connecl) started successfullyt will operate asynchronously with the user
thread that started itDuring this time the user should not callaalditional EXS functions for
this connection, because the internal state of the connection will be undefined waxd tos-
nect)) has completed and the EXS interface has posted to the gkaridle an eent whose
exs evt _type field contains the alue EXS EVT CONNECT. Once this gent has been
receved, the user is able to use the connection to transmit data to and from the remote server.

The onlyconnect flagsvalue currently defined foexs connec() is EXS BLOCK. When
this flag value is present, thalue of theghandle andahandle parameters are ignored by the
EXS interface, and can be NULLThe EXS BLOCK flag value should be supplied when the
user wants thexs connec() to operate synchronously rather than asynchronously.

4.3. Establishinga srver EXS connection

Establishing a server is a bit more comyplean establishing a client. As with regular sock-
ets it irvolves two distinct sequences.

March 28, 2013 Russell and MacArthur Page 8

Overview of UNH EXS 1.3.5 for Programmers

4.3.1. Establishinga server listening post

A listening postis the socket endpoint set up by a server in order to allents to be able
to contact the seer. To enable such contact, a listening post must be bound to an IPv4/IPv6
address and port number pair that is known to clients. This IPv4/IPv6 address and port number
pair is analogous to a “1-800” number set up bysirtess — it must be known to customers
who will use it to contact the business by telephone.

The first step in establishing a listening post is to create theetsecklpoint using the
exs socke() function, as already discussed in section 4.1. The next step is to bind thett sock
endpoint to the IPv4/IPv6 address and port number pair which will be utilized by clients in the
exs connec() function, as just discussed in section 4.2. This binding is done by using:

result = exs bind(fd, server address, sever addrlen);

The fd parameter identifies the endpoint established by aiqusly successful call to

exs socke(). sewver addressis a pointer to a structure of tyg&uct sockaddr into which the

user has stored the IPv4/IPv6 address and port number to be assigned by the EXS interface to the
server and server _addrlen is the size in bytes of the structure pointed tosbier address

This is a synchronous operation, so there isuenteassociated with its completiofhe \alue

returned irresult will be O if the call toexs bind() was successful, or -1 if there was an error of
some sort, in which case the error code is stored in the global.

After a successful call texs bind(), the next step in establishing a listening post is to iden-
tify the socket to the EXS interface as a listening post and to estaldetkipg for it. This
backlogis analogous to establishing the maximum number of calls which can be kept waiting on
a 1-800 line, and is accomplished using:

result = exs listen(fd, backlog);

fd has the same value as that used in theique call toexs bind(), andbacklog is the maxi-

mum number of client connections that can be “kept on hold” until a server connection dedicated
to a nev client can be set up (i.e., until a customer can be switched to a free agent in the 1-800
call center). This is a synchronous operation, so there igemb &sociated with its completion.

The value returned iresult will be 0 if the exs listen() was successful, or -1 if there was an
error of some sort, in which case the error code is stored in the gltohal

At this point the server process is ready to somatwwvey the IPv4/IPv6 address (or DNS
name) and port number of its listening post to potential client processesrati@world. Well
established servers, such as therld/ Wide Web HTTP service, ti@ been assigned “@ll
Known Ports” by IAMN (the Internet Assigned Numbers Authority) (e.g., port 80 has been
assigned to the HTTP service), so this knowledgeasasle to every browvser in the world, and
programmers only ha to know the IPv4/IPv6 address (or DNS name) of their destination in
order to connect their client process to an HTTPeseMost programmers do notvete lux-
ury of working with Well Known PortsTherefore, the means by which the sels/IPv4/IPv6
address and port number are made known to clients is outside the scope of EXS.

4.3.2. Acceptingconnections on the sefer

Once a semr has established a listening post, it needs to set up to accept connections from
clients. Thisis analogous to hiring agents to answer the phones in the 1-800 call é&htar a

March 28, 2013 Russell and MacArthur Page 9

Overview of UNH EXS 1.3.5 for Programmers

business answers a call to the 1-800 nunnthercall is switched to a separate line into a call cen-
ter where a single agent deallesively with that indvidual customer — the 1-800 number
remains ready to acceptwealls and to switch them to other agen®milarly, when the listen-
ing post accepts a connection from a client, it createsvaoeket that will deal rclusively with

that client — the listening post itself remains ready to acceptaenections, but rver actually
transfers apdata with ag clients. Thélistening post is set up to do this using:

result = exs accept(fd, addressvector, count, accept flags, ghandle);

The fd parameter is the same as the one used in a previously successfulesallisten(),
address vector is a pointer to an array of structures of types acceptaddr, and count is the
number of elements in that arrayhe \alue of theaccept flags parameter will usually be O;
other flag values currently defined fexs accep() are discussed belo ghandle identifies an
event queue on which a user can wait for the completion otttssaccept).

The value returned iresult will be O if theexs accep() was successfully started, or -1 if
there was an error of some sort, in which case the error code is stored in themgimbahd no
asynchronous activity is started.

The array of structures pointed to agdress vector must hae been allocated by the user
before callingexs accept). Continuingthe 1-800 analogythere will be one element in this
array for each agenvailable in the call centerEach element of the array contains the follg
three fields, which must be initialized by the user prior to cadiirgyaccep() as follows:

exs addr
is a pointer to a structure of typgruct sockaddr into which the IPv4/IPv6 address and
port number of a ve remote client will be stored by the EXS intaé (this is he the
agent is able to identify the customer who is callingthe user does not wish to get this
information, this pointer can be NULL or the value of éxs addrlen parameter can be 0.

exs addrlen
is the number of bytes allocated by the user to the structure pointeexs bgdr. If that
pointer is NULL, or if the user does not wish to get the remote diéiPw4/IPV6 address
in theexs addr parameterthe value oexs addrlen can be O.

exs ahandle
is an arbitrary pointeralue chosen by the user for identification purposes amtiyis neer
looked at by the EXS inteate. Itwill be returned in theexs et ahandle field of the
event notification (as previously discussed in section 2.1.3).

Falowing the call toexs accep(), the user must use:
nevents = exs qdequeue(ghandle, gent_vector, count, timeout);

to wait for clients to performexs connec() operations to this segvs listening post. The
exs gdequeud) function has already beempained in section 2.1.3To repeat from that sec-
tion, ghandle must point to the samevat queue as that used in the callexs accep),
event_vector must be a user provided array big enough to hmddnt events of type
exs event_t, and timeout is a pointer to a structure of tyg&uct timeval containing the maxi-
mum amount of time the uselamts to wait for anwent to happen.The timeout parameter can
be NULL if the user wants to wait indefinitely.

March 28, 2013 Russell and MacArthur Page 10

Overview of UNH EXS 1.3.5 for Programmers

If the nevents value returned byexs gdequeud) is positve, then each of the firstevents
structures of thevent_vector array were filled in by the EXS intexde with information to iden-
tify each operation that posted aremst to this @ent queue and to ceay the final results of each
operation back to the useffor an @ent associated with aexs accep(), the following fields of
theexs event t structure will be filled in (as generically described in section 2.1.3):

exs evt_errno
is O if theexs accep() operation completed successfuligherwise it contains an error
code (i.e., a Linwerrno value) to indicate wh it failed.

exs evt_socket
is a coy of the listening pos$ fd value that was used as a parameter in the call to

exs accepl),

exs evt_ahandle
is a copy of theahandlevalue stored by the user in tie&s ahandlefield of an element in
the array pointed to by thaddress vector parameter to thexs accept(). This value is
chosen by the user for identification purposes,@nig is not used by the EXS interface.

exs evt_type
is EXS EVT ACCEPT.

exs evt_union
contains a structure of tymxs evt_acceptthat has been filled in by the EXS inteé with
values in the following fields:

exs evt_new socket
is the file descriptor identifying the weconnection to the client — thisalue should
be used by the server from this point on to transmit data to/from that clibigt.is
analogous in the 1-800 call center to the line toxatusive agent to which the cus-
tomer is switched.However, the analogy is not perfect because the call center line
must already exist (as extension 123, for example), whereas this file descriptor repre-
sents a ne socket created internally by thexs accep() function. It is as if the
exs accep() internally callsexs socke() for each n& client, and the socket created
by this internal call toexs socke() has a file descriptor that is different fromyan
exsting file descriptors. Note that this scheme is nat tee EXS — theaccep()
function for normal sockets works in exactly the same manner.

exs evt_addr
is a coy of the exs addr pointer from an element in the array pointed to by the
address vector parameter to theexs accep(). The structure pointed to by the
exs evt_addr field is of typestruct sockaddr, and will now contain the 1Pv4/IPv6
address and port number of the remote client at the other end ofrtlcemeection.

exs evt_addrlen
contains the number of bytes used to store the didiav4/IPv6 address and port
number in the structure pointed to s evt_addr.

