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ABSTRACT 
 
One of the most commonly deployed DSL variants is 
ADSL.  Despite this fact, deployment of new robust and 
reliable ADSL services is increasingly difficult due, in 
part, to the physical limitations of the copper telephone 
system infrastructure, and also in part to the lack of useful 
ADSL network debugging tools.  ADSL service providers 
and technicians currently lack a device capable of 
decoding physical layer signaling and displaying actual 
physical layer parameters and statistics associated with a 
live ADSL connection, independent of the end stations.  
Similar devices used in other network technologies are 
often referred to as protocol analyzers.  The intent of this 
paper is to illustrate how Matlab [1], in conjunction with a 
DSP or a PC, can be used to create an effective ADSL 
handshaking protocol analyzer based on ITU-T G.994.1 
(G.hs) [2].  G.hs conformance is critical in establishing a 
successful ITU-T G.992.1 (G.dmt) [3] based ADSL 
connection. 
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1.  INTRODUCTION 
 

The demand for high-speed data networks in the 
“last mile” has driven the need for robust, interoperable, 
and easy to use multi-vendor Digital Subscriber Line 
(DSL) access solutions.  DSL technology is attractive 
because it requires little to no upgrading of the existing 
copper infrastructure that connects nearly all populated 
locations in the world.  There are many variations of DSL, 
each aimed at particular markets, all designed to 
accomplish the same basic goals.  ADSL, or Asymmetric 
DSL, is aimed at the residential consumer market.  ADSL 
provides higher data rates in the downstream direction, 
from the central office to the end user, than in the 
upstream direction, from the end user to the central office.  
Within the Internet connectivity-based residential 
environment, small requests by the end user often result in 
large transfers of data in the downstream direction.  

ADSL is a direct result of the asymmetric nature of the 
Internet and the needs of the end user, and was originally 
designed for video-on-demand applications. 

 
ADSL is point-to-point technology.  Prior to an 

active connection between the central office (CO) ATU-C 
(ADSL transceiver unit – central) and customer premise 
equipment (CPE) ATU-R (ADSL transceiver unit – 
remote), the two devices must determine the 
characteristics of the loop that connects them (the local 
loop).  This process is known as initialization and allows 
ADSL systems to adapt the conditions of the local loop.  
Initialization consists of four parts:  handshaking, 
transceiver training, channel analysis, and exchange.  
ITU-T G.992.1 (G.dmt) defines discrete multi-tone 
(DMT) based ADSL, including all aspects of initialization 
except for handshaking.  Handshaking is formally defined 
in its own specification, ITU-T G.994.1 (G.hs).  G.hs 
marks the beginning of initialization, and defines how two 
ADSL devices acknowledge each other, exchange 
capabilities, and determine values for physical layer 
parameters.   

 
 
2.  ARCHITECTURE 

 
In terms of ADSL, a physical layer protocol 

analyzer should have two major components:  a non-
intrusive line tap, which allows the protocol analyzer to 
be transparent to the medium and any other devices using 
that medium, and the hardware and software required to 
demodulate/decode the physical layer signaling.  Figure 1 
shows a block diagram of one possible configuration for a 
DSL protocol analyzer.    

 



D S L A M A T U -R

N o n -In tru s iv e
L in e  T a p

P h y . L a y e r
D e m o d /

D e c o d e  H W

P ro to c o l
A n a ly z e r

Figure 1.  Protocol analyzer block diagram. 
 
Such an analyzer can be used as a stand-alone 

interoperability debugging tool, in conjunction with an 
ADSL emulator as a conformance verification tool, or 
simply as a line-monitoring tool.  It should be noted that 
this tool is not limited to G.dmt based ADSL, since G.hs 
is used in many different ITU DSL physical layer 
specifications.  As a result, G.hs sessions, regardless of 
technology, can be debugged and verified using such an 
implementation.   

