
AN ITU-T G.994.1 PROTOCOL ANALYSIS TOOL FOR ADSL

Matthew J. Langlois†, Michael J. Carter*, Scott A. Valcourt†, William Lenhearth†*
† InterOperability Laboratory, 121 Technology Drive, Suite 2, University of New Hampshire, Durham, NH 03824, USA.

Email: mjl@iol.unh.edu, sav@unh.edu, whl@iol.unh.edu
* Department of Electrical and Computer Engineering, University of New Hampshire, Durham, NH 03824, USA.

Email: mike.carter@unh.edu, whl@iol.unh.edu

ABSTRACT

One of the most commonly deployed DSL variants is
ADSL. Despite this fact, deployment of new robust and
reliable ADSL services is increasingly difficult due, in
part, to the physical limitations of the copper telephone
system infrastructure, and also in part to the lack of useful
ADSL network debugging tools. ADSL service providers
and technicians currently lack a device capable of
decoding physical layer signaling and displaying actual
physical layer parameters and statistics associated with a
live ADSL connection, independent of the end stations.
Similar devices used in other network technologies are
often referred to as protocol analyzers. The intent of this
paper is to illustrate how Matlab [1], in conjunction with a
DSP or a PC, can be used to create an effective ADSL
handshaking protocol analyzer based on ITU-T G.994.1
(G.hs) [2]. G.hs conformance is critical in establishing a
successful ITU-T G.992.1 (G.dmt) [3] based ADSL
connection.

KEY WORDS

DSL, Broadband, Protocol Analysis

1. INTRODUCTION

The demand for high-speed data networks in the
“last mile” has driven the need for robust, interoperable,
and easy to use multi-vendor Digital Subscriber Line
(DSL) access solutions. DSL technology is attractive
because it requires little to no upgrading of the existing
copper infrastructure that connects nearly all populated
locations in the world. There are many variations of DSL,
each aimed at particular markets, all designed to
accomplish the same basic goals. ADSL, or Asymmetric
DSL, is aimed at the residential consumer market. ADSL
provides higher data rates in the downstream direction,
from the central office to the end user, than in the
upstream direction, from the end user to the central office.
Within the Internet connectivity-based residential
environment, small requests by the end user often result in
large transfers of data in the downstream direction.

ADSL is a direct result of the asymmetric nature of the
Internet and the needs of the end user, and was originally
designed for video-on-demand applications.

ADSL is point-to-point technology. Prior to an

active connection between the central office (CO) ATU-C
(ADSL transceiver unit – central) and customer premise
equipment (CPE) ATU-R (ADSL transceiver unit –
remote), the two devices must determine the
characteristics of the loop that connects them (the local
loop). This process is known as initialization and allows
ADSL systems to adapt the conditions of the local loop.
Initialization consists of four parts: handshaking,
transceiver training, channel analysis, and exchange.
ITU-T G.992.1 (G.dmt) defines discrete multi-tone
(DMT) based ADSL, including all aspects of initialization
except for handshaking. Handshaking is formally defined
in its own specification, ITU-T G.994.1 (G.hs). G.hs
marks the beginning of initialization, and defines how two
ADSL devices acknowledge each other, exchange
capabilities, and determine values for physical layer
parameters.

2. ARCHITECTURE

In terms of ADSL, a physical layer protocol

analyzer should have two major components: a non-
intrusive line tap, which allows the protocol analyzer to
be transparent to the medium and any other devices using
that medium, and the hardware and software required to
demodulate/decode the physical layer signaling. Figure 1
shows a block diagram of one possible configuration for a
DSL protocol analyzer.

D S L A M A T U -R

N o n -In tru s iv e
L in e T a p

P h y . L a y e r
D e m o d /

D e c o d e H W

P ro to c o l
A n a ly z e r

Figure 1. Protocol analyzer block diagram.

Such an analyzer can be used as a stand-alone

interoperability debugging tool, in conjunction with an
ADSL emulator as a conformance verification tool, or
simply as a line-monitoring tool. It should be noted that
this tool is not limited to G.dmt based ADSL, since G.hs
is used in many different ITU DSL physical layer
specifications. As a result, G.hs sessions, regardless of
technology, can be debugged and verified using such an
implementation.