Once a n& connection to a client has been indicated by a successful compledianieis
common for a server process to spawna fegent” thread to deakelusiely with that client.
This is analogous to switching a custorsesll to an agent in the 1-800 call centdie file

March 28, 2013 Russell and MacArthur Page 11

Overview of UNH EXS 1.3.5 for Programmers

descriptor from th@xs evt_new socketfield in theexs evt_acceptstructure should be used by
this agent thread in all thexs send) andexs recv() functions for transactions with that client.
When the agent threadtealings with this client are finished, that thread shouldesaliclos«)

with thisfd and then terminateJust the agent thread needs to terminate, not the server listening
post thread. Here the 1-800 analogy breaksnjdnecause human agents will just hang up with
one customer and wait for a call from another custoritdth EXS, as with normal soeks,

there is no \ay to reuse a socket — aw@®ne must be created lgxs accep() as each ne

client connects.

The onlyaccept flags value currently defined foexs accep() is EXS BLOCK. When
this flag value is present, the value of deeint parameter MUST be exactly 1, since td€for
only 1 remote connection can be returned by 1 CHile value of theghandle parameter is
ignored by the EXS interface, and can be NULIhe EXS BLOCK flag value should be sup-
plied when the user wants thgs accep() to operate synchronously rather than asynchronously
A synchronousexs accep() blocks until a remote client connects, at which time résult
returned byexs accep() will be thefd for the nev connection to the remote clienote that in
this case n@xs event t structure is generated for the ysay he other fields in that structure
are not mailable to the user This means that thexs ahandle field in the first (and only)
address vector is also ignored by the EXS interface, and can be NULL.

4.4. Closingan EXS connection

When the user has finished using a connectionybathne three types discussed atdhe
user calls the following function:

result = exs close(fd, closeflags, ghandle, ahandle);

where fd identifies the connection to be closdlhgs contains flags that modify the normal
behaior of this call,ghandle identifies an eent queue that will be used tcaw for the comple-
tion of this call toexs clos€), andahandle is an arbitrary pointer value chosen by the user
which will be returned in thexs evt_ahandle field of the &ent notification (discussed prie
ously in section 2.1.3).

The value returned iresult will be O if exs clos€) was successfully started, or -1 if there
was an eror of some sort, in which case the error code is stored in the giohaland no asyn-
chronous activity is started.

If the exs closd) started successfullit will operate asynchronously to the user thread that
called it. During this time the user must not caly additional EXS functions using thisl to
identify the connection, because fdewill become iwalid and the internal state of the connec-
tion will become undefined on@xs close) is called (thdd is invalidated synchronouslyeven
if the subsequent cleanup happens asynchronoudiien theexs clos€) completes, the EXS
interface will post to the userghandle an event whoseexs_evt_typefield contains the alue
EXS_EVT_CLOSE. The exs evt_errno, exs evt_socket and exs evt_ahandle fields of the
event will be filled in as previously described in section 2.1N& additional information is
stored in thexs evt_union field for events of this type.

It is highly recommended that, prior to exiting a program or thread, a wgaysatall
exs closd) for each connection controlled by that program or thrddm main reason for this is
that EXS is inherently asynchronous, so ym&XsS functions called by a user simply start an

March 28, 2013 Russell and MacArthur Page 12

Overview of UNH EXS 1.3.5 for Programmers

asynchronous operation — the real work takes place asynchronously to the thread that called the
EXS function. Therefore, when writing code, a user might notvieeaof all that is being
accomplished asynchronous$p hat what looks to be finished to a user might not be finished in

the EXS interfice. Callingheexs clos€) function ensures that this asynchronous activity is fin-
ished, whereasxéing the program or thread would not ensure this, and thus all data might not
be transmitted.Calling exs clos€) also helps to cleanly shutan the other end of the connec-

tion. Finally calling exs closg) allows thefd associated with the connection to be reused.

The exs clos€) operation supports twflags. Whenthe EXS BLOCK flag value is
present, the value of tlghandle andahandle parameters are ignored by the EXS interface, and
can be NULL. The EXS BLOCK flag value should be supplied when the usanta the
exsclos€) to operate synchronously rather than asynchronousiWhen the
EXS DONTLINGER flag value is present, thexs clos€) function will immediately terminate
the connection instead of first waiting for pending sends to termifiduis. will also cause gn
outstanding and future send and reeaiperations at the remote endpoint to immediatell f
settingexs evt_errno or errno (as appropriate) tCONNRESET.

4.5. Half-closingan EXS connection

In some situations, it is useful to shutwaoonly half of a connection. In particuldor
some request/response protocols, the client may send a single request and not need yo send an
further messages. In this case, shutting the connectiwn doly for writing will indicate EOF
to the recaier but still allow the recerer to send its response on the socket.

When the user wishes to half-close a connection, the user calls the following function:
result = exs shutdown(fd, how, shutdown flags, ghandle, ahandle);

wherefd identifies the connection to be closédw identifies in which direction to shut wo
communicationshutdown flags contains flags that modify the normal beloa of this call,
ghandle identifies an eent queue that will be used toaw for the completion of this call to
exs shutdown(), andahandle is an arbitrary pointeralue chosen by the user which will be
returned in theexs evt_ahandle field of the @ent notification (discussed previously in section
2.1.3).

The value returned iresult will be 0 if exs shutdown() was successfully started, or -1 if
there vas an error of some sort, in which case the error code is stored in theegtobadnd no
asynchronous activity is starteVhen theexs shutdown() completes, the EXS interface will
post to the uses’ ghandle an eent whose exs_evt type field contains the alue
EXS_EVT_CLOSE. The exs evt_errno, exs evt_socket and exs evt_ahandle fields of the
event will be filled in as previously described in section 2.1.3. No additional information-is cur
rently stored in thexs evt_union field for events of this type.

The valid values fohow are: SHUT_WR, which shuts down the connection for sending
(writing) only; SHUT_RD, which shuts den the connection for receiving (reading) only; and
SHUT_RDWR, which shuts down the connection in both directions.

The exs shutdown() function will fail (settingerrno to EBUSY) if another exs shut-
down() operation is outstanding in the same direction (locally or remotely); this v®itb [ost-
ing an @ent too early or needing complénternal logic to ensure that we post the correct num-
ber of completion wents in order If an exs shutdown() operation in a gen drection has

March 28, 2013 Russell and MacArthur Page 13

Overview of UNH EXS 1.3.5 for Programmers

already completed, futuexs shutdown() operations in that direction are treated as a no-op and
will immmediately generate an asynchronouent on the suppliedvent queue.

Unlike exs clos€), exs shutdown() doesnot invalidate thefd of the connection,ven if
the call results in communication being shuivdon both directions. This is because it is gener
ally expected that communication will continue in the opposite direction of the direction that
communication is being shutwa. Thiscapability can also bexploited to ensure that there is
no activity on a socket prior tovdidating itsfd by shutting down communication in both direc-
tions, which may be useful for a program which opensynsankets and tracks them in some
data structureHowever, the user is still responsible fovemtually callingexs clos€) (discussed
in section 4.4) on the socket tov@idate itsfd (freeing it for reuse) and completely releasing the
resources used by the connection.

The onlyshutdown flags value currently defined foexs shutdown() is EXS BLOCK.
When this flag value is present, the value ofghandle andahandle parameters are ignored by
the EXS interface, and can be NULThe EXS BLOCK flag value should be supplied when
the user wants thexs shutdown() to operate synchronously rather than asynchronously.

5. Basicdata transfer over an EXS connection

There are tw basic, complementary operations that transfer dedaan EXS connection:
exs send) andexs recv(). Thesewo operations are usedgadless of hw the connection as
established, since both clients and seswneed to be able to both send and veasita. Bothof
these functions are asynchronous, sg thdy start the data transfer — the user mugtieitly
call exs qdequeud) to knav when the transfer finishes.