 
As a basic interoperability debugging tool, this 

G.hs analyzer can be used to effectively identify and 
report any problems that may arise during an incomplete 
or unsuccessful G.hs session between two devices.  In 
addition, all G.hs signals, timing constraints, and state 
transitions can be analyzed and verified.  By default, this 
functionality identifies interoperability problem areas.  As 
a conformance tool, this analyzer can be used with an 
ADSL or SHDSL [4] emulator, or similar device capable 
of generating G.hs signals, to completely stress and test 
the G.hs functionality of another ADSL or SHDSL device 
(this conformance type functionality can be extended to 
cover all of initialization as well).  As a conformance tool, 
this analyzer provides insight into problem areas before 
they are actually discovered in the field. 

 
Regardless of implementation, there are two 

fundamental hurdles that must be cleared – an ADSL 
physical layer protocol analyzer must have some means 
by which it:  1) Receives and/or captures waveform data, 
and 2) Demodulates and translates the received data.  
Receiving data is related to the signal extraction 
architecture that is utilized, of which there are two basic 
types:  in-line and tapped.  An in-line architecture is one 
in which the ADSL signals of interest physically pass 
through the analyzer.  In this type of setup, the analyzer 
becomes part of the circuit and essentially splits a single 
loop into two distinct loops.  In contrast, a tapped 
architecture is one in which the ADSL signals of interest 
do not pass through the analyzer but are instead received 
and/or captured using a non-intrusive tap or probe.  The 
latter is very similar to the traditional method of voltage 
measurement using a scope and voltage probe.  Figure 2 
shows the two types of tapping architectures.   
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Figure 2.  Architecture types. 

 
The goal of either architecture is to essentially 

pass all ADSL signals without altering or changing the 
characteristics of the line and/or the actual ADSL signals 
themselves, while providing a connection point or 
interface for demodulation and translation functions.  This 
requirement is easier to implement with a tapped 
architecture because, as mentioned previously, the ADSL 
signals of interest do not physically pass through the 
device.  A properly designed tapped architecture also 
inherently has little to no effect on the characteristics of 
the line and affords the use of proven existing equipment 
designed for these purposes, whereas an implementation 
based on an in-line architecture would have to be 
designed, constructed, and tested from the ground up.  

  
 

3.  IMPLEMENTATION 
 
One way to implement a tapped architecture is 

through the use of an active differential probe and a 
digital storage oscilloscope (DSO).  This combination 
provides a stable means by which an ADSL line can be 
tapped and the signals of interest stored for post-
processing and analysis.  Another option is to replace the 
DSO with dedicated hardware that demodulates and 
decodes the data on the line in real-time.  The tradeoff 
between the two approaches is complexity versus speed.  
In the prototype stage however, analysis of the physical 
layer signals is most easily accomplished in software, 
using a programming environment like Matlab [3].  A 
software-based approach provides more flexibility and 
debugging capabilities than the hardware-based approach.  
The logical “next step” for most proven software-based 
designs is to develop a hardware implementation.  For 
these reasons the implementation outlined in this chapter 
is based on a tapped architecture using an active 
differential probe, DSO, and software-based post-
processing analysis.  In this case, the analysis software, 
based on a three-part physical layer analysis architecture 
shown and implemented in Matlab, has a fairly quick 
execution time, and is very adaptable in the sense that it 
provides a solid basis to which extended functionality and 
capability can be added at a later point.   

 
A practical physical layer analysis architecture 

has three basic parts:  demodulation, translation, and 
analysis.  Demodulation is required to determine the 
transmitted binary data.  Translation is required to parse 



and convert the binary output of the demodulation block 
into G.hs signals and messages.  Once the signals and 
messages have been identified, state labels can be 
assigned.  As part of the translation process, timing 
information must also be maintained.  Analysis is 
required to extract useful information from the translated 
state labels and to verify device conformance with the 
guidelines specified in G.hs.  Useful information comes in 
the form of physical layer device parameters, capabilities, 
and supportable modes of operation that are transmitted 
during the message transaction portion of G.hs.  Device 
conformance requires tracing through each state diagram 
and verifying state transitions and timing constraints.  
Figure 3 shows a basic physical layer protocol analyzer 
architecture.    
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Figure 3.  Physical layer analyzer architecture. 
 