As a basic interoperability debugging tool, this

G.hs analyzer can be used to effectively identify and
report any problems that may arise during an incomplete
or unsuccessful G.hs session between two devices. In
addition, all G.hs signals, timing constraints, and state
transitions can be analyzed and verified. By default, this
functionality identifies interoperability problem areas. As
a conformance tool, this analyzer can be used with an
ADSL or SHDSL [4] emulator, or similar device capable
of generating G.hs signals, to completely stress and test
the G.hs functionality of another ADSL or SHDSL device
(this conformance type functionality can be extended to
cover all of initialization as well). As a conformance tool,
this analyzer provides insight into problem areas before
they are actually discovered in the field.

Regardless of implementation, there are two

fundamental hurdles that must be cleared – an ADSL
physical layer protocol analyzer must have some means
by which it: 1) Receives and/or captures waveform data,
and 2) Demodulates and translates the received data.
Receiving data is related to the signal extraction
architecture that is utilized, of which there are two basic
types: in-line and tapped. An in-line architecture is one
in which the ADSL signals of interest physically pass
through the analyzer. In this type of setup, the analyzer
becomes part of the circuit and essentially splits a single
loop into two distinct loops. In contrast, a tapped
architecture is one in which the ADSL signals of interest
do not pass through the analyzer but are instead received
and/or captured using a non-intrusive tap or probe. The
latter is very similar to the traditional method of voltage
measurement using a scope and voltage probe. Figure 2
shows the two types of tapping architectures.

ATU-R ATU-C

ADSL PHY
Analyzer

Tapped architecture.

ATU-R ATU-CADSL PHY
Analyzer

In-line architecture.
Figure 2. Architecture types.

The goal of either architecture is to essentially

pass all ADSL signals without altering or changing the
characteristics of the line and/or the actual ADSL signals
themselves, while providing a connection point or
interface for demodulation and translation functions. This
requirement is easier to implement with a tapped
architecture because, as mentioned previously, the ADSL
signals of interest do not physically pass through the
device. A properly designed tapped architecture also
inherently has little to no effect on the characteristics of
the line and affords the use of proven existing equipment
designed for these purposes, whereas an implementation
based on an in-line architecture would have to be
designed, constructed, and tested from the ground up.

3. IMPLEMENTATION

One way to implement a tapped architecture is

through the use of an active differential probe and a
digital storage oscilloscope (DSO). This combination
provides a stable means by which an ADSL line can be
tapped and the signals of interest stored for post-
processing and analysis. Another option is to replace the
DSO with dedicated hardware that demodulates and
decodes the data on the line in real-time. The tradeoff
between the two approaches is complexity versus speed.
In the prototype stage however, analysis of the physical
layer signals is most easily accomplished in software,
using a programming environment like Matlab [3]. A
software-based approach provides more flexibility and
debugging capabilities than the hardware-based approach.
The logical “next step” for most proven software-based
designs is to develop a hardware implementation. For
these reasons the implementation outlined in this chapter
is based on a tapped architecture using an active
differential probe, DSO, and software-based post-
processing analysis. In this case, the analysis software,
based on a three-part physical layer analysis architecture
shown and implemented in Matlab, has a fairly quick
execution time, and is very adaptable in the sense that it
provides a solid basis to which extended functionality and
capability can be added at a later point.

A practical physical layer analysis architecture

has three basic parts: demodulation, translation, and
analysis. Demodulation is required to determine the
transmitted binary data. Translation is required to parse

and convert the binary output of the demodulation block
into G.hs signals and messages. Once the signals and
messages have been identified, state labels can be
assigned. As part of the translation process, timing
information must also be maintained. Analysis is
required to extract useful information from the translated
state labels and to verify device conformance with the
guidelines specified in G.hs. Useful information comes in
the form of physical layer device parameters, capabilities,
and supportable modes of operation that are transmitted
during the message transaction portion of G.hs. Device
conformance requires tracing through each state diagram
and verifying state transitions and timing constraints.
Figure 3 shows a basic physical layer protocol analyzer
architecture.

Demodulation Translation Analysis

Figure 3. Physical layer analyzer architecture.