5.1. Sendingdata asynchronously
A user sends data asynchronously by using:
result = exs send(fd, sendbuffer, send length, send flags, ghandle, ahandle, mhandle);

wherefd identifies the connection, and the user has fékead buffer with send length bytes
of data prior to callingexs send). This send buffer must be completely within an area of
memory that \&s assigned the memory reglstratlery khandlein a previous call t@xs mreg-
ister(). send flagswill usually have the \alue O; other flags currently defined &xs send) are
discussed in sections 9 and 10 kelmhandle identifies an eent queue previously created by
the user to wait for completiorvents. ahandleis an arbitrary pointeralue chosen by the user
which will be returned in thexs evt_ahandle field of the completionwent notification (dis-
cussed previously in section 2.1.3).

If exs send) returns O, then the operation has started and an asynchraeotisvé! be
posted on the usarerent queue once the operation has completed. If the connection has been
gracefully shut down for writinggxs send) will return -1 and set errno ®©PIPE, and no asyn-
chronous completionvent will be posted to thevent queue. If the connection has been
abruptly terminatedexs send) will return -1 and set errno 8CONNRESET, and no asyn-
chronous completionvent will be posted to thevent queue. If the socket wasvee connected
before callingexs send), exs send) will return -1 and set errno ®NOTCONN, and no asyn-
chronous completionvent will be posted to thevent queue.

March 28, 2013 Russell and MacArthur Page 14

Overview of UNH EXS 1.3.5 for Programmers

5.2. Recering data asynchronously
A user receies data by using:
result = exs recv(fd, recv buffer, max length, recv flags, ghandle, ahandle, mhandle);

wherefd identifies the connection, and the user has reservedvabuffer capable of holding
max_length bytes of data.Thisrecv_buffer must be completely within an area of memory that
was assigned the memory reglstratlorGanhandle in a previous call toexs mregister().
recv_flagswill usually have the value O, unless other flags are desired. As of version 1.3.0, for
SOCK STREAM soclets, theMSG WAITALL flag will make the exs recv() operation \ait
until it can fill all max_length bytes; “otherwise, the operation will complete as soon yaslata

is receved. For SOCK SEQPACKET soclets, theMSG WAITALL flag has no é¢ct. Other
effects of this flag and additional flags currently definecefa recv() are discussed in sections
9 and 10 belav. ghandle identifies an eent queue pndously created by the user to wait for
completion gents. ahandle is an arbitrary pointer value chosen by the user which will be
returned in theexs evt_ahandlefield of the completionvent notification (discussed prieusly

in section 2.1.3).

If exs recv() returns O, then the operation has started and an asynchroeotisveél be
posted on the userevent queue once the operation has completed. If the connection has been
gracefully shut dan for reading (i.e., via thexs shutdown() or exs clos€) functions on the
local or remote side of the connectioa)s recv() will complete asynchronously with both an
exs_evt_errnoandexs_evt_lengthof O (this is done because a return value of O feamrecv()
would otherwise be ambiguous, since it is used to mean that an asynchreaduwsilefollow).

If the connection was terminated abruptxs recv() will return -1 and set errno teCON-
NRESET, and no asynchronous completiomest will be posted to thevent queue. If the
soclet was neer connected before callingxs recv(), exs recv() will return -1 and set errno to
ENOTCONN, and no asynchronous completiovest will be posted to thevent queue.

5.3. Waiting for asynchronous I/O completion @ents

The value returned bgxxs send) or exs recv() in result will be 0 if the operation was suc-
cessfully started, or -1 if there was an error of some sort, in which case the error code is stored in
the globalerrno and no asynchronous activity is started.

Once arexs send) or exs recv() is successfully started, it will operate asynchronously to
the user program. During this time the user must not ynveay modify the area of memory
pointed to by the Uiffer parameterbecause the data in thatffer has still not been transferred
across the connection. Eventually the user must use:

nevents = exs qdequeue(ghandle, gent_vector, count, timeout);

to wait for the operation to finish so that theffer can be safely accessedhzg Theexs qde-
queudq) call was explained in section 2.1.§handle must be the value used in thes send)
or exsrecv(), event vector must be an array big enough to hatdunt events of type
exs event_t, and timeout is the maximum amount of time the user wants to wait forvent ¢o
happen (NULL for an indefinite wait).

If the value returned imevents is positve, then each of the firstevents structures of the
event_vector array were filled in by the EXS intade with information to identify the operation

March 28, 2013 Russell and MacArthur Page 15

Overview of UNH EXS 1.3.5 for Programmers

that caused thisvent and to cowey the final results of that operation back to the.user each
of these structures, the fieldss evt_errno, exs evt_socket and exs evt_ahandlewill be filled
in by the EXS interface with the values explained previously (in section 2.1.3). In addition:

exs evt_type
will indicate which type of operation caused tiverg: EXS EVT SEND if the operation
was exs send), orEXS EVT RECYV if the operation wasxs recv().

exs evt_union
will contain a structure of typexs evt_xfer that contains the following fields:

— exs evt_buffer is the buffer address specified in thes send) or exs recv()
—exs evt “mhandleis themhandle specified in thexs send) or exs recv()
— exs evt amount lostis described belo in section 5.4
— exs_evt_length is the number of bytes successfully transferred by this operation.
When the value oéxs evt typeis EXS EVT SENDand the operation as success-
ful, the \alue ofexs evt_length will always be equal to the value of teend length
parameter in the originakexs send). When the value of exsev type is
EXS EVT RECV and the operation was successful, tladue of exs evt length
will always be less than or equal to the value of rtex_length parameter in the
original exs recv().

5.4. Matchingsends with receves

Since the amount of data sent in one packet bgxarsend) may difer from the amount
of data requested in the remote ssdejrrespondingexs recv(), the EXS interface layer must
rationalize aw difference. Br eficiengy, the way it does this isevy packet-oriented, and hence
differs somewhat from the way this is done in traditional sockets.

5.4.1. Recaier’s buffer is greater than or equal to amount of data in sendes packet

If the recever provides a liffer whose size is greater than or equal to the size of the data in
the matching send paek there is no problem — the EXS interface\aed all the sent data into
the beginning of the recar’s kuffer, any remaining space at the end of the rees kuffer is
left undefined, the value returneders evt_length is the exact number of bytes detied into
the buffer andexs evt_amount lostis aways zero.

5.4.2. Recaier’ s buffer is less than amount of data in sendes’ packet

If the recever provides a biffer whose size is less than the size of the data in the matching
send packet, the resolution depends on the type oétotkise.For al socket types, the EXS
interface completely fills the recer’s kuffer with the first part of the sent data, and returns in
exs evt_length the exact number of bytes dedied into the buffer.

If the socket type iISOCK STREAM, the EXS interce ignores packet boundaries, so it
saves the remainder of the data that is in the matching send packet and uses it to match with sub-
sequentexs recv() calls. No data is & lost, so the value returned to the reeeiin
exs ev_amount lostis always zero.

If the soclet type is SOCK SEQPACKET, the EXS interice maintains packet bound-
aries, so it discards the remainder of the data in the matching seret, @auk returns to the

March 28, 2013 Russell and MacArthur Page 16

Overview of UNH EXS 1.3.5 for Programmers

recever in exs evt_amount lost the number of bytes discarded.

6. Basicflow control within the EXS interface

Because data sent lexs send) operations on one end of a connection must beetetl
into buffers specified bgxs recv() operations on the other end, the EXS interfaces on both ends
must coordinate the flo of this data so that neither side runs out wffdrs. Thisis done in a
manner that is largely transparent to the user.

Since a user must allocate and fill a memarffen before specifying it as tteend buffer
parameter texs send), the EXS interface does notveato provide ary additional storage for
data on the sending sidelowever, the interbice cannot actually send data until it knows for sure
that the user on the receiving side hasvigied a correspondingufer into which the sendes’
data can be dekred without ag additional copying or bffering (because EXS uses direct
memory to memory transfers). The EXS interface uses a credit mechanism to accomplish this.

6.1. Sendand Receve Credits

The interface on each end of an established connection internally maintaiagnami-
cally varying local creditalues. Atary time “send credits” is the maximum number of pat&
this interface is allved to start sending to the other side usirg send); and “recv credits” is
the maximum number of packets this interface is allowed to start receiving from the other side
usingexs recv(). At ary time the value ofend credits on one side must equal thalwe of
recv_credits on the other side, and vicerga. Asexplained in the next section (6.2), when an
EXS connection is first established, the EXS interfaces on both sigetsate these numbers so
that the are initialized to the same values.