3.1.  Setup and capture 
 
The A43 carrier set will be the focus of this 

discussion because it is the most common.  However, the 
same methodology can be applied to all carrier sets.  
Using this test setup, a LeCroy WavePRO 950 1GHz 
DSO, with 32 Mpoint capture memory, is used to capture 
and store a complete G.hs session.  An active differential 
probe, such as the LeCroy AP 034 or the HP/Agilent 
1141A, is required to interface the DSO to the physical 
copper wires connecting the HSTU-x’s and carrying the 
G.hs session.  Using a program distributed by LeCroy 
called ScopeExplorer, data can be transferred from the 
DSO across a LAN to a PC (with Matlab and 
ScopeExplorer installed).  The PC actually performs the 
G.hs demodulation using a Matlab script developed for 
this project.  Figure 4 shows the test setup required for 
G.hs physical layer analysis using the implementation 
outlined in this paper.  
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Figure 4.  Physical layer protocol analyzer test setup. 

 
Based on the highest carrier frequency of the 

A43 carrier set, 64 * 4312.5Hz = 276 kHz, the sampling 

rate of the DSO must be set to at least 552 kHz (1 
Msample) per second (or higher, although 1 Msample per 
second, which is comfortably above the Nyquist rate, is 
used throughout this discussion).  A complete G.hs 
session is approximately 2 to 6 seconds in duration.  At 1 
Msample per second, the DSO should be configured to 
capture at least 10 million points, which is 10 seconds 
worth of data.  At a resolution of 8 bits, the captured 
waveform results in a file size of about 10 Mbytes.  The 
DSO can be configured to trigger on a certain voltage 
level, indicating that a G.hs session is taking place, or the 
DSO can be triggered manually just before the G.hs 
session takes place.  Along with a G.hs session, at least 4 
seconds of other data will be captured and stored in the 
DSO.  This remaining data is usually other parts of the 
initialization sequence and can, for the purposes of G.hs 
analysis, be ignored.  However, it is important to realize 
which part of the captured data is actually the G.hs 
session and which part is not.   

 
The original Matlab scripts used to transfer, 

display, and demodulate the captured G.hs sequences 
were written using Matlab 5.3.1 and Simulink 3, with the 
Signal Processing and Communication Toolboxes, as well 
as the DSP and Communication Blocksets for Simulink.  
The current software version, v3.1 as seen in Figure 5-3, 
has been updated for use with Matlab 6.1 and Simulink 4, 
and includes a custom graphical user interface (GUI) for 
control of the demodulation and presentation of the 
recovered data.  The majority of the G.hs demodulation is 
done in Simulink, and due to the high sampling rates used 
and the corresponding large waveform files, CPU speed 
plays a large role in the overall execution time (execution 
time refers to the amount of time required for this G.hs 
analysis tool to produce an output).   

 
3.2.  Demodulation 

 
The first step in the demodulation process is to 

decouple the individual carrier frequencies so that they 
can be demodulated independently.  Six independent 
bandpass filters, one for each carrier frequency in the A43 
carrier set, have been designed for this purpose in 
Simulink.  Each of these six BPF’s is a fourth order 
Butterworth IIR filter with a 10kHz bandwidth.  This 
particular filter was chosen for its stability and flatness 
over the pass band.  The 10kHz bandwidth was chosen to 
satisfy the requirement stated in Section 6.3.1 of G.hs.  
Section 6.3.1 states that: “For the 4.3125 kHz signalling 
family, the transmit filter shall have a bandwidth such that 
all of the –3 dB points of the filter shall have frequencies 
which differ at least 4.3125 kHz from any G.994.1 carrier 
frequency used.”  Simulink’s “Digital IIR Filter Design” 
block, available with the DSP Blockset, was used to 
generate each of the six individual BPF’s within the 
decoupling filter bank.    Frequency normalization is 
accomplished by dividing the frequency of interest by the 
effective Nyquist frequency, which is half the sampling 
rate (1 Msample/second), or 500 kHz.   