3.1. Setup and capture

The A43 carrier set will be the focus of this

discussion because it is the most common. However, the
same methodology can be applied to all carrier sets.
Using this test setup, a LeCroy WavePRO 950 1GHz
DSO, with 32 Mpoint capture memory, is used to capture
and store a complete G.hs session. An active differential
probe, such as the LeCroy AP 034 or the HP/Agilent
1141A, is required to interface the DSO to the physical
copper wires connecting the HSTU-x’s and carrying the
G.hs session. Using a program distributed by LeCroy
called ScopeExplorer, data can be transferred from the
DSO across a LAN to a PC (with Matlab and
ScopeExplorer installed). The PC actually performs the
G.hs demodulation using a Matlab script developed for
this project. Figure 4 shows the test setup required for
G.hs physical layer analysis using the implementation
outlined in this paper.

H S T U -C H S T U -R

LeC roy W aveP ro
950 D S O

P C w ith M a tlab

LA N

A ctive D iffe ren tia l
P robe

Figure 4. Physical layer protocol analyzer test setup.

Based on the highest carrier frequency of the

A43 carrier set, 64 * 4312.5Hz = 276 kHz, the sampling

rate of the DSO must be set to at least 552 kHz (1
Msample) per second (or higher, although 1 Msample per
second, which is comfortably above the Nyquist rate, is
used throughout this discussion). A complete G.hs
session is approximately 2 to 6 seconds in duration. At 1
Msample per second, the DSO should be configured to
capture at least 10 million points, which is 10 seconds
worth of data. At a resolution of 8 bits, the captured
waveform results in a file size of about 10 Mbytes. The
DSO can be configured to trigger on a certain voltage
level, indicating that a G.hs session is taking place, or the
DSO can be triggered manually just before the G.hs
session takes place. Along with a G.hs session, at least 4
seconds of other data will be captured and stored in the
DSO. This remaining data is usually other parts of the
initialization sequence and can, for the purposes of G.hs
analysis, be ignored. However, it is important to realize
which part of the captured data is actually the G.hs
session and which part is not.

The original Matlab scripts used to transfer,

display, and demodulate the captured G.hs sequences
were written using Matlab 5.3.1 and Simulink 3, with the
Signal Processing and Communication Toolboxes, as well
as the DSP and Communication Blocksets for Simulink.
The current software version, v3.1 as seen in Figure 5-3,
has been updated for use with Matlab 6.1 and Simulink 4,
and includes a custom graphical user interface (GUI) for
control of the demodulation and presentation of the
recovered data. The majority of the G.hs demodulation is
done in Simulink, and due to the high sampling rates used
and the corresponding large waveform files, CPU speed
plays a large role in the overall execution time (execution
time refers to the amount of time required for this G.hs
analysis tool to produce an output).

3.2. Demodulation

The first step in the demodulation process is to

decouple the individual carrier frequencies so that they
can be demodulated independently. Six independent
bandpass filters, one for each carrier frequency in the A43
carrier set, have been designed for this purpose in
Simulink. Each of these six BPF’s is a fourth order
Butterworth IIR filter with a 10kHz bandwidth. This
particular filter was chosen for its stability and flatness
over the pass band. The 10kHz bandwidth was chosen to
satisfy the requirement stated in Section 6.3.1 of G.hs.
Section 6.3.1 states that: “For the 4.3125 kHz signalling
family, the transmit filter shall have a bandwidth such that
all of the –3 dB points of the filter shall have frequencies
which differ at least 4.3125 kHz from any G.994.1 carrier
frequency used.” Simulink’s “Digital IIR Filter Design”
block, available with the DSP Blockset, was used to
generate each of the six individual BPF’s within the
decoupling filter bank. Frequency normalization is
accomplished by dividing the frequency of interest by the
effective Nyquist frequency, which is half the sampling
rate (1 Msample/second), or 500 kHz.