Each time a user issues ams recv(), the receiving EXS interface reduces its local
recv_credits by one. If the balance would becomeg#ive, the receiving interface se¢srno to
EBUSY and returns -1 (the caller is expected to then wait fariquie exs recv() operations to
complete by callingexs qdequeud)). If the caller wishes to ait until a credit is zailable, the
EXS CREDIT WAIT flag can be providedubthen it is up to the caller to ensure that this will
not cause a deadlockf the balance would not becomegaive, the receiving interface sends an
“advertisement” to the sending side and then returns a value of O to the calleexd tieev() to
indicate that theexs recv() has started successfulljrhis adertisement contains no datajtb
rather information (or “metadata”) describing the memory on theverddiat is nev ready to
receve data from the sender (i.e., its length, location, and memory registrayhn k

The sending interface must keep track locally ofsityed credits it has negotiated with the
recever. Each time a sending user issuesean send), the sending EXS intea€e reduces its
local send credits by one. If the balance would becomegéaeve, the sending inteslce sets
errno to EBUSY and returns -1 (the caller is expected to thait for preziousexs send) oper
ations to complete by callinexs qdequeud)). If the caller wishes to wait until a credit i
able, theEXS CREDIT WAIT flag can be providedubthen it is up to the caller to ensure that
this will not cause a deadlockf the balance would not becomegaive, the sending intesaice
adds the information (i.e., “metadata”) from tleiss send) to an internal queue and returns a
value of 0 to the caller of thexs send) to indicate that thexs send) has been started success-
fully.

March 28, 2013 Russell and MacArthur Page 17

Overview of UNH EXS 1.3.5 for Programmers

6.2. Negotiationsat connection establishment

At the time an EXS connection is first established, the client side automatically sends the
sener a short “setup request” message that contains the €l version number (currently
1), and the initial values of the cliesi8end credits, and recv credits. Upon receiving this
“setup request” message, the server side of the connection comparatiéisecontained in this
message with itsven correspondingaiues. Theminimum of each corresponding value is used
to reset the seer’s avn value and to build a “setup response” message that it sends back to the
client. Oncethe client recefes this “setup response” message, it uses those values to sehits o
corresponding alues. Consequeniljrom that point in time on, both ends of thevheestab-
lished connection k& the same value for each of the corresponding parameters, andwhe flo
control mechanism will ne function properly These negotiations are transparent to the user.

Fdlowing these negotiations, the EXS interé on each side of a newly established connec-
tion sets up one internal reeeikuffer for each locasend credit that it has negotiated with the
corresponding receiving side. Theséfers are used to store EXS advertisements gsahiee
from the remote end. When the receiving interface sends artisdment to the sendehe
adwertisement is delered directly into one of these intade uffers and the sending interface is
notified of this arnal by the OFED stack. Since the receiving interface showerrsend more
adwertisements than it has locadcv credits, and since the sending interface has posted one
receve kuffer for each of its locadend credits, no alvertisements shouldser be lost for lack of
a huffer when thg arrive an the sending side.

6.3. Matchingadvertisements and receies

Each EXS interface keeps track of advertisements it haved@eid exs send) operations
that its sending user has starteheneer the user starts aexs send() operation, the EXS
interface looks for an already reced advertisement to match it withSimilarly, wheneer an
adwertisement is recegd from the remote recasr, the receiving interface looks for an already
startedexs send()to match it with. Matching occurs in the manner already described in section
5.4. Thesending interface then issues an RDNMYRITE WITH IMM operation to its local
CA (via the OFED stack) in order to actually transfer data into thesuss#fer on the receing
side (as indicated in the advertisement) directly from the sukeffer on the sending side (as
indicated in theexs send)) without ary extra copying or CPU intervention on either sidéhis
RDMA WRITE WITH_IMM operation is transparent to the user on both sides of a connection.

When the receiving inteate is notified by its receiving CA (via the OFED stack) that a
remotely issued RDMAWRITE WITH IMM operation has completed, it will do éathings.

(1) Ituses the “immediate” value supplied in the local RDMMRITE WITH IMM com-
pletion to locate the corresponding advertisement prewously issued by thaérrendi
posts the receer's completion &ent to tell the receing user that itexs recv() has
completed, and to ceay te results to the receiving user via &xs event_t structure.

(2) Itincrements it local recv credits, and a n& exs recv() operation may commence
using this newly @ailable credit.

When the sending intexte is notified by its sending CA (via the OFED stack) that the
locally issued RDMAWRITE WITH IMM operation has completed, it also does tivngs.

March 28, 2013 Russell and MacArthur Page 18

Overview of UNH EXS 1.3.5 for Programmers

(1) It posts the sender'completion @ent to tell the sending user that #xs send) has
completed and to cery the results to the sending user via¢e event t structure.

(2) Itincrements its locadend credits for this connection, and aweexs send) operation
may commence using this newlyadable credit.

Clearly this credit mechanism requires each EXS interface to allocate some hidden, internal
buffers for exchanging adwtisements. Hwever, these hffers and advertisements are small,
since thg are used only to send and raeeia Imited amount of control information, not an
unlimited amount of user data. Indeed, thestels are small enough to be embedded in-inter
nal control blocks that contain additional information needed locally by the EXS interface.

6.4. Numberof internal buffers allocated

Using the mechanism discussed in the next section, a user can set the local values to use
when negotiating the initiasdend credits andrecv_credits values. Thereforeit is important for
the user to understandwdhe EXS interice uses these values to allocate its interafiéns.
The receiving intedce needs tavcontrol blocks for each locaécv credit it has initially ngo-
tiated with the sending interface: one for sending an advertisement, and one Yangebei cor
responding remotely issued RDMWRITE WITH IMM completion. The sending intesice
also needs tw control blocks for each localend credit that it has negotiated with the reesi
one for keeping track of aiting exs send) operations that va been started but for which no
adwertisement has been rege yet, and one for recang an adertisement. Haever, one etra
control block is allocated for each locs#nd credit to ensure that rece kuffers are alays
posted rgardless of the ingtable time delays between sending or receiving a message and being
notified of the completion of that operation (at which time a control block can be reused).

7. Tuning the UNH EXS interface

One of the dfierences between the UNH EXS interface and the ES-API is an additional
mechanism by which a user can “tune” some aspects of the EXSaetenf order to increase
performance for a particular application. The user does this through the use of:

result = exs fentl(fd, command, argument);

The value of thed parameter identifies the socket to be tuned, tdaevof thecommand
parameter indicates what the user wants to do to the socket, and the valuarmgfuthent
parameter depends on tbemmand This is a synchronous operation, so there isventeasso-
ciated with its completion. The value returnedrasult will also depend on the command,
although for all commands it will be -1 if thereasvan error of some sort, in which case the error
code is stored in the globairno.

7.1. Credit negotiation

As previously discussed in section 6, the credit value used to control wheffitata in
EXS is negotiated at the time amneonnection is established. Thaluwe used in this getiation
can be set by the user through the use oéxsefentl () function prior to theexs connec() and
exs accepl) calls on thefd parameter When the value of theommand parameter to the
exs fentl() function iSEXS F SETFLOWCONTROLCREDITS , the EXS interface will use
the value of thargument parameter as the locahlue to be used in the negotiation of the local

March 28, 2013 Russell and MacArthur Page 19

Overview of UNH EXS 1.3.5 for Programmers

send credits andrecv _credits. The default value is 32. In previous versions, 35 wlso the
maximum acceptable value, but this maximum has beenveehas of \ersion 1.3.0.Negotia-
tion occurs as part of connection establishment, and the result is the minaluavswpplied by
either side. This command parameter value cannot be used ineas fcntl() call on an estab-
lished connection. The result returned by a successgfufcntl () call is the old glue of the cor
responding local credit value.