The next step in the G.hs demodulation process 
is to individually demodulate the separate modulated 
carrier frequencies.  Recall that the modulation scheme 
used throughout G.hs is DBPSK, therefore six separate 
DBPSK demodulator functions will be required.  The 
decoupled output of each of the individual BPF’s will be 
fed into individual DBPSK demodulator functions.  There 
are essentially six separate demodulation systems running 
in parallel.  Simulink has a built-in DBPSK demodulator 
block included as part of the Communications Blockset, 
termed “M-DPSK Demodulator Passband.”  This block 
will be used as the primary demodulation engine.  
Relevant arguments of the “M-DPSK Demodulator 
Passband” block include: M-ary number (2 in this case), 
carrier frequency, symbol period, sample time, and 
baseband samples per symbol.  These arguments are 
defined by the carrier frequency and signaling family of 
interest.  For example, the lowest carrier frequency within 
the A43 carrier set is 9 * 4312.5Hz = 38812.5Hz.  The 
symbol rate for the A43 carrier set (which is part of the 
4.3125kHz signaling family) is 4312.5 / 8 = 539.0625 
symbols per second.  The sample time is the sample rate 
of the DSO, which in most cases is 1 Msample/second.  
Thus, for each of the six DBPSK demodulator functions 
the only arguments that will differ are the carrier 
frequency and the “Baseband samples per symbol.” 

 
The “Baseband samples per symbol” argument 

refers to the frequency downconversion factor used by the 
“M-DPSK Demodulator Passband” block.  The “M-
DPSK Demodulator Passband” block simply performs 
downconversion on the incoming signal and passes it to 
the Simulink “M-DPSK Demodulator Baseband” block.  
Downconversion is also known as bandpass sampling, 
and is similar to converting from an RF signal to an IF 
signal, albeit at zero IF, using a mixer in analog 
communications systems.  Downconversion throws 
samples away, effectively “re-sampling” the signal at a 
lower sampling rate.  For this particular case, the 
advantage to downsampling (which is not required) is that 
the effective reduced sampling rate and decreased number 
of samples dramatically improves the execution time.   

 
Simulink’s “M-DPSK Demodulator Passband” 

block consists of two basic parts:  frequency down-
conversion, and the “M-DPSK Demodulator Baseband” 
block, which actually performs the bulk of the 
demodulation.  Version 4 of Simulink does not allow 
access to the sub-blocks of the “M-DPSK Demodulator 
Baseband” block using the “look under mask” command. 
However, Version 3 of Simulink does allow access to the 
“DPSK Passband Demodulator” and related blocks.  
Assuming that the blocks in Version 4 of Simulink are 
based on the blocks in Version 3, Matlab/Simulink 
utilizes the correlation method of DPSK detection.   

 
The correlation method of detection essentially 

compares the received modulated signal (and noise) to all 
of the possible noiseless outcomes and chooses the closest 

match.  This is performed as such: the received signal is 
multiplied with an array of sinusoids, each differing in 
phase according to the possible phase outcomes (i.e. for 
M = 4, there would be four sinusoids, each differing in 
phase by 90°), at the carrier frequency of interest.  Each 
resulting product is fed into an integrator that resets to 
zero at the beginning of every symbol period.  The output 
of the integrator, which is the correlation of the received 
noisy signal and all of the possible modulated outcomes, 
is then fed into a mapper, which maps correlation levels 
to binary outputs.  Since a DBPSK modulator has only 
two possible outcomes, the DPSK demodulator has only 
one correlation function – if the correlation of the two 
input signals is large enough a binary 0 or 1 is the 
decision, and if the correlation is not large enough, the 
opposite binary digit is the decision.  Recall that exact 
phase synchronization with the carrier frequency is not 
required with DPSK receivers/demodulators because the 
data is encoded as relative phase differences from one 
symbol to the next.  Therefore, the final stage in the 
demodulation process is a differential decoder that 
extracts the message bits from the demodulated 
differentially encoded binary sequence.   