The next step in the G.hs demodulation process
is to individually demodulate the separate modulated
carrier frequencies. Recall that the modulation scheme
used throughout G.hs is DBPSK, therefore six separate
DBPSK demodulator functions will be required. The
decoupled output of each of the individual BPF’s will be
fed into individual DBPSK demodulator functions. There
are essentially six separate demodulation systems running
in parallel. Simulink has a built-in DBPSK demodulator
block included as part of the Communications Blockset,
termed “M-DPSK Demodulator Passband.” This block
will be used as the primary demodulation engine.
Relevant arguments of the “M-DPSK Demodulator
Passband” block include: M-ary number (2 in this case),
carrier frequency, symbol period, sample time, and
baseband samples per symbol. These arguments are
defined by the carrier frequency and signaling family of
interest. For example, the lowest carrier frequency within
the A43 carrier set is 9 * 4312.5Hz = 38812.5Hz. The
symbol rate for the A43 carrier set (which is part of the
4.3125kHz signaling family) is 4312.5 / 8 = 539.0625
symbols per second. The sample time is the sample rate
of the DSO, which in most cases is 1 Msample/second.
Thus, for each of the six DBPSK demodulator functions
the only arguments that will differ are the carrier
frequency and the “Baseband samples per symbol.”

The “Baseband samples per symbol” argument

refers to the frequency downconversion factor used by the
“M-DPSK Demodulator Passband” block. The “M-
DPSK Demodulator Passband” block simply performs
downconversion on the incoming signal and passes it to
the Simulink “M-DPSK Demodulator Baseband” block.
Downconversion is also known as bandpass sampling,
and is similar to converting from an RF signal to an IF
signal, albeit at zero IF, using a mixer in analog
communications systems. Downconversion throws
samples away, effectively “re-sampling” the signal at a
lower sampling rate. For this particular case, the
advantage to downsampling (which is not required) is that
the effective reduced sampling rate and decreased number
of samples dramatically improves the execution time.

Simulink’s “M-DPSK Demodulator Passband”

block consists of two basic parts: frequency down-
conversion, and the “M-DPSK Demodulator Baseband”
block, which actually performs the bulk of the
demodulation. Version 4 of Simulink does not allow
access to the sub-blocks of the “M-DPSK Demodulator
Baseband” block using the “look under mask” command.
However, Version 3 of Simulink does allow access to the
“DPSK Passband Demodulator” and related blocks.
Assuming that the blocks in Version 4 of Simulink are
based on the blocks in Version 3, Matlab/Simulink
utilizes the correlation method of DPSK detection.

The correlation method of detection essentially

compares the received modulated signal (and noise) to all
of the possible noiseless outcomes and chooses the closest

match. This is performed as such: the received signal is
multiplied with an array of sinusoids, each differing in
phase according to the possible phase outcomes (i.e. for
M = 4, there would be four sinusoids, each differing in
phase by 90°), at the carrier frequency of interest. Each
resulting product is fed into an integrator that resets to
zero at the beginning of every symbol period. The output
of the integrator, which is the correlation of the received
noisy signal and all of the possible modulated outcomes,
is then fed into a mapper, which maps correlation levels
to binary outputs. Since a DBPSK modulator has only
two possible outcomes, the DPSK demodulator has only
one correlation function – if the correlation of the two
input signals is large enough a binary 0 or 1 is the
decision, and if the correlation is not large enough, the
opposite binary digit is the decision. Recall that exact
phase synchronization with the carrier frequency is not
required with DPSK receivers/demodulators because the
data is encoded as relative phase differences from one
symbol to the next. Therefore, the final stage in the
demodulation process is a differential decoder that
extracts the message bits from the demodulated
differentially encoded binary sequence.

Each of the six individual DBPSK demodulators

produces a binary data stream. Recall that all carrier
frequencies within a particular upstream or downstream
carrier set defined in G.hs (i.e. all upstream and all
downstream carrier frequencies) are modulated with the
same data. With three carrier frequencies, a median filter
can be used to determine the ‘majority’ result of the
individual binary output streams because, for an odd
number of inputs, Simulink’s “Median” block sorts all of
the inputs by value and outputs the middle row. This
function, as implemented by Simulink, is known as
majority logic decoding. Thus, median filtering in
Simulink produces a single bit stream that is capable of
eliminating single bit errors. Figure 5a shows the
Simulink model required to demodulate one of the six
carrier frequencies defined in the A43 carier set. The
complete Simulink model required to demodulate all
carrier frequencies within the A43 carrier set uses six
identical demodulation blocks each with a different
bandpass filters tuned to the frequency of that particular
carrier. The output of the first three demodulation blocks
are fed into a median filter, shown in Figure 5b, which
produces the upstream direction majority output.
Likewise, the output of the last three demodulation blocks
are fed into a median filter, similar to that shown in
Figure 5b, which produces the downstream direction
majority output.

c1

Signal
To Workspace

M-DPSK

M-DPSK
Demodulator

Passband

butter

Digital IIR
Filter Design1

1

composite
G.hs input

signal

Figure 5a. Simulink G.hs demodulation model for a

singlae carrier frequency.