When the value of theommand parameter to thexs fcntl() function iIsEXS F GET-
FLOWCONTROLCREDITS , the result returned by trexs fcntl () depends on whether or not
the connection has been establishdexs fentl() is called with thicommand parameter &lue
prior to a successful call texs connec{) or exs accep() on thefd parameterthe \alue
returned will be the local value used in a future negotiation on that connetftibns called
after a connection as successfully established, the value returned will be the local value that
resulted from the mgotiation at the time the connection was established. Note that this return
value is not the dynamically varying credilue used to control the ¥loon the connection, ut
the negotiated limit on that credit value.

7.2. Smallunregistered packets

Because of thewarhead iwvolved in dynamically registering and ugrgtering memory (see
section 8), it may be faster to send and rexenall amounts of data by having the EXS library
simply coyy the data into/out of pregestered library bffers. Thusjn SOCK SEQPACKET
mode, UNH EXS supports copying unregistered small gtack Thedefinition of a “small”
paclet can be controlled through the use of BXS F SETSPMAXSIZE value of thecom-
mand parameter to thexs fcntl() function, in which case the value of thgument parameter
should be the value to be used in the negotiation of the definition of “small”. Tadtdeflue is
0. Ngyotiation occurs as part of connection establishment, and the result is the mirafoem v
supplied by either sideThis command parameter value cannot be used ireas fcntl () call on
an established connection. The result returned by a successfidntl () call is the old value of
the corresponding local small packet max size.

Setting a positie value forEXS F SETSPMAXSIZE effects the operation afxs send)
andexs recv() called with a value oEXS MHANDLE UNREGISTERED for the required
mhandle parameter If the value of the requireléngth parameter is less than or equal to the
small packet max size, then rather than dynamically registering and unregistering the data sup-
plied in the function call, the data is copied into a preregistered libtefgr lmn exs send) or
copied out of a preregistered library buffereots recv().

When the value of theommand parameter to thexs fcntl () function isEXS F GETSP-
MAXSIZE , the result returned by thexs fcntl () depends on whether or not the connection has
been establishedf exs fentl() is called with thiscommand parameter value prior to a success-
ful call to exs connec() or exs accep() on thefd parameterthe \alue returned will be the local
vaue used in a future getiation on that connection. If it is called after a connection was suc-
cessfully established, the value returned will be the local value that resulted frongahiatios
at the time the connection was established.

In SOCK _STREAM mode, this is not supported since the stream mode doesviits o
buffering by default.

March 28, 2013 Russell and MacArthur Page 20

Overview of UNH EXS 1.3.5 for Programmers

7.3. Usingthe hardware inline feature on exs send()

Many RDMA interface cards support the optional “inline” feature, which allows the card to
enqueue a cgpof small amounts of data as part of the metadata it enqueues on the send queue at
the time it starts aaxs send) operation. The effect of this is to neathe transfer slightlyaster
(i.e., to exhibit lower latency), because the data is already on theg@edrd at the time it actu-
ally moves data onto the wire, so there is no need volire the memory bus in the transfer itself
(the memory bus wasvnlved at the time thexs send) was enqueued).

The definition of “small amounts” of data can be controlled to sot®methrough the use
of the EXS_F_SETINLINEMAXSIZE vaue of thecommand parameter to thexs_fcntl)
function, in which case the value of thaegument parameter should be the definition of “small
amounts”. Thedefault value is the largest value acceptable to the interface bhglotiation
occurs as part of connection establishment, angptaimed n&t. This command parameter
value cannot be used in &xs fcntl() call on an established connectiofhe result returned by
a successfukxs fentl() call is the old value of the corresponding local inline max size.

The user does not Y% cmplete control wer this value, because this is an optional feature
of RDMA interface cards, and the maximum size possible depends on the particular card used.
Therefore, if the user uses tAXS_F_SETINLINEMAXSIZE vaue in thecommand parame-
ter to theexs_fcntl) function, then the uservalue of theargument parameter is only a starting
point for the EXS library to rgotiate with the local interface card to set the maximum inline size
to use. If the uses’value is acceptable to the local interface card, then that isathe wsed.If
the users value is not acceptable, then the EXS library will silently find and use the lashest v
acceptable to the interface card but smaller than thesusdue.

Note that the scope of the maximum inline size is the local agerdard — it is not geti-
ated with the remote side when a connection is establisheddxsaoconned) or exs_accef,
because the interface card on the remote side could be different from the local interface card, and
might support a different maximunale. Inary case, maximum inline size is only utilized by
the EXS library on aexs_sen(), since it only effects the queueing performed locally when this
function is called — it has no effect on @xs_recy) or on data transferred on the wire.

Note also that the maximum inline size is independent of the smaktpaek size.The
maximum inline size is a harcnre option that impnes the lateng of exs_sen¢) operations,
regardless of whether or not ttrehandle parameter is gen as EXS MHANDLE UNREGIS-
TERED in the exs_sen). Thereforethe EXS library will use it by default on all calls to
exs_sen@ in which the value of theend length parameter is less than or equal to the maxi-
mum inline size.(Obviously if the user sets this maximum to O, this feature will not be used.)
The small packet max size is a sat@ option that impnees the lateng of exs_seng), but only
when themhandle parameter is gen as EXS MHANDLE UNREGISTERED. The EXS
library uses will use it only on these calls, and only if the value o$ehd length parameter is
less than or equal to the small packet max size.

When the value of thecommand parameter to theexs fentl() function is
EXS F GETINLINEMAXSIZE , the result returned by thexs fcntl() depends on whether or
not the connection has been establishiédexs fcntl() is called with thiscommand parameter
value prior to a successful call &xs connec{) or exs accep{) on thefd parameterthe \alue
returned will be the local value used in a futurgat@ation with the local interface when a

March 28, 2013 Russell and MacArthur Page 21

Overview of UNH EXS 1.3.5 for Programmers

connection is establishedf it is called after a connection was successfully establishedathe v
returned will be the local value that resulted from thgotiation at the time the connectiomasv
established.

7.4. Pinningthe EXS completion thread to a CPU

Because of the asynchronous nature of its operation, the EXS library utilizes a “completion
thread”. Oneof the fine-tuning optionsvailable to users is the ability to pin this completion
thread to a particular CPU. If the user pins his/her threads to different CPUsedhgom load
will be distrituted across a multi-core platform, which shoulkdietter performance. If thread
pinning is not performed, then the completion thread can be dynamically assigretibts v
CPUs by the kernel scheduler.

Completion thread pinning is controlled through the use of BXS F SET-
COMPTHREADCPU value of thecommand parameter to thexs fcntl() function, in which
case the value of thergument parameter should be the number (starting at 0) of the CPU to
which the completion thread for the connection indicated bydmarameter should be pinned.
The deéult value is INT_MAX, which means that the completion thread i3 [di@ned to ag
CPU. Pinnings done at the time a connection is established, and may be changed dynamically
after connection establishment. The result returned by a succegsftdntl() call is the old
CPU number If this return value is INT_MAX, it means the completion thread was net-pre
ously pinned to anCPU, and can be dynamically assigned to CPUs by the kernel scheduler.

7.5. Busypolling for completions

By default, the UNH EXS completion thread releases the CPU wéeihéas no work to
do in order to not consume CPWctes unnecessarilyHoweve, this requires kernel inteen-
tion, both to release the CPU and again when the thread needs tovakeaned, and this can
add seeral microsecondswerhead to the performance of an EXS transactimavoid this, the
user can select the “busy polling” option for a completion thread. This option means that the
completion thread will react faster to the completion of transactions, which usually produces
lower lateng. But it also means the completion thread wiNerggive up the CPU, so that it will
consume 100% of thevalable cycles on a CPU.

Busy polling in the completion thread of the connection indicated bydtie controlled
through the use of tHEXS F SETFD value of thecommandparameter to thexs fentl () func-
tion, in which case the value of tlaegument parameter should be a bit- mask containing the
EXS FD BUSYPOLL flag. Thechoice used by a completion thread is determined when that
thread is created as part of connection establishment. Bwylfethis flag is not set, which
means that busy polling is not emyal by the completion thread for &th The argument bit-
mask containing th&XS FD BUSYPOLL flag cannot be used in axs fcntl() call on an
established connectioriThe result returned by a successdus fcntl() call is the old flags bit-
mask.

When the value of theommandparameter to thexs fcntl () function iSEXS F GETFD,
the result returned by thexs fentl() is the current flags value at that timehe value of the
argument parameter is ignored.