  
Each of the six individual DBPSK demodulators 

produces a binary data stream.  Recall that all carrier 
frequencies within a particular upstream or downstream 
carrier set defined in G.hs (i.e. all upstream and all 
downstream carrier frequencies) are modulated with the 
same data.  With three carrier frequencies, a median filter 
can be used to determine the ‘majority’ result of the 
individual binary output streams because, for an odd 
number of inputs, Simulink’s “Median” block sorts all of 
the inputs by value and outputs the middle row.  This 
function, as implemented by Simulink, is known as 
majority logic decoding.  Thus, median filtering in 
Simulink produces a single bit stream that is capable of 
eliminating single bit errors.  Figure 5a shows the 
Simulink model required to demodulate one of the six 
carrier frequencies defined in the A43 carier set.  The 
complete Simulink model required to demodulate all 
carrier frequencies within the A43 carrier set uses six 
identical demodulation blocks each with a different 
bandpass filters tuned to the frequency of that particular 
carrier.  The output of the first three demodulation blocks 
are fed into a median filter, shown in Figure 5b, which 
produces the upstream direction majority output.  
Likewise, the output of the last three demodulation blocks 
are fed into a median filter, similar to that shown in 
Figure 5b, which produces the downstream direction 
majority output. 
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Figure 5a.  Simulink G.hs demodulation model for a 

singlae carrier frequency. 
 

 
Figure 5b.  Simulink G.hs demodulation model for the 

upstream median filter operation. 
 

 
3.3.  Translation 

 
Once started, the six DBPSK demodulator 

functions run continuously for a fixed length of time 
determined by the user, i.e. the demodulators do not stop 
when DBPSK data is not present.  This tool is used to 
demodulate an entire G.hs session from start to finish.  
Thus, different binary patterns can be expected in the 
output during different states of G.hs.  With this in mind, 
each of the five signals defined in G.hs (TONES-REQ, 
SILENT, TONES, FLAGS, and GALFS) have a distinct 
DBPSK demodulated binary output pattern.   

 
TONES-REQ consists of transmitting on all 

carrier frequencies with phase reversals (180° phase 
shifts) every 16ms.  With a symbol period of 8/4312.5 ≅  
1.855ms, eight or nine symbols (because 16 / 1.855 ~ 
8.62) will be demodulated between phase reversals.  
According to the differential encoding algorithm 
mentioned previously (recall that a binary 0 in the output 
represents no phase difference and a binary 1 represents 
180° phase difference between adjacent outputs), this 
translates into a binary output sequence that looks like: [ . 
. . 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 . . . ].   

 
The TONES signal consists of transmitting 

power on all carrier frequencies continuously without 
phase modulation, thereby in a binary output sequence of 
0’s.  The SILENT signal is defined as zero output voltage 
from the HSTU-x’s, resulting in a random binary output, 
because the DBPSK demodulators are essentially 
demodulating line noise.  The FLAGS and GALFS 
signals are defined as continuously modulated HDLC 
FLAG (0 1 1 1 1 1 1 0) and GALF (1 0 0 0 0 0 0 1) octets, 
respectively.  Also, the resultant bit patterns of all fields 

and parameters contained within the message transaction 
portion are formally defined in G.hs and follow the bit-
encoding algorithm defined in G.hs.  Figure 6 shows how 
certain binary outputs can be translated to known G.hs 
states. 

 

 
Figure 6. Translation table including possible known 

binary outputs and associated G.hs states. 
 
3.4.  Analysis 
 

The G.hs demodulator described above is 
embedded within a larger Matlab script file that handles 
data input and output and basic device control 
functionality.  The demodulated binary output produced 
by the Matlab based G.hs demodulator is written to a text 
file, a sample of which is shown in Figure 7, which can 
then be parsed for all of the state transition information 
and timing constraints of both devices.   

 
Figure 7 is a sample of actual results obtained 

from two devices.  The output text file consists of nine 
columns of data.  The first three columns represent the 
binary output of each of the three carrier frequencies in 
the upstream portion of the A43 carrier set.  The fourth 
column is the median filtered output of the first three 
columns.  The fifth, sixth, and seventh columns are the 
binary output of each of the three carrier frequencies in 
the downstream portion of the A43 carriers set.  The 
eighth column is the median filtered output of the fifth, 
sixth, and seventh columns.  The last column is the time 
stamp and indicates the time, as measured from the 
beginning of the captured sequence, at which each of the 
binary outputs in that row occurred.   