Figure 5b. Simulink G.hs demodulation model for the

upstream median filter operation.

3.3. Translation

Once started, the six DBPSK demodulator

functions run continuously for a fixed length of time
determined by the user, i.e. the demodulators do not stop
when DBPSK data is not present. This tool is used to
demodulate an entire G.hs session from start to finish.
Thus, different binary patterns can be expected in the
output during different states of G.hs. With this in mind,
each of the five signals defined in G.hs (TONES-REQ,
SILENT, TONES, FLAGS, and GALFS) have a distinct
DBPSK demodulated binary output pattern.

TONES-REQ consists of transmitting on all

carrier frequencies with phase reversals (180° phase
shifts) every 16ms. With a symbol period of 8/4312.5 ≅
1.855ms, eight or nine symbols (because 16 / 1.855 ~
8.62) will be demodulated between phase reversals.
According to the differential encoding algorithm
mentioned previously (recall that a binary 0 in the output
represents no phase difference and a binary 1 represents
180° phase difference between adjacent outputs), this
translates into a binary output sequence that looks like: [.
. . 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 . . .].

The TONES signal consists of transmitting

power on all carrier frequencies continuously without
phase modulation, thereby in a binary output sequence of
0’s. The SILENT signal is defined as zero output voltage
from the HSTU-x’s, resulting in a random binary output,
because the DBPSK demodulators are essentially
demodulating line noise. The FLAGS and GALFS
signals are defined as continuously modulated HDLC
FLAG (0 1 1 1 1 1 1 0) and GALF (1 0 0 0 0 0 0 1) octets,
respectively. Also, the resultant bit patterns of all fields

and parameters contained within the message transaction
portion are formally defined in G.hs and follow the bit-
encoding algorithm defined in G.hs. Figure 6 shows how
certain binary outputs can be translated to known G.hs
states.

Figure 6. Translation table including possible known

binary outputs and associated G.hs states.

3.4. Analysis

The G.hs demodulator described above is
embedded within a larger Matlab script file that handles
data input and output and basic device control
functionality. The demodulated binary output produced
by the Matlab based G.hs demodulator is written to a text
file, a sample of which is shown in Figure 7, which can
then be parsed for all of the state transition information
and timing constraints of both devices.

Figure 7 is a sample of actual results obtained

from two devices. The output text file consists of nine
columns of data. The first three columns represent the
binary output of each of the three carrier frequencies in
the upstream portion of the A43 carrier set. The fourth
column is the median filtered output of the first three
columns. The fifth, sixth, and seventh columns are the
binary output of each of the three carrier frequencies in
the downstream portion of the A43 carriers set. The
eighth column is the median filtered output of the fifth,
sixth, and seventh columns. The last column is the time
stamp and indicates the time, as measured from the
beginning of the captured sequence, at which each of the
binary outputs in that row occurred.

Notice that the first four columns in Figure 7 are

the same, indicating that all three carrier frequencies in
the upstream direction are modulating the same data.
Using Figure 6, it can be shown that the upstream carrier
frequencies indicated in Figure 7 are modulating the
R_TONES_REQ signal, which in turn indicates that the
HSTU-R is in the R_TONES_REQ state. For
clarification purposes, a device in a particular state
continuously transmits the same signals while in that
state. For example, a device in the R_TONES_REQ state
continuously modulates and transmits the
R_TONES_REQ signal, as shown in Figure 6. Notice
that the fifth, sixth, seventh, and eigth columns are not the

G.hs State Expected Demodulated Binary Output
FLAG (1 octet)
(C or R) 0 1 1 1 1 1 1 0

GALF (1 octet)
(C or R) 1 0 0 0 0 0 0 1

TONES (C or
R) 0 0 0 0 … 0

TONES_REQ
(R only) 1 0 0 0 0 0 0 0 NOTE: 7 OR 8 zeros

may follow the 1.
SILENT (C or
R)/Unknown Random – binary output is demodulated noise.

same, which indicates that the HSTU-C is either in the C-
SILENT state or in unknown state.