March 28, 2013 Russell and MacArthur Page 22

Overview of UNH EXS 1.3.5 for Programmers

The proper way to set tlteXS FD BUSYPOLL flag is to:
call exs fentl () with theEXS F GETFD value for thecommand parameter,

OR the result returned by thexs fcntl() call with theEXS FD BUSYPOLL
flag,

use that result of that OR operation as #ngument parameter in a call to
exs fentl() with theEXS F SETFD value for thecommandparameter.

Doing it this way ensures that only a single flag value (in this cas&x8eFD BUSYPOLL
flag) gets changed.

7.6. Stream receve huffer

As mentioned earlier in section 4.1, version 1.3.0 introduces an intermediate tedker
for SOCK _STREAM soclets. Thisbuffer is meant to decrease latgrior long-distance com-
munications that is introduced by the advertisement mechanism. When no advertisements are
pending, the sender will write data into this intermediatiéeb instead of waiting for an adx
tisement. exs recv() will return data from this wiffer wheneer it contains data, and will send
adwertisements only if there is no data in thdfér. As of version 1.3.2, the reaatr will send
adwertisements ven if the MSG_WAITALL flag is not present. The sender will reak kest
effort to write directly to the user-supplied memory area whani gets an adertisement.
However, it is possible that the sender had already written the data to the intermadiate b
before it receied the adertisement, in which case it will ignore the atisement. Thectual
algorithm by which this occurs is much more complean this simple w@erview implies, but a
full discussion of the algorithm is outside the scope of this document.

The intermediate reoes kuffer defaults to 3 Gigabytes in size, and this is also its maximum
size due to limitations of the underlying OFED stack. There adllaatck mechanism to decrease
the size if the requested size cannot be allocdtkmvever, due to the way that memory alloca-
tion works in Linux and theatct that this intermediateufier must be pinned in virtual memeory
this fallback mechanism is unlikely toovk in practice if the \ilable physical memory is less
than the desired buffer size.

To decrease the size of the intermediate recaiffer, call exs fcntl() with thecommand
parameter set t&EXS F SETSTREAMBUFSIZE and theargument parameter set to the
desired size in bytesThis parameter must be set on the client side of the connection before call-
ing exs connec() and on the server side before callexg accept()for the first time. Note that
as of UNH EXS 1.3.5, this will change the size of the remotevedsmifer on each side inde-
pendently That is, setting the size on the server side will change the size of theeedtar on
the server side onlhand setting the size on the client side will change the size of theveecei
buffer on the client side onlyThe similarEXS F GETSTREAMBUFSIZE may be used at
ary time to determine the actual size of the intermediatewedsifer, which may be less than
the requested size due to memory constraints.

In mary cases, the intermediate reeetuffer will increase performance dramaticallymwro
eve, there may be some use cases where this euffer bis unvanted. © turn this feature &f
completely set the desired streanuffer size to 0 with th&eEXS F SETSTREAMBUFSIZE
parameter Note that currentlythis also sets th&XS FD NODELAY flag for compatibility

March 28, 2013 Russell and MacArthur Page 23

Overview of UNH EXS 1.3.5 for Programmers

with previous releases.

In the future, we plan to additionally support a send-side Nagferlfor small packts.
The size of this Wffer would then be controllable via tEeXS F SETSPMAXSIZE command
to theexs fentl () function mentioned in the previous section.

8. Registeed and unregistered memory

The EXS interfice is designed to transfer data using direct memory-to-memory transfers
with no extra coping. Thisrequires that memoryufffers involved at each end of the RDMA
transmission be “gistered” with the CA on each end prior to one side issuingxBesend)
and the other side issuing teg&s recv(). This normally requires the user to explicitlygister
and deregister the memory used in EXS transfers, on both the sending avidgesées (see
section 8.1).However, it is possible for a user to implicitly register and deregister the memory
used on either the sending or receiving side of an EXS transtath (see section 8.2).

8.1. Explicit memory registration and deregistration
A user explicitly registers memory using:
mhandle = exsmregister(address, length, flags);

whereaddresspoints to an area of memory containieggth bytes to be mgistered. Thevalue

of flags is usuallyEXS_ACCESS_ALL to grant read and write access to both the local and
remote ends of a connection. Note that prior to calixg mregister(), the memory aaddress
must already be allocated by the usgher statically or dynamically.

If the exs mregister() is successful, the value returnednimandle will be an opaque mem-
ory handle that can be used as a parameter ¢xsagend) when the senduffer is located ayr
where within this area of memomnd/or as a parameter to axs recv() when the recee kuffer
is located anywhere within this area of memafythe exs mregister() fails for ary reason, the
value returned irmhandle will be the constant EX3MHANDLE INVALID and an error code
will be stored in the globarrno.

Note that once amhandle has been successfully registered, it can be used repeatedly in
subsequent calls texs send) and/orexs recv() that hae kuffers in that memory areeOnly
when a user is completely finished using an explicitly registered area of memory for I/O does he
or she deregister it using:

result = exs mderegister(mhandle, flags);

wheremhandle must be the value returned by a previously successful cakganregister(),
and the value dlagsmust be 0 since no flags are currently supported¥smderegistex().

8.2. Implicit memory registration and deregistration:

The EXS standard provides a simple mechanism to implicitly register and deregister mem-
ory huffers used inexs send) andexs recv() operations.To do this, wherger an mhandle
parameter is required in an EXS function call, the user simply supplies the constant
EXS MHANDLE UNREGISTERED to indicate that the user has nzpkcitly registered the
buffer parameter specified in that function c&liven this value, the EXS interface will dynami-
cally register and deregister theffer as necessaryOf course this adds considerableednead

March 28, 2013 Russell and MacArthur Page 24

Overview of UNH EXS 1.3.5 for Programmers

interface to dynamically gster and deregister memory as part okeas send) or exs recv()
call, but if an area of memory is used for I/O only once or twice, rather than repettediger
may find it more covenient to let the EXS inteste perform the registration required by the CA
rather than coding out explicit callsé®s mregister() andexs mderegisten).

Note that memory registration applies only to the process callingxthmregister() func-
tion (and to threads attached to that process). If a process forks a child process, that child does
not inherit ay of the parens memory registrations.

9. Synchionous I/0

The EXS interface is designed to transfer data asynchronasséyeady described in sec-
tion 5. However, some applications W& o need for asynchronous 1/O, althoughyttsall want
to use RDMA. To accommodate this type of application, the user can simply supplyathe v
EXS BLOCK in the flags parameter taexs accep(), exs connecy), exs closg), exs send),
or exs recv(). Whenthis flag is presentjhandle and ahandle parameters required in these
EXS function calls are ignored by the EXS interface and can be NOheEXS BLOCK flag
indicates that the userants this function to both start an operation and wait for its completion.
If the result returned by this function is -1, the error code may apply either to the start phase or
the completion phase — the user has to someteiermine which. Otherwise, the result is a
vaue taken from one of the fields in the successful completient éwhich is hidden from the
user by the EXS intemte). or anexs send) or exs recv(), the result will be the number of
bytes actually transmitted=or an exs accep() it will be thefd of the nev connection. Br an
exs connecy) or exs closd) it will be 0.

For convenience when the user wishes to both block and use unregistered memory in a send
or receve geration, tvo additional functions hae been preided: exs write () andexs read().
These are described belan terms of theilexs send)) andexs recv() equvalents.

9.1. Sendingdata synchronously
A user sends registered data synchronously by using:

result = exs send(fd, write buffer, write length, EXS BLOCK, NULL, NULL,
mhandle);

or the more corenient:
result = exs blocking send(fd, write buffer, write length, send flags, mhandle);
in which the user does notJeato supply the valueEXS BLOCK in thesend flags parameter.
A user sends unregistered data synchronously by using either:

result = exs send(fd, write buffer, write length, EXS BLOCK, NULL, NULL,
EXS MHANDLE UNREGISTERED);

or the more corenient:
result = exs write(fd, write _buffer, write length);
In all these situationgd identifies the EXS connection, and the user has filet buffer

with write length bytes of data prior to the call. When using these functions, the EXSaterf
will automatically wait for completion of the data transfer before returnlhghe transfer is

March 28, 2013 Russell and MacArthur Page 25

Overview of UNH EXS 1.3.5 for Programmers

successful, the value returnedrasult will be the number of bytes actually writte@therwise,
the value returned iresult will be -1 to indicate that there was an error of some sort, in which
case the error code is stored in the gl@aio.