 
Notice that the first four columns in Figure 7 are 

the same, indicating that all three carrier frequencies in 
the upstream direction are modulating the same data.  
Using Figure 6, it can be shown that the upstream carrier 
frequencies indicated in Figure 7 are modulating the 
R_TONES_REQ signal, which in turn indicates that the 
HSTU-R is in the R_TONES_REQ state.   For 
clarification purposes, a device in a particular state 
continuously transmits the same signals while in that 
state.  For example, a device in the R_TONES_REQ state 
continuously modulates and transmits the 
R_TONES_REQ signal, as shown in Figure 6.  Notice 
that the fifth, sixth, seventh, and eigth columns are not the 

G.hs State Expected Demodulated Binary Output 
FLAG (1 octet) 
(C or R) 0 1 1 1 1 1 1 0         

GALF (1 octet) 
(C or R) 1 0 0 0 0 0 0 1         

TONES (C or 
R) 0 0 0 0 … 0           

TONES_REQ 
(R only) 1 0 0 0 0 0 0 0 NOTE:  7 OR 8 zeros 

may follow the 1. 
SILENT (C or 
R)/Unknown Random – binary output is demodulated noise. 



same, which indicates that the HSTU-C is either in the C-
SILENT state or in unknown state.  

 
This translation from binary output to known 

G.hs states and corresponding signals, as shown in Figure 
6, is the first step in the analysis procedure.  Following 
this basic translation, the three phases of G.hs can be 
identified:  start-up, message transactions, and clear 
down.  In addition, G.hs frame boundaries and all basic 
and extended message transactions can be identified, and 
all message fields and parameters can be translated 
according to the tables in G.hs.    

  
Complete analysis of the translated binary output 

text file must be done by hand, but can be done quickly 
and efficiently providing in depth information about the 
state transitions of both the HSTU-R and the HSTU-C 
and about the message transactions between the two 
endpoints.  This information can be used to verify timing 
constraints, device capabilities, and conformance to the 
G.hs specification.  Detailed G.hs analysis identifies 
problem areas before they arise in real world equipment 
and real world situations, and reduces the likelihood of 
interoperability issues in a multi-vendor environment.      
 

0  0  0  0  1  1  0  1 1.017130 
0  0  0  0  0  0  0  0 1.018986 
0  0  0  0  1  1  1  1 1.020841 
1  1  1  1  1  1  1  1 1.022696 
0  0  0  0  0  0  1  0 1.024551 
0  0  0  0  1  1  1  1 1.026406 
0  0  0  0  1  1  0  1 1.028261 
0  0  0  0  1  1  1  1 1.030116 
0  0  0  0  0  1  1  1 1.031971 
0  0  0  0  1  1  0  1 1.033826 
0  0  0  0  0  0  0  0 1.035681 
0  0  0  0  1  0  0  0 1.037536 
1  1  1  1  0  0  0  0 1.039391 

 
Figure 7.  Sample of the binary output text file created by 

the G.hs demodulator. 
 
 
4.  CONCLUSION 
 

This G.hs analysis tool can be used to identify all 
interoperability issues associated with G.hs sessions 
between two devices.  This functionality has been proven 
in real-world situations with real-world devices and 
networks in the University of New Hampshire Reasearch 
Computing Center InterOperability Laboratory.  In 
addition, the implementation outlined in this paper is 
adaptable and provides an architecture in which 
provisions for G.dmt Annex B, G.dmt Annex C, SHDSL, 
and VDSL compliant devices can be easily added.  Work 
is currently underway in the InterOperability Laboratory 
to extend the capabilities of the G.hs protocol analysis 

tool to cover these other technology areas, and to this 
point, provisions for testing of SHDSL G.hs sessions 
based on this architecture have been completed.       
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