This translation from binary output to known

G.hs states and corresponding signals, as shown in Figure
6, is the first step in the analysis procedure. Following
this basic translation, the three phases of G.hs can be
identified: start-up, message transactions, and clear
down. In addition, G.hs frame boundaries and all basic
and extended message transactions can be identified, and
all message fields and parameters can be translated
according to the tables in G.hs.

Complete analysis of the translated binary output

text file must be done by hand, but can be done quickly
and efficiently providing in depth information about the
state transitions of both the HSTU-R and the HSTU-C
and about the message transactions between the two
endpoints. This information can be used to verify timing
constraints, device capabilities, and conformance to the
G.hs specification. Detailed G.hs analysis identifies
problem areas before they arise in real world equipment
and real world situations, and reduces the likelihood of
interoperability issues in a multi-vendor environment.

0 0 0 0 1 1 0 1 1.017130
0 0 0 0 0 0 0 0 1.018986
0 0 0 0 1 1 1 1 1.020841
1 1 1 1 1 1 1 1 1.022696
0 0 0 0 0 0 1 0 1.024551
0 0 0 0 1 1 1 1 1.026406
0 0 0 0 1 1 0 1 1.028261
0 0 0 0 1 1 1 1 1.030116
0 0 0 0 0 1 1 1 1.031971
0 0 0 0 1 1 0 1 1.033826
0 0 0 0 0 0 0 0 1.035681
0 0 0 0 1 0 0 0 1.037536
1 1 1 1 0 0 0 0 1.039391

Figure 7. Sample of the binary output text file created by

the G.hs demodulator.

4. CONCLUSION

This G.hs analysis tool can be used to identify all
interoperability issues associated with G.hs sessions
between two devices. This functionality has been proven
in real-world situations with real-world devices and
networks in the University of New Hampshire Reasearch
Computing Center InterOperability Laboratory. In
addition, the implementation outlined in this paper is
adaptable and provides an architecture in which
provisions for G.dmt Annex B, G.dmt Annex C, SHDSL,
and VDSL compliant devices can be easily added. Work
is currently underway in the InterOperability Laboratory
to extend the capabilities of the G.hs protocol analysis

tool to cover these other technology areas, and to this
point, provisions for testing of SHDSL G.hs sessions
based on this architecture have been completed.

5. ACKNOWLEDGEMENTS

The work described here was performed in partial
fulfillment of the requirements for the Master of Science
in Electrical Engineering degree at the University of New
Hampshire, Durham, NH USA.

REFERENCES

[1]The MathWorks. All Matlab Version 5.3.1 and 6.1
and Simulink Version 3.0 and 4.0 help files associated
with the functions and blocks used in this document,
including the help files for use with the DSP and
Communications Toolboxes for Matlab and the DSP and
Communications Blocksets for use with Simulink.

[2]International Telecommunication Union
Standardization Sector (ITU-T). Series G: Transmission
Systems and Media, Digital Systems and Networks:
Digital section and digital line system – Access networks.
ITU-T Pre-Published Recommendation G.994.1,
Handshake procedures for Digital Subscriber Line (DSL)
Transceivers. February 2001.

[3]International Telecommunication Union
Standardization Sector (ITU-T). Series G: Transmission
Systems and Media, Digital Systems and Networks:
Digital section and digital line system – Access networks.
ITU-T Recommendation G.992.1, Asymmetric digital
subscriber line (ADSL) transceivers. June 1999.

[4]International Telecommunication Union
Standardization Sector (ITU-T). Series G: Transmission
Systems and Media, Digital Systems and Networks:
Digital section and digital line system – Access networks.
ITU-T Pre-Published Recommendation G.991.2, Single-
Pair High-Speed Digital Subscriber Line (SHDSL)
Transceivers. February 2001.