9.2. Recering data synchronously
A user receies regstered data synchronously by using:

result = exs recv(fd, read buffer, max length, EXS BLOCK, NULL, NULL,
mhandle);

or the more corenient:
result = exs blocking recv(fd, read buffer, max length, recv flags, mhandle);
in which the user does notJeato supply the valueEXS BLOCK in therecv flagsparameter.
A user receies wnregistered data synchronously by using either:

result = exs recv(fd, read buffer, max length, EXS BLOCK, NULL, NULL,
EXS MHANDLE UNREGISTERED);

or the more corenient:
result = exs read(fd, read buffer, max_ length);

In all these situationsfd identifies the EXS connection, and the user has reserved a
read buffer capable of holdingnax length bytes of data. When using these functions, the
EXS interface will automatically wait for completion of the data transfer before returning. If the
transfer is successful, the value returnecesult will be the number of bytes actually rea@th-
erwise, the value returned tiasult will be -1 to indicate that thereas an error of some sort, in
which case the error code is stored in the glebalo.

9.3. Establishingan EXS client connection synchronously

The EXS BLOCK constant can also be used as the value dilabgeparameter in the the
exs connecy) function so that it will operate synchronously rather than asynchronodign
this flag value is present, the value of ti@ndle andahandle parameters to this function are
ignored by the EXS interface, and can be NUIHaor corvenience and similarity to the equi
alent functions for normal sockets, the following synchronous function is also provided:

result = exs blocking_connect(fd, sever address, sever addrlen);

where the parameters are identical to those for the corresponding “normal” TCP&Pcsoek
nect() function.

9.4. Acceptingconnections on the sefer synchronously

The EXS BLOCK constant can also be used as the value dilageparameter in the the
exs accep() function so that it will operate synchronously rather than asynchronoldign
this flag value is present, the value of gtendle parameter to this function is ignored by the
EXS interface, and can be NULIEor convenience and similarity to the egalent function for
normal sockets, the following synchronous function is also provided:

result = exs blocking_accept(fd, peer address, &peer addrlen);

March 28, 2013 Russell and MacArthur Page 26

Overview of UNH EXS 1.3.5 for Programmers

exs blocking accep() blocks until a remote client connects, at which time rdsailt it
returns will be thdd for the nev connection to the remote clienNo exs event t structure is
generated for the useo he other fields in that structure are nadilable to the user.

It is important to note that the second and third parametepsstblocking accep() differ
from the corresponding parameterseixs accep() (see section 4.3.2). Instead of giving an
address vector array of structures of typexs acceptaddrand acount parameter indicating the
number of elements in the arraxs blocking accep() takes as itpeer addressparameter a
pointer to a structure of ty#ruct sockaddr into which the IPv4/IPv6 address and port number
of a nav remote client will be stored by the EXS intwé. Thepeer addrlen parameter is the
number of bytes allocated by the user to the structure pointed jedryaddress These tw
parameters t@xs blocking accep() are identical to the first tfields in an element of the
address vector parameter toexs accep(), and mak the 3 parameters te@xs block-
ing_accep() identical to the 3 parameters of the “normal” TCP/IP socket funattoap().

Note also that th&XS BLOCK flag does N@ haveto be included in thaccept flags
parameter t@xs blocking accepy).

9.5. ClosingEXS connections synchronously
An EXS connection of gntype can be closed synchronously by using either:
result = exs close(fd, EXS BLOCK, NULL, NULL);
or the more corenient:
result = exs blocking close(fd);
wherefd indicates the connection to be closed.

10. Corverting programs from using normal sockets to using EXS sockets

The aailability in EXS of both implicit memory registration and synchronous I/O means
that users who wish to ceart existing programs using “normal” sockets (see section 10.1) to
full use of EXS sockts hae a toice of hav to proceed. Thg can start by using EXS sockets in
synchronous mode and use only implicit memory registration (see section 10.2). Such usage is
almost identical with the use of “hormal” s@t& (essentially just the function names change),
but it does gve the user access to the RDMA haate. Oncethat is working, the user can
choose between ceerting first to using explicit memory géestration while continuing to use
synchronous mode (see section 10.3), orveing first to using asynchronous mode while con-
tinuing to use implicit memory registration (see section 10.4). Once that step has been finished
and is working properjythe other step can be taken teegiully asynchronous operation with
explicitly registered memory (see section 10.5).

10.1. Clientusing normal sockets

The following gves an &le of the complete ceersion just mentioned, starting with
the general outline for a client that uses “normal” st&€kand therefore cannot use RDMA hard-
ware):

March 28, 2013 Russell and MacArthur Page 27

Overview of UNH EXS 1.3.5 for Programmers

fd = socket(PFINET, SOCK STREAM, 0);
connect(fd, servenddress, serveaddrlen);

loop
write(fd, out buffer, out_bytes);
in_bytes = read(fd, irbuffer, maxbytes);
endloop;
close(fd);

10.2. Clientusing EXS sockets in synchronous mode with implicit memory registration

The first comersion step mentioned a@® gves an dmost identical program that uses syn-
chronous mode and implicit memory registration so that it can therefore use RDMAatardw
Note that this program is identical to the normal prograceet for the introduction of the one-
time call toexs init () at the start, and the name changes of the various socket functions.

exs init(EXS_VERSION);
fd = exs socket(PFINET, SOCK STREAM, 0);
exs blocking connect(fd, servernddress, serveaddrlen);
loop

exs write(fd, out buffer, out_bytes);

in_bytes =exs read(fd, in buffer, maxbytes);
endloop;
exs blocking close(fd);

10.3. Clientusing EXS sockets in synchronous mode with explicit memory registration

We row havea dhoice of which feature of EXS to apply firdtet's choose to register mem-
ory before we go to asynchronous operation (so we will continue to use only EXS functions that
are “blocking”). The general outline for this version of the client would be:

exs init(EXS VERSION);
fd = exs socket(PFINET, SOCK _STREAM, 0);
exs blocking connect(fd, servenddress, serveaddrlen);
in_mhandle = exsmregister(in_buffer, max in_bytes, flags);
out_mhandle = exsmregister(out buffer, max out bytes, flags);
loop
exs blocking send(fd, outbuffer, out bytes, Qout mhandle);
in_bytes =exs blocking recv(fd, in buffer, in_bytes, Qin_mhandle);
endloop;
exs mderegister(out mhandle);
exs mderegister(in mhandle);
exs blocking close(fd);

March 28, 2013 Russell and MacArthur Page 28

Overview of UNH EXS 1.3.5 for Programmers

10.4. Clientusing EXS sockets in asynchronous mode with implicit memory registration
Alternatively, we muld choose to utilize EXS asynchronous operations befgistegng

memory The general outline for this version of the client would be:

exs init(EXS_VERSION);
fd = exs socket(PFINET, SOCK STREAM, 0);
management ghandle = exsqcreate(1);
exs connect(fd, servenddress, serveaddrlen, ONULL, management ghandle,
NULL);
[*---- perform computation in parallel with EXS activity ----*/
exs gdequeue(managemenghandle, &managementevent, 1, NULL);
in_ghandle = exsqcreate(3);
out_ghandle = exsqcreate(3);
loop
exs send(fd, outbuffer, out bytes, Qout ghandle,
NULL, EXS MHANDLE UNREGISTERED);,
[*---- perform computation in parallel with data transfer ----*/
exs qdequeue(out ghandle, &out event, 1, NULL);
exs recv(fd, in buffer, max in_bytes, Qin_ghandle,
NULL, EXS MHANDLE UNREGISTERED);,
[*---- perform computation in parallel with data transfer ----*/
exs qdequeue(in ghandle, &in_event, 1, NULL);
in_bytes = in event.exs evt_union.exs et xfer.exs evt_length;
endloop;
exs qdelete(out ghandle);
exs qdelete(in ghandle);
exs close(fd 0, management ghandle, NULL);
[*---- perform computation in parallel with EXS activity ----*/
exs gdequeue(managemenghandle, &managementevent, 1, NULL);
exs gqdelete(managementghandle);

March 28, 2013 Russell and MacArthur

Page 29

Overview of UNH EXS 1.3.5 for Programmers

10.5. Clientusing EXS sockets in asynchronous mode with explicit memory registration

Our final step is to combine the changes made independently in the preocaspsy gv-
ing us a program that uses both EXS registered memory and EXS asynchronous 1/0O for RDMA
transfers:

exs init(EXS VERSION);

fd = exs socket(PFINET, SOCK STREAM, 0);

managemenghandle = exgjcreate(1);

exs_connect(fd, serveaddress, serveaddrlen, 0, NULL, managemeimghandle,

NULL);

[*---- perform computation in parallel with EXS activity ----*/

exs qdequeue(managemeghandle, &managemeravent, 1, NULL);

in_mhandle = exanregister(inbuffer, max in_bytes, flags);

out mhandle = exanregister(outbuffer, max out bytes, flags);

in_ghandle = exgycreate(3);

out ghandle = exgjcreate(3);

loop
exs send(fd, outbuffer, out bytes, 0, outghandle, NULL, outmhandle);
[*---- perform computation in parallel with data transfer ----*/
exs _qdequeue(oughandle, &outevent, 1, NULL);
exs recv(fd, in buffer, max in_bytes, 0, inghandle, NULL, inmhandle);
[*---- perform computation in parallel with data transfer ----*/
exs_qdequeue(inghandle, &inevent, 1, NULL);
in_bytes = inevent.exs evt_union.exsev xfer.exs evt_length;

endloop;

exs_qdelete(outghandle);

exs _qdelete(inghandle);

exs mderegister(oumhandle);

exs mderegister(inmhandle);

exs close(fd, 0, managemenmgandle, NULL);

[*---- perform computation in parallel with EXS activity ----*/

exs _qdequeue(managemeghandle, &managemeravent, 1, NULL);

exs_qdelete(managemermthandle);

This program runs, but as it stands theretismich parallel activity between the asyn-
chronous EXS actity and the user thread, which should perform parallel computation in the
places no marked in the code only by appropriate commenis.take alvantage of the poten-
tial parallelism, this program needs to be modified to perform useful computation between the
call of anexs closd) or anexs connec{) or anexs send) or anexs recv() that starts an EXS
operation and the correspondiexs qdequeud) that waits for the completion of the EXS oper
ation.

March 28, 2013 Russell and MacArthur Page 30

Overview of UNH EXS 1.3.5 for Programmers

11. Statusof UNH EXS 1.3.5

11.1. Comparisonwith the Extended Sockets API (ES-API) Issue 1.0 Specification

UNH EXS function origin UNH EXS se:ct|on
status discussed
exs accept() ES-APstandard implemented 4.3.2
exs_bind() non-standard implemented 4.3.1
exs_blocking accept() non-standard implemented 9.4
exs _blocking close() non-standard implemented 9.5
exs blocking connect() non-standard implemented 9.3
exs_blocking recv() non-standard implemented 9.1
exs _blocking send() non-standard implemented 9.1
exs _cancel() ES-APstandard noimplemented
exs close() non-standard implemented 4.4
exs_connect() ES-APstandard implemented 4.2
exs _init() ES-APIstandard implemented 3.1
exs fentl() non-standard implemented 7
exs _listen() non-standard implemented 4.3.1
exs mdergister() ES-APktandard implemented 8.1
exs mmodify() ES-APIstandard noimplemented
exs mregister() ES-APktandard implemented 8.1
exs_poll() ES-APIstandard noimplemented
exs_qcreate() ES-APstandard implemented 2.1.1
exs qdelete() ES-APstandard implemented 2.1.2
exs qdequeue() ES-ARtandard implemented 2.1.3
exs_gmodifiy() ES-APIstandard noimplemented
exs _gstatus() ES-APstandard noimplemented
exs read() non-standard implemented 9.2
exs recv() ES-APIstandard implemented 5.2
exs recvmsg() ES-APstandard noimplemented
exs send() ES-APstandard implemented 51
exs sendfile() ES-APstandard noimplemented
exs sendmsg() ES-ARdtandard noimplemented
exs shutdavn() non-standard implemented 4.5
exs soclet() non-standard implemented 4.1
exs write() non-standard implemented 9.1

March 28, 2013

Russell and MacArthur

Page 31

Overview of UNH EXS 1.3.5 for Programmers

11.2. Modificationsto the ES-API standard in the UNH EXS implementation

11.2.1. exs.lheader file

The definitions of all symbols, structures, and function prototypes introduced by UNH EXS
are found in the header file “exs.h”, not “sys/exs.h” as stated in the ES-API stamtardfore,
each “.c” file using UNH EXS should Y& the following line after all other “include” diregts
at the beginning of the compilation unit:
#include <exs.h>

11.2.2. exsaccept()

The EXS BLOCK flag has been added in UNH-EXS to indicate that the user wants this
function to both start an operation and wait for its completion. When this flag is present, the
value of theghandle parameter required in thexs accep() function call is ignored by the EXS
interface and can be NULL.The result returned by a successkis accep{) with the
EXS BLOCK flag is thefd of the nev connection to a remote client.

11.2.3. exsclose()

The EXS BLOCK flag has been added in UNH-EXS to indicate that the user wants this
function to both start an operation anditifor its completion. When this flag is present, the v
ues of theghandle andahandle parameters that are required in & clos€) function call are
ignored by the EXS interface and can be NULL.

11.2.4. exsconnect()

A non-NULL value for thetimeout parameteradlowed in the ES-API standard, is not yet
supported in UNH-EXS.

The EXS BLOCK flag has been added in UNH-EXS to indicate that the user wants this
function to both start an operation anditor its completion. When this flag is present, thk v
ues of theghandle andahandle parameters that are required in &e connec() function call
are ignored by the EXS interface and can be NULL.

11.2.5. exsrecv()

The ES-API standard MS®EEK and MSGOOB flag values are not supported in UNH-
EXS.

TheEXS DONTWAIT flag is ignored as of UNH-EXS 1.3.1.

The EXS CREDIT WAIT flag has been added in UNH-EXS 1.3.2 to indicate that the
user wants this function to wait until a creditvsikable, but otherwise run asynchronously.

The EXS BLOCK flag has been added in UNH-EXS to indicate that the uaatsathis
function to both start an operation and wait for its completiimen this flag is present, thalv
ues of theghandle andahandle parameters that are required in e recv() function call are
ignored by the EXS interface and can be NULL.

The EXS UNSIGNALED flag has been added in UNH-EXS to indicate that the user does
not want the completion of an asynchronens recv() to generate arvent. Itis ignored when
the EXS BLOCK flag is present.When EXS UNSIGNALED is present, the value of the

March 28, 2013 Russell and MacArthur Page 32

Overview of UNH EXS 1.3.5 for Programmers

ghandle parameter that is required in thes recv() function call may be NULL, in which case
no event is generated upon the completion of ¢txe recv(). However, if the value of thghan-

dle parameter is not NULL, anvent will be generated in thevent queue ONY if t he operation
did NOT complete successfully — navent is generated if the operation completed successfully

11.2.6. exssend()
The ES-API standard MSEOR and MSGOOB flags are not supported in UNH-EXS.
TheEXS DONTWAIT flag is ignored as of UNH-EXS 1.3.1.

The EXS CREDIT WAIT flag has been added in UNH-EXS 1.3.2 to indicate that the
user wants this function to wait until a creditvsilable, but otherwise run asynchronously.

The EXS BLOCK flag has been added in UNH-EXS to indicate that the user wants this
function to both start an operation anditfor its completion. When this flag is present, the v
ues of theghandle andahandle parameters that are required in the send) function call are
ignored by the EXS interface and can be NULL.

The EXS UNSIGNALED flag has been added in UNH-EXS to indicate that the user does
not want the completion of an asynchronewxs send) to generate arvent. Itis ignored when
the EXS BLOCK flag is present.When EXS UNSIGNALED is present, the value of the
ghandle parameter that is required in tees send) function call may be NULL, in which case
no event is generated upon the completion of étxe send). However, if the value of thghan-
dle parameter is not NULL, arvent will be generated in thezent queue ONY if the operation
did NOT complete successfully — nwent is generated if the operation completed successfully

11.3. Known deficiencies

11.3.1. thiead cancellation

At the present time, the UNH EXS library functions areTN@ncellation safe, because
there are NO cancellation cleanup handlers implemented yoofathem. Usersare therefore
advised NO to call pthread_cancel() for grof their threads when tlgemight be &ecuting in
code using the UNH EXS library.

March 28, 2013 Russell and MacArthur Page 33

